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Abstract
The detour d (i, ) between vertices i and j of a graph is the
number of edges of the longest path connecting these vertices. The
matrix whose (i, j ) -entry is the detour between vertices i and
J is called the detour matrix. The half sum D of detours between
all pairs of vertices (in a connected graph) is the detour index, i.e.,
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In this paper, we computed the detour index of TUC,C,(S)
nanotube.
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1. Introduction
Fullerenes and nanotubes are promising candidates in the development of
nanodevices and superstrong composites. They have aroused both theoretical

and experimental interest [5, 6, 7, 9, 14, 15]. Besides the well-known C(,o and
C70 , other cages have been isolated in solid state. Recently, the small cages

C34 and C,, were reported and their halves used for modeling capped narrow
nanotubes [10-12].

AcC 4Cg Det is a trivalent decoration made by alternating squares C 4 and
octagons C; . It can cover either a cylinder or a torus. Such a covering can be

derived from a square net by the leapfrog operation.
Let G = (V,E) be a connected graph with the vertex set v = ¥(G). For vertices

i, j e V(G) we denote by d(i,j) the detour (i.c., the number of edges on the
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longest path) jointing the two vertices of G. The Detour index [1] D of the
graph is the sum of detours over all its distinct vertex pairs(i,j) :

1
21

Mathematical aspects related to the counting of detours in nanotubes covered by
squares and octagons C,Cg , as well as the relationship of this covering with the

square tiled nanotubes, by the leapfrog operation, will be illustrated in the
following.

2. Construction of TUC,Cy nanotubes

The C 4C8 covering is related to the square net tessellating a cylinder [2,4]. Let

a square C, be the unity polygon U submitted to some well-known operations

on a map M [3]. It is easily seen that the square stellation, followed by
dualisation, leads to the "rhomb"-net (i.e., "bathroom floor" net-Figure 1, first

row), which is symbolized as TUC4C8(R)[c, n] when it covers a tube (i.e., a

cylinder). The medial of U leads to the "square”-net TUC4C8(S)[c, nj (the

second row in Figure 1). Clearly, the sequence Du(St(M))= Le(M) is
equivalent to the leapfrog Le operation [8].

¢y =U Stellation =St U) Du(StU)) =Le@)

Du(St(MeU M) =
Medial =Me(U) St (MeUY)=SmU) Le(Me@U))

Map operations on the square unity U polygon
Figure 1
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Figure 2 shows assemblies of the above leapfrog units.

Du(St(Uy =LeU) Du(St(Me(U))) = DsmU))

Assemblies of the leapfrog units derived from the square.
Figure 2

Optimized C4Cg nets covering a nanotube are illustrated in Figure 3. Such

nanotubes could appear by successive low energy Stone-Wales [13] edge
flipping in polyhex nanotubes.

TUC,C(5)[2880] TUC,Cy(R)[24.64]

Nanotubes covered by C,C, nets.
Figure 3

In the name TUC 4C8 (R/ 8)[c, n], the first letter in the brackets is the number of

vertices in the cross-section while 7 denotes the number of cross-sections along
the tube. The number of vertices of the nanotube-graph in the molecule is c¢x n.
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3. Detour index of TUC‘.'C8 (S)

Let us denote by p the number of squares at first row in the tube and by
g, m, k the various levels (i.e., the length) of the tube (Figure 4).
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TUC 4C8 (S) lattice with p=4, g=6
Figure 4

For example, in Figure 5, we marked the detour between vertices vand % ,and
detours between other vertices are found similar this way.

Maximum path between vertices v and % .
Figure§
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In Figures 6 and 7, the number m over any vertex, which means 4 pg - m is the
detours from V. Let v be an arbitrary vertex in level 1 (Figure 6),
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Detours from vertex Vv to vertices lying at levels k =1,2,..,12.
Figure 6

Then sum of detours between v and all other vertices lying on same level is
given by:
If p=3,then:

2
51(p)=8p~q—-4pg-3Sp+6.
Andif p<2,then:
2
s5(p)=8pq-4pg-3p+2.

And the sum of detours between v and all other vertices lying at levels
2< k<2qis:
22 2
sty(p,q)=16p~q~ -8p q—6pq +3p.

So the total sum of detours between level 1 and all other vertices is:

32 .3 2 2
51(p @)= p-s|(P)+2p-sty(p,q)=32p g —-8p q—16p~q+p~ +6p.
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Now let v be a vertex on level i, 2<i<2g-1 (For example level 3, see
Figure 7).
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21 2 | 2 | 2 1

Detours from vertex v to vertices lying at levels k =1,2,..,12.
Figure 7

The sum of detours between v and other vertices lying at same level is given as:

2
s;(p)=8p~q-4pg-3p+2.

And the detour sum from V to other vertices lying at levels i+1<m<2q is
given as:
2q
2 2 2 2 .
sti(pg)= L (8p"q-3p)=16p~q~ -6pg-(8p~q-3p)i.
m=i+l
Now sum of detours between level i and all other vertices lying in levels
i<k <2q is given as:

si(p,q)=p-s;(p)+2p-sty(p,q)
So the total sum of detours between levels 2 <i < 2g-1 and all other vertices
lying at levels i < j < 2q is given as:

2g-1
s(p,q) = i§2 si(p.q).
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So we have:

32 2
5(p,q)=(32p7q" -20p"q +4p)g-1).

If we rotate 180 degree the Figure 6, then the vertices lying at level 2q is the
same vertices lying at level 1, so we have:

sq(p)=51(p).

Therefore, the detour index of TUC,Cg(S) is given as:
If p23, then:

D=p-si(p)+s;(p,q)+5(p.q) = (pq)(32pzq2 —20pg +4)+ p(8—4p).

If p<2,then:

D= p-5;(p)+5,(p.q) +5;(p.q) = (pa)(32p°q% — 20 pg + 4.
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