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Abstract

Vertices z and y are called paired in tournament T if there exists
a vertex z in the vertex set of T such that either £ and y beat z
or z beats z and y . Vertices z and y are said to be distinguished
in T if there exists a vertex z in T such that either x beats z and
z beats y , or y beats z and 2z beats £ . Two vertices are strictly
paired (distinguished) in T if all vertices of T pair (distinguish) the
two vertices in question. The p/d-graph of a tournament T is a
graph which depicts strictly paired or strictly distinguished pairs of
vertices in T. P/d-graphs are useful in obtaining the characterization
of such graphs as domination and domination-compliance graphs of
tournaments. We shall see that p/d-graphs of tournaments have an
interestingly limited structure as we characterize them in this paper.
In so doing, we find a method of constructing a tournament with a
given p/d-graph using adjacency matrices of tournaments.

1 Introduction

A tournaement is an oriented complete graph. There has been an as-
sortment of graphs defined on the vertex set of a tournament which reflect
some structural characteristic of the tournament. The domination graph
of a tournament is one such graph and has a edge between vertices of the
tournament whenever the vertices form a dominant pair, i.e., whenever the
union of their outsets includes all other vertices of the tournament. Domi-
nation graphs of tournaments were characterized in a series of papers (see
[9], 8], [10], and [7]). Recently, the idea of the domination graph of a tour-
nament has been extended to “k-domination” in [12]. Other recent studies
include domination in tournaments with ties, and domination graphs of
proper subgraphs of tournaments in [5], (6], and [1]. This paper will char-
acterize the p/d-graph of a tournament, a graph that was instrumental in
the characterization of domination-compliance graphs of tournaments (see
(11], [2], (3], and [4].)

ARS COMBINATORIA 84(2007), pp. 293-309



The p/d-graph of a tournament T is the graph defined on the vertex
set of T which describes specific structural characteristics of certain pairs
of vertices in T. The following definitions originally appeared in [7].

Definition 1.1 Two vertices x and y of a tournament T are paired if there
exists a third vertezx w in T such that z — w and y — w or w — z and y.

ANy

Figure 1: z and y are Paired by w.

Definition 1.2 Two vertices z and y of a tournament T are distinguished
if there exists a third vertez w in T such thatz - w -y ory —» w — z.

w w

X y X y
Figure 2: z and y are Distinguished by w.

There are tournaments with the property that every pair of vertices is
both paired and distinguished by some vertex in the tournament. These
tournaments have been very useful in characterizing domination graphs of
tournaments.

Definition 1.3 A tournament T is well-covered if every pair of vertices in
T are both paired and distinguished.

It has been proven that well-covered tournaments only exist on 4 or more
than 5 vertices (see [7]).

Tournaments which are not well-covered have the property that some
pair of vertices are only paired or only distiguished by all other vertices.
The following two definitions describe this situation.
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Definition 1.4 Strictly paired: two vertices in a tournament T are strictly
paired if no vertex in T distinguishes them.

Definition 1.5 Strictly distinguished: Two vertices in a tournament T
are strictly distinguished if no vertez in T pairs them.

Vertices which have the property of being strictly paired or strictly
distinguished in a tournament are important in the study of the domination-
compliance graph of a tournament. To aid in the detection of such pairs of
vertices in a tournament, we have the p/d-graph of a tournament.

Definition 1.6 Given a tournament T, let p/d(T) be the graph on the ver-
tex set of T with edges between vertices which are strictly paired or strictly
distinguished in T.

We say that an edge zy in p/d(T) is a p edge if vertices z and y are
strictly paired. Edge zy is a d edge if vertices z and y are strictly distin-
guished. Figure 3 is an example of the p/d-graph of a 5-tournament.

AN

d
T p/d(T)

Figure 3: Example of p/d(T)

2 The Characterization of P/d-graphs

The first step towards the characterization of p/d-graphs of tournaments is
the following theorem, which is proven in [3].

Theorem 2.1 (Doherty and Lundgren [3]) The p/d-graph of any tour-
nament has mazrimum degree 2.
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Theorem 2.1 provides us with the most important characterization the-
orem. Using this theorem, we know that p/d-graphs are restricted to unions
of isolated vertices, paths and cycles. The question addressed here is ex-
actly which unions are realizable as the p/d-graph of a tournament. We
will find the trickiest cases are smaller. In addition to a characterization of
p/d-graphs, we shall demonstrate a method of constructing a tournament
with specific p/d-graph. We construct the adjacency matrix of a tourna-
ment in such a way that we control the pairs of vertices that are strictly
paired or strictly distinguished in the tournament. Throughout the paper,
T is an n-tournament where n > 3. When it is useful, we will show the
orientation of edges in p/d(T) according to the arcs in T.

2.1 Cycles

The following proposition is a simple result about paths in p/d graphs, and
the direction of arcs to a path from a vertex not on the path related to
the number d edges on the path. This result will be used throughout the
paper.

Proposition 2.1 Consider any path in the p/d graph of tournament T
with endpoints u and v. Let g be a verter not on this path. Then q pairs u
and v if and only if there exists an even number of d edges on path uv.

Proof: Note that on any subpath of uv that has only p edges, g has
only outarcs or only inarcs to all vertices on the subpath. Also, ¢ will
necessarily distinguish two vertices adjacent to a d edge, thus each time
we come upon a d edge in a path, our pairings from that point until we
reach another d edge will be in the opposite direction as the pairings prior
to that d edge. Thus, ¢ pairs v and v if and only if all edges between u
and v are p edges, or if there are an even number of d edges on path uv. W

This proposition can be stated the equivalent way as g distinguishes u
and v if and only if there are an odd number of d edges on path uv. Note
that if we want to relate the number of p edges to the arcs from g to u and
v, then we must know the number of edges in the path to use Proposition
2.1. Let us call a path with an even number of vertices (and thus an odd
number of edges) an even path, and similarly for odd paths. Then we can
write the following Lemmas which easily follow from Proposition 2.1.

Lemma 2.1 Let uv be an odd path, and let g be a vertex not on uv in
p/d(T). Then the number of p edges on the path uv is even if and only if ¢
pairs u and v.
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Lemma 2.2 Let uv be an even path, and let g be a vertex not on uv in
p/d(T). Then the number of p edges on the path uv is even if and only if q
distinguishes u and v.

The following theorem describes the only possible combinations of p and
d edges that can make up a three-path in p/d(T). It is important to both
this section, and the next.

u
x oy o ]
Figure 4: Possible 3-Paths in p/d(T).

Theorem 2.2 Suppose that the 3-path z — u —y is a subgraph of p/d(T).
If zu and uy are both paired edges or both distinguished edges, then u
distinguishes = and y. If only one of zu and uy is a paired edge, then u
pairs z and y.

Proof: Let £ —u — y be a 3-path in p/d(T). If zu and uy are paired edges
and £ — u, then z — y and since = and u are strictly paired, u — y. If
u — x, then y — = and thus y — u.

If zu and uy are distinguished edges and  — u, then y — z. Since z
and u are strictly distinguished, then u — y. If v — z, then £ — y, and
thus y — u. In all case, u distinguishes x and y.

Without loss of generality, suppose that zu is a distinguished edge and
uy is a paired edge. If z — u, thenz - yandy — u. Ifu —» z, theny — z
andu—y. Soupairszandy. H

The following eliminates one type of cycle.
Theorem 2.3 There cannot be a cycle in p/d(T) of all paired edges.

Proof: (See Figure 5). Suppose that there is a cycle, C, of all paired edges
in p/d(T). Let u be a vertex in C. Let v be adjacent to u on C. If u — v,
then u beats all vertices on C, since adjacent vertices are strictly paired.
Similarly, if u is beaten by v, then all vertices on C beat u. Thus, if w is
also adjacent to v on C, u must pair v and w. This is a contradiction to
Theorem 2.2. W

We shall refer to a cycle as “even” or “odd” depending on the parity

of the number of vertices in the cycle. We shall see that the parity of the
number of p or d edges in the cycle along with the parity of the number of

297



Figure 5: Example of Cycle if edges are all p Edges (Dotted arcs represent
both edges in p/d(T), and arcs in T).

cycle vertices will determine whether or not a cycle can be a p/d graph of
some tournament.

Theorem 2.4 Suppose that a cycle C is a proper subgraph of p/d(T).
Then C is even if and only if the number of paired edges in C is even.

Proof: Suppose that cycle C is a proper subgraph of p/d(T). Let ¢ be a
vertex not on C. We will consider the direction of arcs in T from vertices
of C to q.

Suppose that there are no paired edges on C. Let u and v be two
adjacent vertices on C. Let C — uv denote the path from u to v on C
excluding the edge uv. Consider the arcs of T in C' —uw. Suppose that C is
odd. Then C — uv is an odd path from u to v, and by Lemma 2.1, ¢ pairs
u and v, which is a contradiction.

Suppose that there is a p edge on C. Let u and v be the endpoints of
this edge. Consider the direction of arcs in T from C — uw to the vertex g
as above. Note that ¢ must pair 4 and v . If C is odd, this will happen
if and only if the number of p edges in C — uv is even by Lemma 2.1, and
thus the number of p edges in C is odd. If C is even, there are an even
number of d edges in C if and only if the number of p edges in C — wv is
odd (Proposition 2.1), and thus the number of p edges in C is even. This
proves the above statement. W

Theorem 2.5 Suppose p/d(T) contains an m-cycle, C. Then m is even if
and only if the number of p edges in C is odd.

Proof: (See figure 6). Suppose that C is an m-cycle in p/d(T). Then C
must have a d edge by Theorem 2.3. Let the endpoints of this d edge be
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4

Figure 6: The m-Cycle, Theorem 2.5

v and v where u — v. Label vertex u “1” and label vertex v “2”. Label
the other vertices in order from v around C, 3,4, ..., m. Now consider the
following cases.

Suppose that 2 — 3.

Note that 23 is a d edge since 2 distinguishes 1 and 3, and 12 is a d edge
(Theorem 2.2). Suppose that there are an odd number of d edges from 2 to
m, and thus an even number of d edges from 3 to m. Then by Proposition
2.1, 2 pairs 3 and m, thus 2 — m. Since there is an edge from 1 to m in
p/d(T), and 2 distinguishes them, 1 and m must be strictly distinguished.
Since we assumed that there are an odd number of d edges from 2 to m,
and we add edges 12 and m1 as d edges, we get an odd number of d edges
on C in this case. Now if there are an even number of d edges from 2 to m,
then Proposition 2.1 gives us that 1 — m. By Theorem 2.2, we have that
1m is a p edge. Counting d edges on C again, we have an even number
from 2 to m plus edge 12, or an odd number of d edges on C in this case.
For both cases, C has an odd number of d edges, thus m is even if and only
if there are an odd number of p edges on C.

So suppose that 3 — 2. Note that 23 is a p edge by Theorem 2.2, since
2 pairs 1 and 3, and 12 is a d edge. Suppose that there are an odd number
of d edges on C between 2 and m. By Proposition 2.1, m — 1 and by
Theorem 2.2, m1l is a d edge. Counting d edges, we have an odd number
from 2 to m plus 12 and m1 give an odd number of d edges on C in this
case. If we assume that there are an even number of d edges between 2 and
m, Proposition 2.1 gives us that 1 — m, and Theorem 2.2 gives us that 1m
is a p edge. counting d edges again gives an odd number of d edges on C,
and we have the same conclusion as above, that is, there are an odd number
of d edges on C, and m is even if and only if there are an odd number of
pedgeson C. N
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These two results yield the following.

Theorem 2.6 If T is an n-tournament and p/d(T) contains a cycle, then
p/d(T) = Ch.

Proof: If C is a cycle in p/d(T), it cannot be a proper subgraph of p/d(T)
by Theorems 2.4 and 2.5. W

2.2 Paths and Isolated Vertices

We now know that if there is a cycle in the p/d-graph of a tournament,
then it must include all vertices of T. We now look to p/d-graphs which are
the unions of paths. We see that our Proposition 2.1 and Lemmas 2.1 and
2.2 combine to give us the following Theorem.

u

Figure 7: Example of Path and Vertex not on Path. (Dotted edges are in
p/d(T), arcs are in T).

Theorem 2.7 If there is a path P in p/d(T) between two vertices z and
y , then all vertices not on P either pair z and y or all distinguish z and
Y.

Proof: By Proposition 2.1 and Lemmas 2.1 and 2.2 we see that a vertex not
on a path must pair or distinguish the endpoints of the path according to
the number of d edges on the path, or the parity of the path and number
of p edges on the path. These results are proven for an arbitrary vertex not
on the path. MW

Corollary 2.1 If there is a path P in p/d(T) between vertices z and ¥,
then if z pairs (distinguishes) two vertices not on P, so does y.
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Proof: Suppose that z pairs two vertices, v and v , not on path P. By
Theorem 2.7, u and v both pair or both distinguish z and y . It is then im-
possible for y to distinguish u and v . The reverse is true if = distinguishes
vandv. H

Corollary 2.2 Suppose that P is a path which is not the subgraph of a
cycle in p/d(T). Let = and y be the endpoints of P. Then all vertices on
P\{z,y} either pair z and y , or all vertices on P\{z,y} distinguish x and

Y.

Proof: Suppose P is a path in p/d(T) as above. Choose any two vertices
(say u and v) other than z and y and note that P contains a unique path
between them which does not contain = or y . By Theorem 2.7, z and y
treat v and v the same, so T and y both pair v and v or both distinguish «
and v. Note that when z and y both pair (distinguish) © and v in the same
direction, u and v both pair x and y. If z and y both pair (distinguish) u
and v with arcs in opposite directions, v and v both distinguish z and y.
Thus, u and v either both pair or both distinguish z and y. W

Note that vertices along the path P\{z,y} from z to y may distinguish
(pair) = and y , while vertices not on P\{z, y} may pair (distinguish) z and
y . This must happen if P is not a cycle, since endpoints of the path must
be both paired and distinguished. If all vertices are on a single path, the
following is a simple consequence of Corollary 2.2.

Corollary 2.3 If p/d(T) contains an n-path then p/d(T) is an n-cycle.

Proof: Suppose that P is an n-path in p/d(T)with endpoints  and y . By
Corollary 2.2, since P contains every vertex, z and y must be strictly paired
or strictly distinguished. Thus there is an edge between z and y in p/d(T),
so p/d(T) isacycle. W

Theorem 2.8 p/d(T) cannot be the union of an n—1-path, and an isolated
vertex.

Proof: Suppose that p/d(T) consists of a path P from z to y , and a vertex
u . Note that edge zu is not in the edge set of p/d(T), so there is a vertex
v which pairs z and u , and a vertex w which distinguishes = and » . But
v and w must be on path P, so there is a unique path from v to w in p/d(T).
By Corollary 2.1, v and w must both pair or both distinguish = and u , a
contradiction. W

301



If there is a path P in the p/d-graph of some tournament between two
vertices T and y , then we know that vertices not on that path will either all
pair or all distinguish = and y . Whether they are paired or distinguished
will depend on the parity of the number of d edges on P. If there is an odd
number of d edges on P, then z and y must be distinguished by all vertices
not on P. If there is an even number of d edges on P, then all vertices not
on P pair £ and y . If we are concerned only with how vertices not on P
interact with x and y , we can model the situation accurately by shortening
P to one edge, a d edge if there is an odd number of d edges on P, and a
p edge if there is an even number of d edges on P. If useful, we can orient
the edges in our shortened model using the direction of the arc between
z and y in T. If there are several important segments of a path to examine,
we can shorten the paths on each segment and use the orientation of the
arcs in T between endpoints of each segment (see Figure 8). Note that in
the shortened model, the direction of the arcs follows from Theorem 2.2.
This will be useful in the next theorem.

Oddd Evend Evend
S ' ___ SR U o : e
o< 1 - P .o P .o

Figure 8: Example of Shortened Path Model, Dotted Arcs are in T.

Theorem 2.9 p/d(T) cannot be the union of two paths.

Proof: Suppose that p/d(T) is the union of two paths, P, and P>. Let v;
and u; be the end points of P;, while vo and us are the endpoints of P;.
Without loss of generality, let v; — wv;. Since v; and vy are not strictly
paired or distinguished in T, there must exist a vertex which pairs them, and
a vertex which distinguishes them. These vertices cannot be in the same
path by Corollary 2.2. So suppose there is a vertex in P, =, which pairs v;
and vq, and a vertex in Ps, y, which distinguishes v; and vs. Since there is a
path in p/d(T) from z and y to the end vertices, u; and u; respectively, we
have by Corollary 2.1 that u; pairs vy and vg, and u; distinguishes v; and
va. We would like to show that there is an edge in p/d(T) from one of the
four endpoints (v1,u;,v2, or u2) to another endpoint not on the same path
to obtain a contradiction. Suppose that we examine v; and us, for example,
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and we find that vo and u; both pair them. Since all other vertices of T are
on paths containing either vs or u;, we have that every vertex in T must
pair v; and us. Thus, we can use the shortened path model and examine
the 4-tournaments on the vertices vy, v2, 1, and us that can arise. Given
our conditions, there are two possible tournaments. One tournament occurs
when u; beats v; and vs, while v; — u2 — v2. The other occurs when u;
beats v; and ve, while v — us — v;. It can be easily checked that the
other two tournaments that can arise when u; pairs and us distinguishes
v; and vy are isomorphic to these two.

A p
P1 V] e u
P2 V2 [ = b @ ll2

Figure 9: The 4-Tournament, 77.

The first possible 4-tournament, say 77 is in Figure 9. By our assump-
tion we have that u; beats v; and vg, while v1 — uy — v3. It follows by
Theorem 2.7 that u; — wus since vy pairs v and us and u; — vo. We
can easily compute p/d(T}) and see that the vertices v; and uy are strictly
paired - yielding an edge between them in p/d(T}), and consequently an
edge between them in the p/d-graph of the resulting tournament T'. This
is the contradiction we are looking for.

P
P1 Vi o= U

P2 V2 @

Figure 10: The 4-Tournament, T5.

The second possible 4-tournament, say T», is in Figure 10. Note that in
p/d(T2), v2 and u, are strictly distinguished in p/d(T), a contradiction.

If we look at the four tournaments that arise between vy, ve, 1y, and us,
and if we assume that there is a vertex in P, which distinguishes v; and vy
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and a vertex in P, which pairs v; and vs, we get the previous two tourna-
ments again. Thus, there will be some edge in p/d(T) between endpoints
of P; and P, proving that there cannot be a p/d-graph which is the union
of two paths. W

Recall that a tournament T is well-covered if every pair of vertices is
both paired and distinguished in T. This means that no pair of vertices
is strictly paired or strictly distinguished in T. The two-path case above
needed separate attention, because the well-covered property is not defined
for tournaments with less than three vertices. We may now prove a more
general result.

Theorem 2.10 If there is a tournament T with p/d-graph the union of
k paths and m isolated vertices, £ + m > 2, then there is a well-covered
tournament on k + m vertices.

It would be helpful to give an outline of the proof for this theorem before
we procede. We first start with a tournament T whose p/d-graph is given
as k paths and m isolated vertices. We then look at the subtournament
of T, called Tk, consisting of an endpoint of each path and each isolated
vertex. If we consider the p/d-graph of this subtournament, p/d(Tg), we
know that it either contains an edge, or it does not. If it does not, then
Tg is well-covered, and thus there must exist a well-covered tournament on
k + m vertices. So we suppose that p/d(Tg) does contain an edge, which
of course means that in Tg two vertices are either strictly paired or strictly
distinguished. Now since T’ is a subtournament of 7', the arcs of T that
are necessary for this to occur are also in T'. But we know the p/d-graph of
T, and armed with Corollary 2.1 and Theorem 2.7 we can determine quite
a bit about arcs in 7. The assumption that p/d(Tg) is not well-covered and
the necessary arcs in Tg (thus T') that this assumption forces will provide
a contradiction to the arc structure of T determined by it’s p/d-graph,
and application of the above proposition and theorem. Several cases are
necessary, but each case gives an edge in p/d(T) which should not be there,
providing the contradiction.

Proof: Suppose that T is a tournament whose p/d-graph is the union
of k paths and m isolated vertices, where & + m > 2. Also, suppose that
there is no well-covered tournament on k +m vertices. Choose an endpoint
of each of the k paths and look at the (k + m)-subtournament on the k
endpoints and the m isolated vertices, say Tr. Note that some pair of
these vertices is strictly paired or strictly distinguished in Tg, since T is
not well-covered. Let the vertices of Tg be labeled vy, vs,...,Vk+m, and
let v; be an endpoint of path P;. For now, consider an isolated vertex as a
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trivial path. Suppose that there is an edge in p/d(Tg) between v; and v;.
Without loss of generality, let v; — v;.

Suppose that v; and v; are strictly distinguished in Tg. By an appli-
cation of Corollary 2.1, all vertices in paths other than P; and P; must
distinguish v; and v; in T, since an endpoint of each path distinguishes
them in T'. Since there is no edge in p/d(T) between v; and v;, we see that
some vertex on path P; or P; must pair them, thus they cannot both be
trivial paths in p/d(T). Suppose that there exists a vertex, z, in P; that
pairs v; and v;. Note that since there is a path in p/d(T) from z to the
other endpoint of path P;, say u;, Corollary 2.1 states that u; must also
pair v; and v;. Suppose that u; beats v; and v;.

Since v; — v;, we have that there are an odd number of d edges on path
P;, by Proposition 2.1. Thus, all vertices of T not on P; must distinguish v;
and u; by Theorem 2.7. Since all vertices not on P; or P; also distinguish
v; and v;( by our assumption), we have that all vertices not on P; or P;
must pair v; and u; (note that if g is such a vertex, the direction of the arc
between g and v; is opposite of the direction of the arcs between g and both
vj and u;. Thus, ¢ must pair v; and u;). Also, since v; pairs v; and u;, all
vertices on path P;\{u;} must pair v; and u; by Corollary 2.1. Thus, if there
is no vertex on path P; which distinguishes v; and u;, then v; and u; are
strictly paired in T, a contradiction. So suppose that there is a vertex, y, in
P; which distinguishes v; and u;. Note that v; cannot be an isolated vertex
in p/d(T). If we apply Corollary 2.1 to the path from y to the endpoint of
P;, say uj, then u; must also distinguish v; and u;. There are two possible
ways for u; to distinguish v; and u;. First, let v; — u; — u;. Now consider
u; and u;. Since u; — u; — v;, we see that P; has an odd number of
d edges (Proposition 2.1). Then since v; — v;, we must have that v; — u;,
also by Proposition 2.1. This means that both v; and v; distinguish u;
and u;, so all vertices on P;\{u;} and P;\{u;} distinguish them. Recall
that vertices not on P; or P; pair v; and u;. They must also distinguish v;
and u; since there is an odd number of d edges on P;. These two results
yield that all vertices not on P; or P; must distinguish u; and u;. Thus,
u; and u; are strictly distinguished in T, a contradiction. If we have that
u; distinguishes v; and u; as u; — u; — v;, we follow the same process.
We have that u; and u; are paired by all vertices in P;\{u;} and P;\{u;}.
Also, vertices not in P; or P; must pair v; and u; by the result above, and
they pair v; and u; (since both beat v;), thus all vertices not in P; or P;
must pair u; and u;. So all vertices in T\{u;,u;} pair u; and u;, which
is a contradiction. Now if we had assumed that u; pairs v; and vj, but v;
and v; beat u;, we could follow the same process and obtain two cases as
above, with the same conclusions, thus a contradiction. We assumed that
the vertex z that paired v; and v; was in P;. If it had been in P;, the same
conclusions would emerge, also leading to a contradiction. Now suppose
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that v; and v; are strictly paired in Tg. By a similar argument as above,
there must be some vertex in P; or P; which distinguishes v; and v;. If
we suppose that a vertex in P; distinguishes them, then as above, we know
that u; distinguishes them. Suppose that v; — u; — v;. Then note that
there are an even number of d edges in P; by Proposition 2.1, so all vertices
not on F; must pair u; and v;. This, along with the fact that all vertices
not on P; or P; must pair v; and v; yields that all vertices not on P; or
P; pair u; and v;. Since v; also pairs them, so do all vertices on P;\{u;}.
So suppose that there is a vertex on P; which distinguishes them. Then u;
must distinguish them, say as u; — u; — v;. Now consider u; and «; once
again. All vertices in T\{u;,u;} must distinguish them, since vertices on
P; or P; do, and vertices not on P; or P; pair u; and v;, but distinguish v;
and u;. Thus, u; and u; are strictly distinguished in T, a contradiction.

If u; distinguishes v; and v; as v; — u; — u;, we achieve the same
contradiction, with all vertices in T\{u;,u;} pairing u; and u;. Also, if u;
distinguishes v; and v; as v; — u; — v;, we again obtain two cases with
the same conclusions as above.

Thus, if there is no well-covered tournament on k + m vertices, then
there is some edge in p/d(T) which we assumed was not there. W

Recall that well-covered tournaments only exist on four and greater
than 5 vertices. Thus, there is no p/d-graph of any tournament which is
the union of k paths and m isolated vertices if k+ m =3 or k+m = 5.

2.3 The Main Theorem

We will show in this section that p/d(T) can be any other union of paths
and isolated vertices. In order to prove this, we will make use of the adja-
cency matrix of a tournament to construct tournaments whose p/d-graph
is anything not listed above.

Suppose that A(T) is the adjacency matrix of tournament T. Let the
vertices of T be labeled 1,2,...,n in the order of the rows of A(T'). Note
that if two vertices, 7 and j, are strictly paired in T, then columns i and j
will be identical, except at rows 7 or j where either 1 — j or j — 4. Similarly,
rows i and j will be identical, except at columns i or j. If vertices ¢ and
j are strictly distinguished in T, then columns ¢ and j will be exactly the
opposite (that is, where there is a 1 in column i, there will be a 0 in column
j, and vice-versa) except at rows i or j. The same is true of the rows. This
provides a simple way to construct paths in p/d(T) as we construct the
adjacency matrix of a tournament one dimension at a time, and thus the
tournament itself.

Suppose that we want to construct a tournament T whose p/d-graph is
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1 0 1 0 1 0 0 1 1 1 0 0 0
2 o 0 1 0 [} 0 1 1 0 1 1 0
3 ! 0 0 1 0 0} 0 0 L 0 0 0
4 0 1 0 0 i ] 1 L 0 1 1 0
5 | 0 1 0 0 0 o 0 0 L 0 0
6 | 1 1 1 1 0 o 0 1 0 1 0
7 [ ] 1 0 3 1-0 o 0 1 1 1
8 [ ] 1 0 1 1 1 0 0 1 1 1
9 0 1 0 1 t [ 1 1 o 1 1 0
10 1 0 1 ] 0 1 o 0 0 0 [} 1
1 1 0 1 0 1 0o 0 o0 o 1 ¢ 0
12 L1 1 1 1 1 1 o 0 1 0 1 0.
1 2 3 4 s 6 7 8 9 0 112

Figure 11: Building a Tournament with Specific p/d-Graph: k =4, m = 2.

none of the forbidden unions above, but is composed of m isolated vertices,
and k paths. Choose any well-covered tournament W on m 4 k vertices (we
are guaranteed that one exists for m+k = 4 or > 5), and place the adjacency
matrix of this tournament, A(W), in the upper left hand corner of the
adjacency matrix, A(T'), that we shall construct (i.e., W is a subtournament
of T). Label the vertices of W 1,2,...,m + k in the order of the rows. We
will build an n x n adjacency matrix of a tournament T with desired p/d-
graph one dimension at a time, starting with the (m + k) x (m + k) matrix
A(W). We may add columns (thus also rows, as is consistent with an
adjacency matrix of a tournament) to the matrix A(W) corresponding to
vertices in each of the &k paths in the following manner. Choose k columns
out of the existing m + k columns of A(W). Look at column j for example.
Add a column and its corresponding row to the matrix that either mirrors
or is opposite to column j. Continue adding columns in this manner for each
edge in the jth path of p/d(T). Do this for each of the k chosen columns.
The resulting matrix will be the adjacency matrix of a tournament with
p/d-graph having k paths and m isolated vertices.

Note that our method of construction ensures that A(T) is the adja-
cency matrix of a tournament T with desired general p/d-graph, ie., m
isolated vertices and k paths. The addition of each vertex (dimension in
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A(T)) does not affect the strictly paired or strictly distinguished relation-
ship of existing vertices. The reason for this is the following. When we add
a column/row (since we add both) to our matrix, we are adding them as
mirror or opposite to an existing column/row. In tournament terms, we are
adding a vertex, say i, to a tournament in a strictly paired or strictly dis-
tinguished relationship to another existing vertex, say j in the tournament.
Thus, all arcs between the newly added vertex i and the existing vertices in
T are predetermined by the direction of the arcs between j and the other
vertices of T, and the relationship (strictly paired or strictly distinguished)
between i and j. It is easy to see that when j pairs/distinguishes vertices
in T, so does i.

Please refer to Figure 11 for an example and note that W is the 6 vertex
subtournament in the upper left hand corner of the matrix. If one examines
column 1 of the matrix, and compares it to column 7, one can see that
column 7 is an opposite image (in terms of 1’s and 0’s) of column 1, except
in row 7. This creates a d edge in the p/d-graph of the tournament, as noted
in the p/d-graph below the matrix. Note that the direction of the arc from
vertex 1 to vertex 7 is arbitrary with respect to the strictly distinguished
property. The 0’s or 1’s in the 4th row, 7th column or 7th row, 4th column
may not be opposite as the others are, but this will not affect the strictly
distinguished property of the vertices 1 and 7 in the tournament. Note that
column 4 and column 9 are mirror images of each other except in row 9,
giving a p edge between vertices 4 and 9 in the resulting p/d(T).

This construction can be done for m + k = 4 or m + k > 6, since we are
guaranteed to have a well-covered tournament for these number of vertices.

This method of construction allows us to prove the necessity of Theorem
2.10.

Theorem 2.11 There is a tournament T whose p/d-graph is the union
of k paths and m isolated vertices if and only if there is a well-covered
tournament on k + m vertices.

Proof: Sufficiency has been proved in Theorem 2.10. For necessity, note
that if there is a well-covered tournament, we may use the construction
technique explained above to construct the tournament T with said p/d-
graph. W
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