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ABSTRACT. In this note we compute the chromatic polynomial of the
Jahangir graph Jap and we prove that it is chromatically unique for
p=3.
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Introduction: Let Jy,, p € N denote the Jahangir graph defined as
follows™: For p > 2, it consist of the cycle Cs, of length 2p having vertex set
equal to {v1,vs,...,v2p} and a new vertex which is adjacent to a maximal
independent set of p vertices of cycle, i.e. {vg,v4,...,vp}. For p =1, it is
equal by definition to K(1,2), where K(p,q) denotes the complete bipar-
tite graph having partite sets of cardinalities p and g, respectively. Some
examples of Jahangir graphs are given below,
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FIGURE 1

Graphs considered in this note are simple, undirected, without loops or
multiple edges. For a graph G, V(G), E(G), v(G), e(G), g(G) and P(G, ))

*The Jahangir graph Ja, is a natural extension of the graph Jy¢ which appears on Ja-
hangir’s tomb in his mausoleum, it lies in 5 km north-west of Lahore, Pakistan across the
River Ravi. His tomb was built by Queen Noor Jehan and his son Shah-Jehan (This was
emperor who constructed one of the wonder of Taj Mahal in India) around 1637 A.D.
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denote the vertex set, edge set, order, size, girth and chromatic polyno-
mial of G respectively. Two graphs G and H are said to be chromatically
equivalent (or simply x-equivalent), symbolically denoted by G ~ H, if
P(G,)\) = P(H,)). If graphs G and H are isomorphic we denote this by
G = H. The chromatic equivalence class of G, denoted by [G] is the set of
graphs H such that G ~ H. A graph G is chromatically unique (or simply
x-unique) if [G] = G or P(G,)\) = P(H,)) implies G = H. Note that
for p = 1, in Figure(1), the graph is just a tree with three vertices, having
the chromatic polynomial A(A — 1)2, which is known to be chromatically
unique, and for p = 2, we have J; 2 K(2,3) which is also known to be chro-
matically unique (see [1]). We shall see later that for p = 3 the Jahangir
graph Jg is chromatically unique also. For this we need some definitions
and known results about chromatic polynomials. Let G and H be two
graphs. We shall denote by ng(H) and ig(H) the number of subgraphs
and induced subgraphs in G, respectively which are isomorphic to H.

Theorem 1.1([1]): Let G be an (n,m) graph and let P(G,\) denote its

chromatic polynomial. Then:

n

P(G,)) =) (-1)"*hi(G)X (1)
i=1
is @ polynomial in A such that
(1) the degree of P(G, A) is n and the leading coefficient is 1,
(if) the coefficients are integers and alternate in sign;
(iii) the constant term is zero;
()  has(G)=m;
©)  mms(@) = (5 ) ~no(Cal

@) hns(C) = ( ™ ) _ (m — 2)nc(Ka) — ic(Ca) + 2na(Ka);

o) nea(@ = (7 )= (737 ) mota+ ("G )~ (m-

i¢(Cs)—(2m—9)ng(K4)—ic(Cs)+ic(K(2,3))+2ic(F)+3ig(Ws)—6nc(Ks)
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where F is the graph given below:

FIGURE 2

Following the Farrell’s[2] approach, Peng[5] managed to obtain the follow-
ing expression for h,_5(G) but confining to the class of bipartite graphs.

Theorem 1.2([5]): Let G be an (n,m)-bipartite graph. Then

tes@ = (7 )-("5 ) neCa-ia(Cartm-sima(k(@.9)-

ng(K(2,4)) +ic(K(3,3) —e) + 4ng(K (3,3)),
where e is an edge in K (3, 3).
Basic Results on P(G, A):
We shall state here some known results which will help us to determine

the chromatic polynomial of Jahangir graph Jo,, p € N. First result pro-
vides us with a recursive way to compute P(J;,)). Let G + zy denote
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the graph obtained by adding a new edge zy to G, and G.zy is the graph
obtained from G by contracting z and y and removing any loop and all but
one of the multiple edges, if they arise.

Theorem 1.3([1]): Let = and y be two non-adjacent vertices in a graph
G. Then:

P(G,)) = P(G +zy,\) + P(G. zy, \). @)

Equivalently if we treat the graph G+ zy as a given graph H, then theorem
1.3 can be reformulated as follows:

Let H be a graph and e € E(H), then

P(H,\) = P(H - e,)) — P(H.zy, \), (3)

where H — e denotes the subgraph of H obtained by removing e from H.
Both expressions (2) and (3) are referred as the Fundamental Reduction
Theorem(FRT). For two non-empty graphs G and H, an edge-gluing of G
and H is the graph produced by identifying one edge of G with one edge
of H. For example, the graph K4 — e (obtained from K4 by deleting one
edge) is an edge gluing of K3 and K3. Zykov[6] provided a shortcut for
evaluating P(G, ) if G is an edge-gluing of some graphs.

Theorem 1.4([6]): Let G) and G3 be two graphs and G be an edge-gluing
of Gy and Gy. Then:

P(G1,\)P(G2, \)
AA—1) “)

P(Ga )‘) =

The following theorem provides some necessary conditions for two graphs
to be chromatically equivalent. We will use this theorem to prove our main
result.

Theorem 1.5([1]): Let G and H be two x-equivalent graphs. Then the
following properties must hold:

() v(G) =v(H)

(b) e(G) =e(H)
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(©)  x(G)=x(H)

(d) ng(Cs) =nu(Cs)

() ic(Cs) — 2ne(Ka) = in(Cy) — 2nu(Ky)

(f) G is connected if and only if H is connected

(g) G is 2-connected if and only if H is 2-connected
(h) 9(G) =g(H)

(i) n6(Cr) = nu(Ck),where g < k < [§g] -2

(j) G is bipartite if and only if H is bipartite

(2)Main Results:

Theorem 2.1: The chromatic polynomial of the Jahangir graph Jop, p € N
s :

P(J2p,A) = MA = 1)2 4+ A0 = 3+ 3)[(\ - 3A + 3)P~! — 1]

Proof: Consider the following graph, denoted by PT(p, C;) and represented
in Fig.3, which consist of p copies of C4. This graph is called a polygon
tree.

FIGURE 3
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By applying the fundamental reduction theorem we get

FIGURE 4

P(J2p, A) = P(G1,7) = P(Ga,})
hence
P(J2p, A) = (A-1)P(PT(p - 1,C4), A) = [P(PT(p — 1, Cs), A) — P(Jop-2, 7))
Simplifying the above expression we get

P(J2p, A) = (A =2)P(PT(p — 1,C4), A) + P(Jap-2,A)
Since

P(C4,A) = A(A=1)[A2 = 3) + 3]
and the chromatic polynomial of the polygon tree having two copies of Cj is

P(PT(2,C4),A) = AM(A = 1)[A\% =31+ 3)°
by applying several times (4) we get

P(PT(p - 1,Cy), A) = A(A = 1)[A% = 3) + 3]P!
Hence,

P(J2p, A) = A(A = 2)(A = 1)[A%2 = 3A + 3]P~! + P(Jap—2,A)

Applying recursively this relation we get

P(Jap, A) = P(K(1,2), A) + AA = 1)(A = 2)[(A%> = 31 + 3)
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+(O2 =3X+3)2 + ...+ (A2 = 3A+3)P7)]

Since terms within the parenthesis form a geometric series, after simplifi-
cation we obtain

P(J2p, A) = A(A = 1)2 + A(A%2 = 3A+3)[(A2 = 3A+ 3)P~1 -]

which completes the proof. O

Theorem 2.2: Jg is chromatically unique.

Proof: Let H be a graph such that P(H,)) = P(Js, A). It follows from
theorem 1.5 that v(H) = 7, e(H) = 9, g(H)=4, nyg(C3) =0, ig(Cy) = 3,
ny(Cy) = 3, H is 2-connected and bipartite. Since

]
P(Js,X) = P(H,)) = Y (1)~ h(H)X'
i=1

we can study the structure of the coefficients of P(H, ). For this we shall
use the algebraic expressions of hp—4 and h,_s, i.e. h3 and hy given by
theorems 1.1 and 1.2. Since H and Js are both bipartite, we have:

ha(Js) = ( y )—eu.,(c‘,)wk(x(z,s)) = ha(H) = ( y )—6‘iH(C4)+
in(K(2,3)).

Since 14,(C4) = iy (Cys) = 3, we deduce that iy (K(2,3)) = i5,(K(2,3)) =
0. Now

ha(Je) = ( g ) - ( g )an(C'4) - 145(Ce),

since ns(K(2,3)) = ny,(K(2,4)) = iss(K(3,3) — €) = ny,(K(3,3)) = 0.
We will show that ny(K(2,4)) = 0. If H contains K(2,4) as a subgraph,
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FIGURE 5

since v(K(2,4)) = 6 and e(K(2,4)) = 8, we must add a supplementary
edge from w to another vertex as in Fig.6.

FIGURE 6

By doing this w will become a cut vertex, which is not possible since H is
2-connected. Also we have ny(K(3,3)) = 0, because ¢(K(3,3)) = 9 and
v(K(3,3)) = 6, so we must add exactly one vertex to obtain H. But this
vertex will be isolated, which contradicts the fact that H is 2-connected.
A similar argument shows that ¢y (K (3,3) — e) = 0. It follows that

ha(H) = ( : )- ( : )n,,(a‘) — is(Cs) = ha(Js).

Because nj,(Cy) = ny(Cs) = 3, it follows that iy (Cs) = 24,(Cs) = 1.
Hence H has an induced cycle Cgs represented in Fig.7. Since v(Cg) =
¢(Cs) = 6, so we must add three edges and one vertex to Cg to get H.
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VG vz
vs v3
V‘
FIGURE 7

It is not possible to add chords between vertices at a distance equal to two
on Cs, since would appear odd cycles which contradicts the property of H

to be bipartite. If we join v; to v4 and v, to vs as shown in the Figure 8
below

Vi
Ve v,
v, v,
v4
FIGURE 8

we get iy (Cy4) > 5, which contradicts the property that iy (Cy) = i4,(Cy4) =
3. Hence Cg has at most one diametral chord. If Cs has no chord, then
new vertex vy
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must be adjacent to exactly three vertices of Cs. Since no C3 may appear,
it follows that v is joined e.g. to v;,v3 and vs and the resulting graph
is Js. Otherwise Cg has exactly a diametral chord e.g. v,v4. v7 may be
adjacent to an extremity of the edge v;v4 or not. Since no odd cycle can
appear, due to symmetry we may consider only three cases as shown in the
following Figure 10.

v 1 Vi
v, Va Ve 9°
v v, s
Va G,: G
G, : 3
1 v
v, v, 3
v, vy s 0%
v,
Ve () \A
(a) (b) (c)
FIGURE 10

Case(a): We have ig,(Cy4) = 4 > 3 = iyg(Cy), hence G; cannot be isomor-
phic to H.

Case(b): The graph G = Je.

Case(c): The graph contains Cs, hence G3 is not bipartite implying that
G3 is not isomorphic to H. Hence H 2 Js and the proof is complete. O
Note: In [3] it is asserted (without a formal proof) that Jg and Jyo are

chromatically unique and the following problem is raised:

For each integer n,n > 4, which of the graphs J;, are x-unique? (the
graph Ja, being denoted there as Wy, ;).
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