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Abstract

Let G be a simple connected graph. The spectral radius p(G) of G is the
largest eigenvalues of its adjacency matrix. In this paper, we obtain two
lower bounds of p(G) by two different methods, one of which is better than
another in some conditions.
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1 Introduction

In this paper, all graphs are finite, undirected simple and connected
graphs. The degree of a vertices v;, denoted by d{(v;) = d;, is the number
of edges incident with v;. Throughout this paper, let G = (V, E) denote a
graph, and let n = |V| and m = |E| denote the number of vertices of G
and the number of edges of G, respectively. Let d; > dy--- > d, denote
the degree sequence of G. For e = v;u; € E, v; and v; are the endvertices
of e, 4,7 = 1,2,--- ,n. Let A(G) and §(G) denote the maximum degree
and the minimum degree of G, respectively. We also denote by §'(G) = &,
the second minimum degree of G different from . A graph G is regular if
d = A. A bipartite graph is called semiregular if each vertex in the same
part of a bipartite has the same degree. For an integer n > 0, Let P, and
Cy denote the path of order n and the cycle of order n, respectively.

let A(G) be the adjacency matrix of G and let A(G) = (aij)nxn be
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defined as the n x n matrixes (a;;), where

G = 1, ifv,-v,-EE
100, otherwise .

It follows immediately that if G is a simple graph, then A(G) is a symmetric
(0,1) matrix where all diagonal elements are zero. Let diag(ri,72, -+ ,7n)
denote the diagonal matrix with diagonal entries vy, 72, - - - ,7,. For asquare
matrix A, let p(A) denote the largest eigenvalue of A. The spectral radius
p(G) of G is the largest eigenvalue of its adjacency matrix A(G).

Up to now, many bounds for p(G) were given, but most of them are

upper bounds. We summarize some known lower bounds for the spectral
radius p(G).

(1)(Collatz and Sinogowitz[3]) If G is a connected graph of order n, then

p(G) 2 2cos(r/(n + 1)),

where equality holds if and only if G = P,.
(2)(Hong[6]) If G is a connected unicyclic graph, then
M(G) 22,

where equality holds if and only if G = C,,.
(3)(Favaron et a.l[5]) For any simple graph, then

A(G) = Vd;

(4)(Aimei Yu et al[n]) Let G be a simple connected graph. Then

2m

p(G) 2 — > 6.

n

(5)(Brualdi and Sollheidlz]) let » be an integer with 0 < » < [’Z—ZJ and
A(G) has exactly r entries being zero, then

n+ vn? —4r
p(C) 2 ——— (1)
, oy
Moreover, for A € By, p(A) = ﬁ—%——‘l: if and only if A is similar to

Ji C)
Je Nt )°
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where B, is the collection of n x n (0,1) matrixes; Ji denotes the k x k
matrix whose entries are all ones; J;x denotes the ! x k matrix whose
entries are all ones; J; denotes the ! x [ matrix whose entries are all ones
and C = diag(d,,ds,--- ,dn).

(6) (Hongm) Let G be a connected graph with a degree sequence d;, da,

«++,dn. Then
1 n
i=1

where equality holds if and only if G is either a connected regular graph or
a connected semiregular bipartite graph.

In this paper, we obtain two new lower bounds on p(G) of G by two
different methods.

2 Lower bounds obtained by similar trans-
formation

In this section, we obtain some lower bounds on the spectral radius of a
simple connected graph by similar transforming its adjacency matrix. We
first state some basic lemmas, then prove the theorem.

Lemma2.19: If Ais a nonnegative irreducible n x n matrix with largest
eigenvalue p(A) and row sums ry,7g,+++ , T, then

min 1; <p(A)< mar ;.
1<i<n 1<i<n
Moreover, equality holds if and only if the row sums of A are all equal.
For a simple connected graph, we have the similar lemma.
Lemma2.2%: Let G be a simple connected graph with n vertices. Then

5 < p(G) < A.

Moreover, an equality holds if and only if G is a regular graph.

Lemma2.3: Let G be a simple connected graph with a degree sequence
dy >2d2>---2dn. Thenforeachie I ={ild,>i-1,0<i<n-1},

p(G) > dni — 1+ /(dns ; 1?2 + di(d, — d"_i)’ "

where equality holds if and only if G is a regular graph.
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Proof: When i = 0 or d,,—; = d,, it is clearly that inequality (2) is true
and the equality holds if and only if G is a regular graph by Lemma 2.2.

Now, we suppose dp,_; > dp, 1 <i<n-—1.

Ao Az
Aj is an (n — ) x (n — ¢) matrix and Ag; is an ¢ x ¢ matrix. For a real
number z with 0 < z < 1, let

1
- ;In—i 0 -1 _ a:In_i 0
v=(=5 5 )v=("% 1)

where I,_; is an (n — ) X (n — £} unit matrix, and I; is an ¢ x 7 unit matrix.
Let A A
B= U—IAU — 11 TA12 .
( 1An Ay

As A and B are similar matrices, they have the same eigenvalues. In partic-
ular, p(G) = p(A) = p(B). Now, we consider the row sums {ry,72, - ,75}
of matrix B. For each [ with 1 <! < n—1,

Za¢,+z > w=Yate-1) Y

j=n—it+l i=1 J=n-—i+l

dt@-1) Y

jen—i+l

The adjacency matrix A of G can be written as ( An Ap ), where

T

For each k withn —i <k < n,

n—i
j=n-itl _7=l j=n—i+l
. 1 n
= 14 -z -
o e+ (1 w). Z aij
j=n—i+l

Since G is simple, in the adjacency matrix, a; = 0, a;; = 0 or 1, where
i,j=1,2,---,n,1i%# j. Hence, Z;;n_i_,_lazj <iwhenl<!<n-—1and

Y ien_iq10k Si—1whenn—i+1<k<n Since0<z <1 and since
di2dy>-- 2 dn-i 2 dn_iy1 2 2 dn, both
12 dp_i+(z-1),(1 <l<n—1i), (3)
and
1 1., .
T2 ~dn+(1-2)(i-1),(n—i+1<k<n), (4)
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must hold. Obviously,
1 1,,.
min{ry,r2, -+ ,mn} > min{dn—; + (z — 1)i, ;dn +(1- ;)(z - 1)}
Suppose that there exists an real number z satisfying the equality
1 1,,.
dn—i+(z—1)i= ;dn +(1- ;)(z -1).

Then solving the equation for z, we have

2i—1—dpi +(2i—1—dp_;)2 +4i(d, —i + 1)
24
21— 1—dn—; + \/(dn..i +1)2 + 4i(d,, — dn—s)
2i )
Sincei > 1,d,-; >d, >0and d, >t — 1, it follows
2i—1—dp_i+dp_i+1
2% -

T =

O<z< 1,

and so,

P(C) 2 dnes + (z —1)i = it 1F v (dn—s ; 1) + 4i{dy — dn_i).

If the equality in (2) holds, then inequalities in (3) and (4) must be
equalities. From (3) we have d; = d; and a;; = 1 when 1 <! < n—31,
n—i+1<j <n. So,ajy =1whenn—i+1<j<n,1<!<n—1 From(4)
wegetdi =d, and ayj = lwhenn—i+1<k<n,n-i+1<j<nk#j.
Thus dy,—i41 = dp—iy2 = -+ = d, = n — 1. The mean is that the degree
sequence of G satisfying dy = d; = --- = d, = n — 1, contrary to the
assumption d,,_; > d,.

Therefore, equality in (2) holds if and only if G is a regular graph. This
completes the proof.

Theorem 2.4: Let G be a simple connected graph with a degree sequence
A=dy>2dy>---2d,=6,andlet I = {i|d, >i-1,0<i<n-1}
Then

p(G) 2 max (Gmiz ¥ V(dn— *; 1)2 + 4i(dn — dn—s) ),
i€

where equality holds if and only if G is a regular graph.

Theorem 2.5: Let G be a simple connected graph with n vertices, the
minimum degree §, the second minimum degree ¢’ and ¢ > 0 be an integer.
If there are ¢ vertices with degree § and if § > ¢ — 1. Then

! _ ! 2 —_ &
o(e) > LIV AT+ 4025 (5)
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where equality holds if and only if G is a regular graph.

Proof: The results can be obtained by taking § = dp,, 6’ = dn_i, g =i in
Lemma, 2.3.

Corollary 2.6: Suppose that G is a simple connected graph with n ver-
tices, the minimum degree 8, the second minimum degree ¢’ and that G is
not a regular graph. If there are ¢ vertices with degree 6, § > ¢ — 1 and
¢ > 3g—1, then

d+ ¢
> — .

p(G) 5

Proof: Sinced >q—1,6 >3¢g—1, so0
§+48 +2>4q.
By Theorem 2.5,

O —1+/(6+1)2+49(6-0) & —-1+/(6+1)2 6+0
p(G) 2 5 > 5 =—5

This completes the proof.

3 Lower bounds with vertices, edges and max-
imum
degree

In this section, we obtain a lower bound on the spectral radius of a simple
connected graph with n vertices, m edges and maximum degree A.

Lemma 3.14: Let G be a simple connected graph with n vertices and A
be its adjacency matrix. Let P be any polynomial and S,(P(A)) be the
set of row sums of P(A) corresponding the each vertex v. Then

minSy(P(A)) < P(p(A)) < mazS,(P(A)).

Moreover, equality holds if and only if the row sums of P(A) are all equal.
Proposition 3.2: f(z;m,n) =z — 1+ /(z + 1)2 +4(2m — zn) is a de-

1
creasing function of z for 1 <z <n—1, wheren -1 < |'§(3n2 —4n)] <
m<n{n—1)/2,n > 4.
It follows by standard Calculus verifications.

Lemma 3.3 Let 4 be the adjacency matrix of G, the (¢, 7)-th entry of
AF, the I-th power of A, is positive if and only if there is a (vi,v;) walk in
G of length 1.
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Theorem 3.4: let G be a simple connected graph with n vertices and m
edges, where n > 4. Let A = A(G) be the maximum degree of vertices of
G, then

A -1+ (A +1)2+4(2m - An)

when [%(31@2 —4n)] <m < n(n-1)/2, and

2(C) > —-(A+1)2 —44(2m - An)’

—(A+1)2+4An
8

Proof: Since S,(AF) is exactly the number of walks of length & in G start

from v by Lemma 3.3, so §,(4%) = 3, ¢ g(c) d(u)- In particular, S,(A) is

d(v). We have

whenn—-1<m< < [%(3112—471)].

S.(A) = Y dw)

uwve€E(G)
dm—d)- Y d)
uvg E(G),u#v
2m — d(v) — (n - d(v) — 1)A
2m + (A - 1)d(v) — A(n - 1). )

v

Hence,
Sy(A%2 — (A -1)A)>2m - A(n - 1).

As this hold for every vertex v € V(G). By Lemma 3.1,
p(G)? — (A =1)p(G) 22m - A(n —1). (8)
Case 1: Suppose that (A + 1)2 + 4(2m — An) > 0. Then solving the
inequality in (8), we have
A =14 /(A+1)?+4(2m - An)
2

In this case, by Proposition 3.2, we obtain (A + 1)? 4+ 4(2m — An) > 0

when |%(3’n2 —4n)] < m < n(n-1)/2.

In order for the equality to hold, all inequalities in the arguments above
must be equalities. From (7) we have that

> dw) =(n-d@) - 1)A,

uww@ E(G),u#v

p(G) 2
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for all v € V(G). Hence d(u) = A, for all u € V(G), v # v and u is not
adjacent to v, which implies that G is a regular graph. In particular, if
d(v) = n — 1, then it would force the left hand side of the equality to be
zero, which in turn, would imply the right hand side to be zero as well.

Conversely, if G is a regular graph, then

Ao A-1++/(A+1)2+4(2m — An)

p(G) 5

Case 2: Suppose that
(A+1)%2+4(2m— An) <0.
Then since n > 4,

—(A+1)2+4An

-1<
n—-1<m«< 8

< [%(317.2 — 4n)].
In this case, we get

—(A +1)% - 4(2m — An)

p(G) > 1

This completes the proof.
Corollary 3.5: Let G be a simple connected graph with n vertices and m
edges, n > 4 and [%(3712 —4n)] < m < n(n-1)/2. Then

n—2++/-3n2+4(2m +n)
2
Equality holds if and only if G is the complete graph K,,.

Proof: By Proposition 3.2, if n and m are fixed, then the above lower
bound is a decreasing function of A. Since A < n -1,

p(G) 2

n—2+/n2+42m—n2+n) n-—2+./-3n%+4(2m+n)
2 - 2 ’

This completes the proof.

p(G) 2

Corollary 3.6: Let G be a simple connected graph with n vertices and m
edges, 7 be the number of entries being zero in A(G), satisfying n < r <

[%nzj +n, n > 4. Then

— 2 —
o(G) > n 2+\/n2 +4n 4r.
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Equality holds if and only if G is the complete graph X,,.

Proof: When
1 5
n<r< et 4,

then since r = n2 — 2m, it follows
[é(an2 —an)] <m=(n? —1)/2 < n(n - 1)/2,

and so
[5(30% — 4n)] S m < nfn — 1)/2.

By Corollary 3.5, we obtain the above results.

4 Comparison

In the section, we compare the lower bound of the spectral radius graph
G in equality (6) with the lower bound in equality (5) in some conditions.

Theorem 4.1: Let G be simple connected graph with n vertices and m
edges, satisfying n > 4, [é(3n2 - 4n)] £ m < n(n - 1)/2, if there are p
vertices with degree &', q vertices with degree §, and p+q < 4 + 1, then

A-14(A+1)24+4(2m - An)
2

& —1++/(8+1)2+4q(6 - &)

= 2

p(G) =

. (9)

Proof: If A = ¢, then G is a bidegreed graph in each vertex is of degree
0 or A. It follows that 2m = dg + A(n — q) = nA + ¢(6 — §'), and so

A-1+/(A+1)2+42m—An) & —1++/(0' +1)> +49(6 — &)
2 a 2
If A > §', we suppose A =8’ =d > 1, that is A =§’ +d.
Obviously,

2m—An=Zdi—An = pf+qgd+(n—p—q)A—-An

=1

pd +q¢d+(n—p—q)(§ +d) —n(d +d)
= ¢6—q8 —pd—qd.
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So inequality (9) becomes

8 +d—-1+4 /(8 +d+1)2+49(6 — ') —4d(p + q)
2
0 — 14+ /(6+1)2+4q(6 -0
5 )

p(G) 2

2

So, we only need to proof

V(0 +1)2+4¢(6—-6)—d < /(6 +d+1)2+49(5 — &) — 4d(p + q).
Fromp+¢<d+1,p,g>0,6 <&, we can get that
(P+9)* - (p+q)-p'~g6 < (p+9)*~(p+q)—pi—go
= (p+qg)p+g-d-1)<0.

That is,
(p+9?-(p+q)—pé —g5<0.
Thus,

P+q? - (8 +1)p+q)

(p+9)*—(p+q)—pd —qd
(P+q)—(p+q)—pd —qd+q(é — &)

IA

q(6 - &").
Then,
0<2(p+q) -+ = 4p+9° -4 +1)(p+q) + (& +1)
< 4q(6-8")+ (& +1)2
Namely,
V(E +1)2 4+ 490 - 6) > 2(p+q) — (& +1).
Asd >0,

2(8' + 1)d — 4d(p + q) > —2d/(8' + 1)2 + 4q(6 — &).
It implies
0 < (V(F+1)2+49(0~08)-d)?

= (§+1)2+4q(6 - &) +d* ~ 2d\/(6' +1)2 + 4q(6 — &)
< (8 +d+1)2+4q(5—6) —4d(p+q).

That is

V(O +1)2+49(6 - 8) —d < V(&' +d+1)2+4¢(§ - &') — 4d(p + q).
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By above, we get

)(G) > A—l+\/(A+;)2+4(2m—An)

& =14 /(8 +1)2 +4q(6 - &)
= 2

This completes the proof.

Example: Consider the graph Gy with n = 7 vertices, m = 15 edges and
with the degree sequence 6,6,5,4,4,3,2. Then a lower bound of p(Gp)
given by (6) is 3, and that given by (5) is 1 + v/3 = 2.732. Thus in this
case, Theorem 3.4 provides a better bound than Theorem 2.5.
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