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Abstract

In this paper, we compute the Pl and Szeged indices of
some important classes of benzenoid graphs, which some
of them are related to nanostructures. Some open questions
are also included.
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1. Introduction

A topological index is a real number related to a molecular graph. It must be a
structural invariant, i.e., it does not depend on the labelling or the pictorial
representation of a graph. The oldest topological indices of a molecular graph G
is the Wiener index W = W(G). This index is defined as the sum of distances
between distinct vertices and was introduced by chemist Harold Wiener, [23]. In
the 1990s, a large number of other topological indices have been put forward, all
being based on the distances between vertices of molecular graphs and all being
closely related to W. Szeged index is one of these topological indices, which is
introduced by Ivan Gutman, see [9,10,18]. To define the Szeged index of a

graph G, we assume that e = uv is an edge connecting the vertices u and v.
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Suppose N,(e|G) is the number of vertices of G lying closer to u and Ny(e|G) is
the number of vertices of G lying closer to v. Edges equidistance from u and v
are not taken into account. Then the Szeged index of G is defined as Sz(G) =
2e-uvee(@Nu(€|G)N(€|G).

A Szeged-like topological index introduced very recently by P V.
Khadikar, [13-16]. It is defined as the sum of [n,(e|G) + n.(e|G)] between all
edges e=uv of a graph G: PI(G) = X..g[neu(e|G)+ n.(e|G)], where n,(e|G) is the
number of edges of G lying closer to u than to v and n,(e|G) is the number of
edges of G lying closer to v than to u. Mathematical properties of the PI index
for some classes of chemical graphs can be found in recent papers, [1-
6,8,19,24].

We now describe some notations which will be kept throughout.
Benzenoid systems (graph representations of benzenoid hydrocarbons) are
defined as finite connected plane graphs with no cut-vertices, in which all
interior regions are mutually congruent regular hexagons. More details on this
important class of molecular graphs can be found in the book of Gutman and
Cyvin [10], and in the references cited therein.

In this paper we only consider connected graphs. Our notation is
standard and mainly taken from [7,10,22].

2. Results and Discussion

Let G be a benzenoid graph. If all of vertices of the graph G lie on its perimeter,
then G is said to be catacondensed; otherwise it is pericondensed. In this section
we calculate the PI and Szeged indices of some benzenoid graphs and present

some open questions.

Definition 1. Suppose G is a hexagonal system, e = Xy, f=uv € E(G) and w €
V(G). Define d(w,e) = Min{d(w,x) , d(w,y)}. We say that e is parallel to f if
d(x,f) = d(y,f) and we write e || f.
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Lemma 1. || is a reflexive and symmetric relation, but it is not transitive.

Proof. Reflexivity is trivial. To prove || is symmetric, we assume that e = xy is
parallel to f = uv. By definition d(x,f) = d(y,f). If d(x,u) = d(x,v) then we obtain
a cycle of odd length containing the edge f, a contradiction. Hence d(x,u) #
d(x,v) and similarly d(y,u) = d(y,v). Without loss of generality we can assume
that d(x,u) < d(x,v). Then by assumption d(y,v) < d(y,u) and we can see that
d(x,u) = d(y,v), d(x,v) = d(y,u). On the other hand, d(x,u) < d(x,v) and d(y,v) <
d(y,u) imply that d(x,v) = d(x,u) + 1 and d(y,u) = d(y,v) + 1. This shows that
d(u,e) = Min{d(u,x),d(u,y)} = Min{d(x,v) - 1,d(y,v) + 1} = Min{d(y,u) — 1,
d(x,u) + 1} = Min{d(y,v),d(x,v)} = d(v,e), as desired. Finally, we show that | is
not transitive. To do this, we consider the graph of a polyhex nanotorus with p =

2 and q = 6, Figure 1. In this graph, e|f and f||g but e is not parallel to g. L

Figure 1. A Polyhex Nanotorus with p=2 and q=6.
Question 1: Under what condition(s) is parallelism an equivalence relation?

Definition 2. Suppose G is a hexagonal system and e € E(G). We define P(e) to
be the set of all edges parallel to e and N(e) = [P(e)].

It is clear that N(e) = |E| — (n,(e|G) + n..(e|G)), where e is an arbitrary
edge of the graph G. Thus PI(G) = |Ef’ - 2cercy) N(€). We use this simple
equation freely throughout the paper.
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Example 1. Consider the hexagonal triangle graph G = T(n) of Figure 2,
containing j hexagons in the j" row, 1 < j < n. This graph is related to the atomic
structure of bipod shaped nanocrystals, see Figure 13 of [12]. Since the graph G
has an equilateral figure, [E(G)| =3(2 +3 +4 + ... + (n + 1)) = 3/2(n” + 3n). On
the other hand, an arbitrary edge e of the j row of T(n) has exactly j + 1 parallel
edges and s0 Y..gN(e) = 3[2%+ 32+ ... + (n+1)?] = 12[2n° + 18n%+ 13n} =n® +
9n’+ 13/2n. Therefore,
PI(G) = [E* - Zcckc) N(e) = 1/4[9n* + 50n° + 63n% - 26n].

We now compute the Szeged index of this graph. Obviousely, |[V(G)| =
3+5+...+(2n+1)=n’>+4n + 1. Consider a vertical edge e = uv of the j* row
of the graph T(n). We note that this row has exactly j + 1 vertical edges and so S;
=NElG)=[3+5+..+2j- D] =7 +2jand Tj=Nye|G)=n’+4n+ 1 - j* -
2j. Therefore,

82(G) = 3Z1sisn Nu(€lG)N(e|G)
= 3ZlSiSn (1+)SiT;
= ¥ 1gicn [-P=5i*H(n?+4n=7)i’+(3n’+12n-1)i%+2(n’+4n+1)i]
= 1/4[n® + 12n° + 49n* + 84n® + 58n” + 12n).

Figure 2. The Hexagonal Triangle Graph T(n)
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Example 2. Let H, be an n-hexagonal net, which is a hexagonal system
consisting of one central hexagon and is surrounded by n—1 layers of hexagonal
cells when n 2> 1, Figure 3. H, is a molecular graph, corresponding to benzene
(n=1), coronene (n=2) circumcoronene (n=3), circum—circumcoronene (n=4),
etc. In [20], Shiu and Lam computed the Wiener index of an n-hexagonal net.
They proved that W(H,) = 1/5(164n° - 30n® + n). Here the Pl and Szeged indices
of this graph are computed. Since the j row of the graph H, has exactly n + j
vertical edges, |[E(H,)| = 3{2[(n+1) + (n+2) + ... + (2n — )]+ 2n} =9n* = 3n. A
similar calculation shows that [V(G)| = 6n’. On the other hand, if e is an arbitrary
edge of the j row of this graph, 1 < j < n-1, then ¢ has exactly n + j parallel

edges and so

PI(H,) = [EHP -3{22 15 (n +i)° +4n°)
= (9n® - 3n)? - (140’ =30’ + n) = 81n* - 68n® + 12n —n.

To compute the Szeged index of H,, we consider a vertical edge e = uv
in the j row of H,. Then for an arbitrary vertex t of the i row of H,, d(t,u) <
d(t,v) if and only if i < j. Suppose A is the set of all vertical edges of H,. For n=1
Sz(H,) = 54 and so it is enough to consider n > 2. If e = uv is a vertical edge in
the i row, Figure 3, Then the number of vertices which are closer to u than v is

as follows:
(@n+1)+ @2n+3) + ... + (20 +2i = 1) = 2ni +i*.
Since H, is symmetric, we have:
Sz(H,) = 3Zc-uvea Nu(elG)Ny(e|G)
= 3{2% 1cicot [@ni+D)(nHi)(6n® — 2ni — i%)] + 2n(3n)(3n%)}
= 54n°-3/2n*+3/2n%.
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Figure 3. A 4-hexagonal net (circum-circumcoronene).

Example 3. A graph formed by a row of n hexagonal cells is called an n-
hexagonal chain. A hexagonal parallelogram Q,n, is a graph containing m n-
hexagonal chain in every row, Figure 4. Consider a hexagonal parallelogram
Qu.n to compute its PI and Szeged indices. It is clear that |[E(Q, )} = 3n*+4n-1
and |V(Q,,.)| = 2n® + 4n. This graph has three types of edges, vertical, left
oblique and right oblique. Let A, B and C denote the set of all vertical, left
oblique and right oblique edges of Q,n. Then XccpqnmN(€) = LceaN(e) +
YeeaN(e) + Z.ccN(e) and we have:

YeeaN(e) =n(n+ 1> =n’+2n’ +n,

TeesN(e) =n(n+ 1)’ =n’ +2n’ +n,

TeeN(e) = 2[2° + 37+ ... + 0] + (nt1)’

Y ecr@nmN(€) = 1/3(8n° + 18n” + 13n - 3).

Hence PI(Quyx) = [E(Qu) — ZeernnN(e) = 1/3(27n* + 64n® + 12n% -
37n + 6). We now compute the Szeged index of this graph. To do this, we note
that Q, , has exactly three types of edges, say I, II and III. The edges of type I are
vertical and the edges of type II and III are left and right oblique edges,
respectively. It is easy to see that for an arbitrary edge e = xy of type I and an
arbitrary edge f of type 11, we have Ny(e|Qnn) = Nu(flQnn) and Ny(e[Qun) =
Ny(fiQus). Define Sz = 2Tcewver NulelQua)NW(elQuq) and Szp = Xeeuvem
Nu(e|Qun)NW(€|Qunn)- Then Sz(Q, ) = Sz, + Sz, and we have:
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82; = Ze-uvet Nu(€|Qn.n)NW(€[Qu.n)
= (n+1) Tosinr [2n+1+i(20+2)][20 + 4n —2n -1 — i2n+2)],
=1/3(2n® + 12n® + 22n* + 14n° + 3n? + n),
To compute Sz,, we choose €, = XY}, €2= X33, ..., € =Xq¥a t0 be the
final left oblique edges of the 1", 2* and etc row of Qn.o- Then we have:
82, = Ye-uvem Nu(€|Qna)NWe[Qn),
= 2% cien (1+H)Nyi( € Qun)Nyi(€Qup) — (0+1)S,”
= 2Z15e,(1+)Si(2n* + 4n - S;) - (a+1)S,]
= 1/6(4n® + 24n° + 49n* + 36n° + n? — 6n),
in which ;=3 + 5+ ... + (2i + 1) = i + 2i. Now Sz(Q,.) = Sz,(Qun0) + SZ(Qu)
and so Sz(Q,,) = 1/6(12n° + 72n° + 137n* + 92n* + 13n” — 2n).

Figure 4. The Hexagonal Parallelogram Q.

Example 4. Following Shiu, Tong and Lam [23], a hexagonal rectangle is called
hexagonal jagged-rectangle, or simply HJR, if the number of hexagonal cells in
each row is alternative between n and n — 1. Obviously, there are three types of
HIJR. If the top and bottom row are longer we shall call it HIR of type I and
denoted by I™. If the top and bottom row are shorter we shall call it HIR of type
K and denoted by K™™. The last one is called HJR of type J and denoted by J™™.
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In [21], Shiu, Tong and Lam computed the Wiener index of an arbitrary
HIR. The exact expression for the Wiener index of an arbitrary HIR is lengthy
to be included here. In what follows, we compute the PI and Szeged indices of
hexagonal jagged-squares G = I"™"2 and H = J™"2 where n is odd and m is
even. We first notice that |E(I*™"?)| = %4(6n”+ 5n + 1) and [E(J™™2)| = Y4(6m>+
5m - 4). We compute PI indices of these graphs. To do this, we have:

PII™D?) = | EQ* )P - T, cpgN(e)

= (1/4)(6n*+ 5n + 1)? — (1/6)(16n°+24n’+23n+9)

= (1/12)(108n* + 148n* + 63n* — 16n — 15),
PII™™) = | EQ™)- ZeeN(e)

= (1/4)(6m*+5m—4)* — (1/6)(16m>+24m>+1 1m—12)

= (1/12)(108m*+148m*~117m*~142m+72).

Next we compute the Szeged index of these graphs. To do this, we
calculate that [VI™™"2)| = 2n + 3n + 1 and [V(J™™?)| = 2m? + 3m —1. Consider
the graph G = I"™"2, This graph has two types of vertical edges, say I and II,
the rows containing n+1 or n hexagons, respectively. There are also two types of
oblique edges, III and IV, those with n + 1 parallel edges and others. Let us
define SZI = Ze=uvel Nu(eIG)Nv(elc)’ SZZ = Ze=uvell Nu(elG)Nv(eIG)a SZ3 =
Ze=uvem Nu(elG)Nv(elG)s Sz4= Ze=uvelv Nn(elG)Nv(elG)~ We calculate:

Sz;=@+1) Y " V"2[20 +1+4ni + 2i][2n% + 30 +1-2n — 1~ 4ni - 2i]

= 1/3n® + 5/3n° + 49/12n* + 17/30° + 13/3n° + 5/3n + 1/4,

Sz,=n 3 " P[4 + 2+ 4ni +2i][2n% +3n +1- 4n -2~ 4ni - 2i]
=1/3n° + 4/3n° + 3/4n* — 13/12n° - 13/12n* - 1/4n,
Sz, = 3" 22i8;(2n% +3n +1-§;)
= 5/48n°+253/240n*+373/96n*+155/24n>+59/12n>+119/80n + 3/32,
(n-3)/2

Sz = (1) Yo [Spyatyr + 201 +20][20% +3n +1=Sy 11/, —20i = 2i]

= 11/24n® + 3/4n° — 17/6n* — 49/6n> — 55/8n> — 19/12n + 1/4,
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where ;= "' (4n—1)=2i? +i. Then S2(G) = Sz, + Sz, + 45z; + 25z

Using a tedious calculation, we can see that Sz(G) = 2n® + 523/60n’ + 353/24n*
+169/12n’ + 55/6n” +21/5n +9/8.

We now consider the graph H = J™?to compute its Szeged index. In
this case we have five types of edges. Using a similar argument as above, we
conclude that

Sz(H) = 2m°® + 523/60m°* + 109/12m* — 1/2m® — 25/12m? + 1/30m.

Example 5. Consider the benzenoid graph U(n) of Figure 6, to compute its
Szeged and PI indices. This graph has exactly 2n’ + 4n vertices and 3n” + 4n - 1
edges. The graph U(n) has three types of edges, I, I and III. The type I edges of
U(n) are vertical, Figure 6(c). Types II and III are those edges marked with
heavy and narrow lines in Figure 6(a) and 6(b), respectively. If e is a type I or 11
edge of U(n) then N(e) = (n+1), but for a type III edge e of U(n), we have 2<
N(e) <n. So
Leckwm) N(€) = X ce1 N(€) + X cen N(€) + X ccmt N(€)
=1/3(8n’ + 18n’ + 13n - 3).
This shows that PI(U(n)) = (3n” + 4n — 1)? — 1/3(8n’ + 18n’ + 13n - 3)
= 1/3(27n* + 64n’ + 12n> -37n + 6). We now compute the Szeged index of U(n).
To do this, we notice that the type II (I1I) edges are partitioned into classes 1I(a)
and II(b) (11I(a) and III(b)). Let us define Sz; = Y1 Nu(€lG)NL(E|G), Sz, =
Zemwem@ Nu(|GINW(EG), Sz3 = Ze-wenw Nu(elG)NU(EIG), Szs = Te-wemn)
Nu(E[G)N(eIG) and Sz; = Seapveitsy Nu(elGINL(eIG). Then
Sz, + 28z, + Sz, + 28z, + Sz; n=1(mod 2)
Sz(U(n)) =4Sz, + 28z, + Sz; +2Sz, + 28z, n=0 (mod 4).
Sz, +2Sz, + Sz, +2Sz, + 2Sz; +(n+1)(n?/2+n) Nn=2(mod 4)

Using a tedious calculation, we can see that:
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@1

Figure 5. Two types of jagged rectangle benzenoid graphs.

Sz, = 2/3n° + 4n® + 22/3n* + 14/3n° + n? + 1/3n),

Sz, _{5/4811 +89/120n° +47/32n* +13/24n’ - 7/6n’ ~77/60n~13/32 2/n
5/48n° + 67/60n° + 129/32n* + 71/120° + 17/6n* - 17/60n 2{n ’

Sz, ,{11/24:1 +2n° + 5/3n* — 29/12n° - 25/8n% +5/12n+1 2rn
11/24n® + l3/8n - 17/24n* -151/24n° - 19/4n° - 1/3n 2|n’

Sz, = {5/48n +67/60n° +14l/32n +31/4n +I3l/24n +2/15n~31/32 2/n
5/48n° + 89/120n° + 59/32n* + 15/8n° + 17/24n® +2/15n 2in

Sz _{11/24n +2n° + 5/3n* - 29/12n - 25/8n +5/12n+1 2fn
11/24n° + 19/8n + 97/24n* + 59/24n° + 1/2n%+ V/6n 2{n

Therefore,
2n® +703/60n° +269/12n* +197/12n® +10/3n% -17/15n-3/4 2!n
Sz(U(n)) = {2n® +703/60n° +269/12n* +203/12n° +16/3n% +13/15n 4in
2n® +703/60n° +269/12n* +197/12n° +23/6n - 2/15n 2yn/2

In the Examples 1-4, the PI indices of investigated benzenoid
graphs are strictly less than their Szeged indices. We end this paper with

the following open question:
Question 2. Let G be a benzenoid graph. Is it true that PI(G) < Sz(G)?

A graph is called chordal if each of its cycles of four or more
nodes has a chord, which is an edge joining two nodes that are not
adjacent in the cycle. An equivalent definition is that induced subgraphs
which are simple cycles have at most three nodes. Chordal graphs are a
subset of the perfect graphs. It is easy to see that PI(Og) = 72 and Sz(Og)

264



= 48, where Og is octahedral graph. Our calculation on the graphs with
the small number of vertices pose the following open question:

Question 3. Let G be a chordal graph. Is it true that always Sz(G) <
PI(G)?
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Figure 6. The Benzenoid Graph of U(n) in three shapes.
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