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Abstract

Let G be a connected graph. For a vertex v € V(G) and an ordered
k-partition II = {S1,S53,...,5:} of V(G), the representation of v with
respect to I is the k-vector 7(v|IT) = (d(v, S1), d(v, S2), ..., d(v, Sk)). The
k-partition II is said to be resolving if the k-vectors r(v|II), v € V(G),
are distinct. The minimum k for which there is a resolving k-partition
of V(G) is called the partition dimension of G, denoted by pd(G). A
resolving k-partition IT = {S), Sz, ..., St} of V(G) is said to be connected
if each subgraph < S; > induced by S; (1 < i < k) is connected in G. The
minimum £ for which there is a connected resolving k-partition of V(G)
is called the connected partition dimension of G, denoted by cpd(G). In
this paper, the partition dimension as well as the connected partition
dimension of the wheel W, with n spokes are considered, by showing
that [(2n)!/3] < pd(W,) < 2[n'/?] + 1 and epd(Wn) = [(n + 2)/3] for
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n 2> 4.
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1 Introduction

If G is a connected graph, the distance d(u,v) hetween two vertices u and v
in G is the length of a shortest path between them. The diameter of G is the
largest distance between two vertices in V(G). For a vertex v of a graph G and a
subset S of V(G), the distance between v and S is d(v, ) = min{d(v, z)|x: € S }-
Let I1 = { 51,82,.... 8k} be an ordered A-partition of vertices of G and let v
be a vertex of G. The representation r(v|l1) of v with respect to Il is the
k-tuple (d(v, S1),d(v, S2),...,d(v,Sy)). If distinct vertices of G have distinct
representations with respect to II, then II is called a resolving partition for G.
The cardinality of a minimal resolving partition is called the partition dimension
of G, denoted by pd(G) [2],[3]. A resolving partition IT = {851,5,..., 8k} of
V(G) is called connected if each subgraph < §; > induced by S; (1 <i < k)
is connected in G. The minimum & for which there is a connected resolving
k-partition of V(G) is called the connected partition dimension of G, denoted
by ¢pd(G) [9).

The concepts of resolvability have previously appeared in the literature (see
(2]-[4), [6]-[9]). These concepts have some applications in chemistry for repre-
senting chemical compounds [4] or to problems of pattern recognition and image
processing, some of which involve the use of hierarchical data structures [6).

If d(z, S) # d(y, S) we shall say that the class S separates vertices z and .
If a class S of Il separates vertices x and y we shall also say that II separates
x and y. From these definitions it can be observed that the property of a given
partition Il of the vertices of a graph G to be a resolving partition of G can be
verified by investigating the pairs of vertices in the same class. Indeed, every
vertex x € 5; (1 < i < k) is at distance 0 from S;, but is at a distance different
from zero from any other class S; with j # i. It follows that 2: € S; and y € S
are separated either by S; or by S; for every i # j.

The wheel W, for n > 3 is the graph C,, + K; obtained by joining all vertices
of a cycle C,, = vy, vy, ...,v,-1 to a further vertex c called the center. Thus W,,
contains 7.+ 1 vertices, the center and n rim vertices and has diameter 2. In this
paper, we consider the partition dimension as well as the connected partition
dimension of W,, for any integer n > 4.
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2 The partition dimension of the wheel

A frequent question in graph theory concerns how the value of a parameter is
changed by making a small change in the graph. In this section, we consider
how the partition dimension of a connected graph G is affected by the addition
of a single vertex. Consider the partition dimnension of the wheel W,, for n. > 3.
Clearly pd(C,) = 3, while pd(W3) = 4 as it is Ky, pd(W,,) =3 when 4 < n <7,
and pd(W,,) = 4 when 8 < n < 19. In this section we determine some bounds
for pd(W,,), but the question of determining the exact value of this parameter
for wheels remains unsettled.

It is clear that each rim vertex has two neighboring vertices apart from the
center. Thus each of rim vertices has distance 1 to at most two classes other
than the class that contains the center. It follows that if I1 = {5}, 52,....Sk} is
a resolving k-partition of V(W,,), (1, 2a. ..., z) is the k-vector representation
of any rim vertex and ¢ € S;, then there are at most two z; such that 2; = 1
forevery 2 <i < k.

We present two lemnmas regarding the cardinality of the classes of a resolving
partition of V(W),,) that contain or not the center.

Lemma 2.1 Let I1 = {5y, 8a,...,S:} be a resolving k-partition of V(W,,). If
c €Sy, then |S)| <1+ (";') + (k;’) + ("'61).

Proof: We deduce that »(¢|II}) = (0,1,1,...,1) and r(v|II) = (0,...) for
v € Si\{c}. Since the diameter of W, is 2, the elements of the k-vector rep-
resentation r(v|l1) of each rim vertex v € S;\{c} other than the first element
can be 1 or 2. But there can be at most two elements equal to 1 in the vector
representation apart from the first position of the.vector. This implies that
there are k — 1 positions in the vector representation of the rim vertices that
can be filled by at most two 1's and the rest can be filled by 2’s. Thus there
are at most (*7') + (*7') + (*3") distinct vector representations for all ver-
tices v € S;\{c¢}. Together with the vector representation of the center, we
have at most 1 + (¥37) + (*7') + (*;7) distinct representations. Therefore
ISl <1+ (5 + (7)) + (5D u

Lemma 2.2 Let I1 = {S,59,...,51} be a resolving k-partition of V(W,,)). If
¢ € Sy, then S| < ("';2) + ("'72) + ("';2) Joreach 2 < i < k.

Proof: Consider a class other than S;, without loss of generality say Sa, not
containing the center. Then the vector representation for w € Sy is r(w|ll) =
(1,0,...). There are k — 2 positions in the vector representation of the rim
vertices that can he filled by at most two 1's and the rest can be filled by 2's.
Thus there are at most ("';2) + ("';2) + ("'52) distinct representations for all
vertices w € Sy. Therefore |S;| < (";2) +(*73) + (*33) foreach2<i<k. O
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With the two Lemmmas above, we are now in the position to prove the fol-
lowing theorem.

Theorem 2.1 For cvery 1 > 4 we have
[(2n)'/3] < pd(W,) < p +1,
where p is the smallest prime nanber such that p(p — 1) > n.

Proof: Lower bound. Let pd(W,,) = k and Il = {S), Sa,....5k} be a resolving
k-partition of V(W,,). Let ¢ € S;. By Lenuna 2.1 we have |S3} < 1+ (";‘) +
(*71) + (*3") and by Lemma 2.2 we have |Si| < (*32) + (*72) + (*3%) for
2 <i <k We get

VW)l =n+1=4 1S <1+ T, (*7) + (k= 1) X2, (%72), which
implies n < (k* — 3k% + 6k — 2)/2 < k3/2 for every k > 2. It follows that
k> [(2n)1/4].

Upper bound. Let p be the smallest prime number such that p(p — 1) > n.
Since p is prime, the sequence 0,1%,2i,3i,...,(p—1)i, where 1 <i < p -1 and
all numbers are reduced modulo p, is a permutation of the set {0,1,...,p —1}.
Consider the sequence (z;);=1,... p(p-1) = X1, X2,..., X(p=1)/2, Where for each
1 <1< (p-1)/2 the subsequence

Xi=0,0,4,1,2,2,3i,3,..., (p— 1)i,(p— 1)i

contains 2p terms and each pair of equal elements different from 0,0 is obtained
from the previous one by adding ¢ modulo p to each component. The resolving
partition IT = {Sj,...,Sp41} of V(W,,) is defined as follows:

a) if n = p(p — 1) then Sp4y = {c¢} and each element v; (0 < i < 0 —1) is
assigned to the class S, ,41;

b) if n < p(p — 1) then S,41 = {¢, v,-1} and each element v; (0 < i < n—2) is
assigned to the class Sz, 4.

From the construction it can he observed that for any two vertices v;,v;4; in
the same class, vertices v;.; and v;4» belong to different classes. Also, if ;
and v; belong to the same class S, and 7 < j, j # 7 + 1, then at least one pair
of vertices from {‘U,'._], Yj-1 } ) {’U,'_ 1) V541 }, {’UH.] W Uj—1 }, {'U,'.H yUi41 } consists of
vertices that belong to two classes S, S, such that ¢,7 # p and ¢ # =. In the
case b vertices ¢ and v,,_; can be separated by a class of I1. It follows that Il
is a resolving connected partition of V(W) having p+ 1 classes, which implies
pd(W,) <p+1 q

Corollary 2.2 For cvery n 2 4, pd(W,,) verifies

[(2n)/*] < pd(W,) < 2[nY/?] +1
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Proof: Since prime number p must satisfy p(p — 1) > n we can take p 2
[n}/2] + 1. We shall apply Bertrand’s postulate, proved for the first time by
Chebyshev, which asserts that for every n > 1, there is some prime number p
with 7 < p < 2n (see [1]). We deduce that there exists a prime number p such
that {n!/2] < p < 2[n!/?], hence pd(W,,) < p+ 1< 2[n!/2] +1. a

3 The connected partition dimension of the
wheel

1t is clear the ¢pd(C,) = 3 and ¢pd(W3) = 4 as it is Ky. In this section
we consider the connected partition dimension of W, for every n > 4. Let
ITI={S),...,S,} be a connected resolving k-partition of V(1,,) such that the
center ¢ € S;. Every class of Il different from S; induces a subpath consisting
of consecutive vertices of C,,; also vertices of S; belonging to C,, induce 7 > 0
disjoint subpaths L,,..., L, consisting each of consecutive vertices of C,,. A
sequence of consecutive vertices v;. vig1,...,v; on C, (indices are considered
modulo n) will be called a window if these vertices do not belong to S but
v;_1, 0541 € S1. It is clear that each window includes some classes of I1 different
from S;. Each class of IT containing vertex v; or v; will be called a houndary
class.

Lemma 3.1 Let 11 = {S),...,Sk} be o connected resolving k-partition of
V(W,,) such that the center ¢ € Sy. Then:

1) |S;] < 3 for every 2 < j < k and |S;| < 2 if §; is a boundary class:

i) |L;] £ 3 for every 1 < i < r and at most one L; contains three vertices.

Proof: If L; or S; contains at least four distinct vertices vy, vi41,- .., V=1, Vmm,
then vy and v,,-; cannot be separated by any other class. If S; is
a boundary class containing at least three vertices, then there exist the
vertices vy, vj_1,V—2,v—3 such that v, € S and v_\,w_2,v—3 € S; or
UL, Vig1, Vi42, Vi3 such that v € S) and vig1, vig0, vg3 € S;. We deduce that
the vertices w1, V-2 and vi41, vi42, respectively cannot be separated by I1.
If there exists L, and L,;, 1 < p < ¢ < 7 containing three vertices each, i.e.,
Ly, = v, v41,v142 and L, = vy, tiny1, V2, then the vertices vy and vy,
cannot be separated by II, a contradiction.

O

Theorem 3.1 The following equality holds:

) 3 o1 n = 4.
epd(W,) = { [2:£2] j’m- n>5
: . > 5.
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Proof: Let V(W,) = {¢,v0,v1, ..., ¥,—1}. We first show that cpd(W,,) = 3 for
4 <n < 7. Asa consequence of Proposition 2.2 in {9], showing that d(G) =2
if and only if G = P,, we have cpd(W,) > 3 for any n > 4. To show that
cpd(W,) < 3 for 4 < n < 7, we give a connected resolving partition Il =
{81,852, S3} for each n. = 4, 5,6, 7 as follows.

For n=4, §) = {¢,vo,11}, S2 = {v=}, and Sy = {w3}.

For n =5, 81 = {¢,vy,m,v2}, S2 = {v3}, and S3 = {vy}.

For n. =6, 8) = {¢,v9, 1,02}, So = {vs, 14}, and Sy = {ws}.

For n =7, 81 = {¢,v,v1,v2}, S2 = {v3, 14}, and S3 = {wg,v5}.

Thus ¢pd(W,,) =3 ford<n<T.

Now we show that cpd(W,) = [22], for n > 8. Let II
{Sl,Sz,...,S[q_u]}, where S; = {c,v,v),v2} and So = {uvs,vs}, S;
{vagi-1)-1,V3i=1) V3(i= 1)1} for 3 < i < (2] -2 and Spagryy = {va-s}
when n = 2 mod 3 or S[L;Jg]_l = {Un-4q.Vy-3} when n = 0 mod 3, or
S[#]_l = {¥y-5, V-4,V -3} when n =1 mod 3, and S[-'ﬁ,.,i"'l = {vy-2, -1}
1t can be easily verified that any two elements in the same class have dis-
tinct representations and all these classes induce counected subgraphs, so
pd(W,) < [2£2].

In order to show that epd(W,,) > [%], let 11 = {S)...., Sk} be a connected
resolving k-partition of V(W,,) and suppose that ¢ € S;. Let ¢(l) denote the
minimum number of classes of I1 different from S, included in a window with !
vertices. From Lemma 3.1 we deduce easily that for every I > 1,

(t+3)/3 ifl=0 mod 3,
w(l) = {

]

(t+2)/3 ifl=1 mod 3,
(l+4)/3 ifl=2 mod 3.

Suppose first that Sy # {c¢} and the vertices of S; belonging to C, induce
r 2 1 disjoint subpaths L,,..., L, of C, containing n,,...,n, vertices and
r windows containing ly,...,l,. vertices such that 2};1 I + Z:=1 ny = n. It
follows that & > 377 (L) +12> 3 (L +2)/3+1=3( i k+2r)+1=
F=Yi (= 2))+ 12> (n—1)/3+1= (n+2)/3 since n; < 2 and at most
a single value n; = 3. It follows that & > [(n + 2)/3].

If S; = {¢} then 7 = 0 and denote by 1(n) the minimum number of classes of
IT different fromn S;, which consists of subpaths with at most three vertices of

C,. We get
n/3 if n=0 mod 3,
Ppn)=<{ (n+2)/3 ifn=1 mod 3,
(n+1)/3 ifn=2 mod 3.
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In this case we deduce k& > 1 + (n) > [{n + 2)/3], which concludes the proof.
' O

References
[1] M. Aigner, G. M. Ziegler, Proofs from THE BOOK, Springer-Verlag, 1999.

[2] G. Chartrand, E. Salehi, P. Zhang, On the partition dimension of a graph,
Congr. Numer. 130(1998) 157-168.

(3] G. Chartrand, E. Salehi, P. Zhang. The partition dimension of a graph,
Acquationes Math. 59(2000) 45-54.

[4] G. Chartrand, L. Eroh, M. A. Johnson, O. R. Oellermann, Resolvability
in graphs and the metric dimension of a graph, Discrete Appl. Math.
105(2000) 99-113.

[5] F.Harary, R. A. Melter, On the metric dimension of a graph, Ars Combin.
2(1976) 191-195.

[6) R. A. Melter, 1. Tomescu, Metric bases in digital geometry, Computer
Vision, Graphics, and Image Processing 25(1984) 113-121.

[7] P. 1. Slater, Leaves of trees, Congr. Numer. 14(1975) 549-559.

[8] P.J. Slater, Dominating and reference sets in a graph, J. Math. Phys. Sci.
22(1988) 445-455.

[9] V. Saenpholphat, P. Zhang, Connected partition dimension of graphs,
Discussiones Muthematicae Graph Theory 22 (2002) 305-323.

317



