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Abstract

The bondage number b(D) of a digraph D is the cardinality of
a smallest set of arcs whose removal from D results in a digraph
with domination number greater than the domination number of D.
In this paper, we present some upper bounds on bondage number
for oriented graphs including tournaments, and symmetric planar
digraphs.
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1 Introduction

Domination and other related concepts in undirected graphs are extensively
studied, the same concepts are presented for digraphs. In terms of applica-
tions, digraphs come up more naturally in modelling real world problems,
the questions of Facility Location, Assignment Problems etc. are very much
related to the idea of domination or independent domination on digraphs.
A comprehensive survey of domination in digraphs is given in [6].
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A digraph D = (V, A) consists of a finite vertex set V and an arc set
A C P, where P is the set of all ordered pairs of distinct vertices of V. That
is, D has no multiple loops and no multiple arcs (but pairs of opposite arcs
are allowed). If (u,v) € A then the arc is directed from u to v and is
denoted by u — v. The vertex u is called a predecessor of v and v is
called a successor of u. Moreover, u is said to be adjacent to v and v is
adjacent fromu. A digraph D is called an oriented graph or an asymmetric
digraph if whenever (u,v) is an arc of D, then (v,u) is not an arc of D.
A symmetric digraph is a digraph for which (u,v) € A implies (v,u) € A.
The sets O(u) = {v : (u,v) € A} and I(u) = {v: (v,u) € A} are called
the outset and inset of the vertex u. More generally, for S C V(D), we
write O(S) = UyesO(u) and I(S) = UyesI(u). The indegree of a vertex
u is given by d™(u) = |I(u)| and the outdegree of a vertex is d*(u) =
|O(u)|- We denote the minimum and maximum indegree and outdegree
in D by §=(D), A~ (D),8*(D) and A*(D), respectively. A set S C V is
independent if for all u,v € S, (u,v) ¢ A. The independent number SBy(D)
is the maximum cardinality among all independent sets of vertices of D.
If for some k we have a sequence o = wug,uy,...,uxr of vertices such that
every u;4+1 is a successor of u;, then ¢ is a directed walk from ug to ux of
length k. If all the u}s are different then o is a directed path. For vertices
u and v in a digraph D containing a u-v path , the distance d{u,v) from
u to v is the length of a shortest u-v directed path in D. The underlying
graph of a digraph D is the graph obtained by replacing each arc (u, v) or
symmetric pairs (u,v), (v,u) of arcs by the edge of uv. We always assume
that the underlying graph of the digraph D is connected.

A graph H is a minor of a graph G, if H can be obtained from G by
the following three operations: delete a vertex, delete an edge, or contract
an edge.

We define a set S C V of a digraph D to be a dominatling set of D
if for all v € S, v is a successor of some vertex u € S. The minimum
cardinality among all dominating sets of D is called the domination number
of D and is denoted by (D). The bondage number b(D) of a digraph D
is the cardinality of a smallest set of arcs whose removal from D) results
in a digraph with domination number greater than 4(D). Aset S C V
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is defined to be a 2-distance dominating set of a digraph D if for every
vertex u € V — S there exists a vertex v € S such that d(v,u) < 2. The
minimum cardinality among all 2-distance dominating sets of D is called
the 2-distance domination numberof D and is denoted by (D). A set Sof
vertices in digraph D is called a 2-distance independent dominating set of D
if S is both independent and 2-dominating. The 2-independent domination
number i3(D) of D is the minimum cardinality among all 2-independent
dominating sets of D.

Chartrand et al. [2] established bounds on domination number for a
digraph. The purpose of this paper is to study bondage number and 2-
distance domination number of digraphs. We will establish upper bounds
on bondage number for symmetric planar digraphs and oriented graphs.
Moreover, we also give an upper bound on 2-distance domination number
for a digraph in terms of its order. The concept of bondage number in
undirected graphs is well studied in graph theory (see [4],[5],[7],[8],[9])-

2 Preliminary results

For every u € V(D), let A7 = {(w,u) € A(D)lw € V(D)}, A} = {(u,w) €
A(D) | w € V(D)}. For notation convenience, in what follows, we write
Ay = A7 U AL, d(u) = dt(u) +d (u), N(u) = O(u) U I(u), 8(D) =
min{d(u) : u € V(D)}, and A(D) = maz{d(u) : u € V(D)}. Also, for
S C V, N(S) = O(S) U I(S). We begin with some elementary lemmas
about bondage number of digraphs.

Lemma 2.1 If D is a digraph , then b(D) < d~(u) + d(v) — |I(u) N I(v)|
Jor every pair vertices u and v with (u,v) € A(D) and this bound is sharp.

Proof. Let H = D—(A7UA,—A1U{(z,v)}), where A, = {(w,u) € A(D) |
w € I(w)NI(v)}. If y(H) > v(D), then b(D) < d~(u)+d(v) — |I{(uw)NI(v)|.
If v(H) = (D), then for every y-set S of H, v € S. Otherwise, S—{v}isa
dominating set of D, which is impossible. Hence, v(D — (A7 UA, — A;)) =
(H = {(,9)}) = Y(H) + 1 > ¥(D), and s0 b(D) < d~(u) + d(w) — | () N

321



1(v)|.

That the bound is sharp, may be seen by considering the bondage
number of an orientation ?1,,. of graph K, with center vertex u and
d~(u) = n. For every vertex v € V(T(’,,,) — {u}, d=(v) = 0. It is easily
seen that (K1 ,) = n = d~(v) + d(x). O

Corollary 2.1 If D is a digraph, then b(D) < d(u) + d(v) — 1 for every
pair vertices u and v with (u,v) € A(D).

Lemma 2.2 If D is a digraph, then b(D) < d(u) +d(v) — 1 for every pair
u and v of vertices with I(u) N I(v) # 0.

Proof. For some w € I(u)NI(v), let H = D — (A UA, — {(w,v), (w,)}).
Ify(H) > v(D), then b(D) < d(u)+ d(v) — 2. If y(H) = (D), then clearly
¥(H — {(w,v)}) = ¥(H) + 1, this implies the desired result. O

We recall some useful results that we will need.

Lemma 2.3 If G is a bipartite planer graph with n > 3 werlices, then
|E(G)| < 2n - 4.

Lemma 2.4 Suppose that G is o planar graph with n > 3 vertices, then
6(G) < 5 and |E(G)| < 3n — 6.

Lemma 2.5 (Dirac [3]) If the minimum degree of graph G is at least 3,
then G has a minor isomorphic to K.

3 Bondage number of a symmetric planar di-
graph

In this section, we give an upper bound on bondage number for a symmetric
planar digraph.
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Theorem 3.1 If D is e symmelric planar digraph, then b(D) < 15.

Proof. Suppose to the contrary that D is a symmetric planar digraph with
b(D) > 16. Now we define

Vi
Va

{ue V(G) | d(x) < 8}
{u € V(G) | d(u) = 10}

Then we have
Claim 1. For two distinct vertices u,v of V3, dp(u,v) > 3.

Otherwise, d(u,v) < 2. By Lemma 2.2, (D) < d(u) +d(v) -1 =
8 + 8 — 1 =15, a contradiction.

Claim 2. For each u € V}, v € N(u), d(v) > 14.

Otherwise, d(v) < 13, by the symmetric of D, d(v) < 12. But then by
Lemma 2.2 (D) < d™(v) + d(u) < 6 + 8 = 14, a contradiction.

Claim 3. V; is a independent set in D). For two distinct vertices
u,v € Vo, d(u,v) > 2.

Otherwise, by Lemma 2.1, 5(D) < d™(u) + d{v) <5410 = 15.
Let Vo = {u;,us,...,ux} and Dy = D — Vj. Define

Hy = Dy
Hi = H._+F, 1<i<k.
where F; C F,, = {(xu,v),(v,u) | u,v € N(u;), v # v,(u,v),(v,u) ¢

A(Hi-1)} such that H;_y + F; = H; is still symmetric planar digraph and
the underlying graph H}[N (u;)] of H;[N(u;)] is 2-connected.

Claim 4. If V, # 0, then for each vertex v € N(V3), v is of degree at
least 14 in H.

In fact, let u € Vo and v € N(w). If, in D, I(v)NI(u) = @, by Lemma 2.1,
5 + d(v) > 16, we have d(v) > 12. By the 2-connectivity of H}[N(z)], v is
degree at least 14 in Hy. If |/ (v)nI(z)| = 1, by Lemma 2.1, 54+d(v)—1 > 186,

323



we have d(v) > 12. By the 2-connectivity of H[N(u)], v is degree at least
14 in Hg. If |I(v) N I(u)| > 2, by Lemma 2.1, 5+ d(v) — 2 > 16, then
d(v) > 13. Since D is a symmetric digraph, d(v) is even, so d(v) > 14.

Now we consider underlying graph Hj of digraph Hy, H} is a planar
graph with the following properties.

(a) The minimum degree of Hy is 5,

(b) Vo = {ue V(Hy) | dH; (u) = 5} and V3 is independent in Hj,

(c) For every vertex v € Nuz(Va), dup(v) 2 7,

(d) For every vertex v € V(Hy) — (V2 U N(V2)),dn; (v) 2 6.
Let 8(V2) = {uv € E(H) | u € Va,v € N(Va)}. Then (Va, N(Va);8(Va)}
is a bipartite planar graph with 5|V,| edges. By Lemma 2.3,

5|Va| < 2|Va| + 2|N (Vo) — 4.

Hence, |N(V2)| = 3|V2]/2 + 2. But

. 1
|E(HE) = 3 Z diiy (v)
vev(Iy)

(5IVa| + 7IN (V)| + 6(IV(HE)| - [Val — IN(V2)]))/2
IVH + IN(VR)I/2 - |Val /2

BIV(HY + Val/a+1

> 3|V(Hy)| -6,

v

v

contrary to Lemma 2.4. This completes the proof of the theorem. O

4 Bondage number of oriented graphs

In this section, we begin to turn our attention to oriented graphs. QOur aim
is to establish upper bounds on bondage number for oricnted graphs.

Theorem 4.1 If D is an oriented gruph of order n, then b(D) < %A(D),
and this bound is sharp.
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Proof. Let v be a vertex with d~(v) = 6 7(D). If d(v) = d~(v), we choose
a vertex w € I(v), by Lemma 2.1, it follows that b(D) < d~(w) + d(v) <
(A(D) = 1)+ 6~ (D) < 6~ (D) + A(D). If d(v) > d—(v), then there exists
a vertex u € O(v), by Lemma 2.1 , we have (D) < d~(v) + d(u) <
8=(D) + A(D).

For a digraph D, it is well known that 3 ., d™(v) = ¥,y d*(v) =
3 Yvev d(v). So néd~(D) < 1A(D)n, thus §=(D) < 3A(D). Combining
with b(D) < 6~ (D) + A(D), we have (D) < 3A(D)/2.

That the bound is sharp, may be seen by checking the bondage num-
ber of a strong connected orientation a'zn.ﬂ of graph C3n41. Clearly,
b(Cans1) =3 =3A(Cans1)/2. O

For an oriented planar graph, we can establish the following upper
bound.

Theorem 4.2 If D is an oriented planar graph of order n, then b(D) <
A(D) + 2.

Proof. Let D* be the underlying graph of D. For an oriented planar graph
D, there must exist at least a vertex v with d=(v) < 2. Otherwise, for every
vertex v € V, d7(v) > 3, then |E(D*)| = |[A(D)| = Y ,cv d™(v) 2> 3n,
which contradicts Lemma 2.4. So, there exists a vertex v with d~(v) < 2.
If O(v) # 0, then there exists a vertex u € O(v), by Lemma 2.1, we have
b(D) < d~(v) + d(u) <2+ A(D). If O(v) =0, then d(v) = d~(v) < 2. We
choose a vertex w € I(v), then b{(D) € d (w) + d(v) < (A(D) -1)+2 =
A(D) + 1.

The above bound can be attained. Let D be a digraph with vertex set
V(D) = {v1,v2,v3,u1, u2,u3} and arc set A(D) = {v,v3, v3v2,v2v1, V121,
Vou1, U3V], U3U2, U1U2, U1 U3, VU3, U2V3, U2z }. Clearly, v(D) = 3, and we
can check that b(D) =6= A(D)+2. O

Furthermore, for some special oriented planar graphs, we can somewhat
improve the upper bounds.
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Theorem 4.3 Let D be an oriented planar graph, and Vi = {v € V(D) |

d(v) <4}. If for anyu € V =V, there exists at most a vertex v € V; such
that v € O(u) U I(u), then b(D) < 10.

Proof. Suppose to the contrary that b(D) > 11. Now we define V2 = {v €
V(D) | d(v) = 5}. Then we have

Claim 1. For each u € N(Vy), d(u) > 8. Also, for each u € N(V3),
d(u) > 7.

Otherwise, by Corollary 2.1, (D) < d(u) + d(v) — 1 < 10, a contradic-
tion.

Claim 2. V; is an independent set in D.

Otherwise, if there exist vertices u,v € V(D) such that (u,v) € A(D).
Then b(D) < d~(u) + d(v) < 9, a contradiction.

Now we consider underlying graph Dj of D; = D — V. Then Dj is a
planar graph with the following properties.

(a) The minimum degree of Dj is 5,

(b) Vo = {v e V(D3) | dp; (v) = 5},

(c) V2 is an independent set in Dj,

(d) For every vertex v € Np:(V2),dp; (v) > 7.

Let 8(V2) = {uwv € E(D3}) | u € Vo,v € N(Vu)}. Then (Vo, N(V2); 8(Vz))
is a bipartite planar graph with 5|V5| edges. As discussed in Theorem 3.1,
we have

|E(DY)| > 3[V(DY)] - 6,

contrary to Lemma 2.4. This completes the proof of the theorem. O

Theorem 4.4 Let D be an oriented planar graph with A(D) > 5. If for
every vertez v with d(v) > 4, it has d~(v) > 3, then b(D) < A(D) + 1.
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Proof. Let D be an oriented planar graph satisfying the hypothesis, then
there exists a vertex v € V(D) such that 6~ (D) =d~(v) < 2.

Case 1. 6= (D) =d~(v) < 1. If O(v) # @, then there exists a vertex
u € O(v). By Lemma 2.1, we have (D) < d~(v) +d(u) < A(D)+1. If
O(v) = 0, then d(v) = d~(v) < 1. We choose a vertex w € I(v), then
b(D) < d~(w) + d(v) < (A(D) —1) +1 = A(D).

Case 2. 67 (D) = 2, and §(D) = 2. Let u be a vertex with d(u) =
3(D) = 2, then d~(u) = 2. We choose a vertex w € I(u), then b(D) <
d”(w) +d(u) < (AD)-1)+2=A(D)+1.

Case 3. 67 (D) = 2, (D) > 3. For every vertex v € V(D) with
d~(v) = 2, it has d(v) > 3. By the hypothesis of thcorem we know that
d(v) = 3. Let B = {v € V(D) | d™(v) = 2,d(v) = 3}. Suppose to the
contrary that (D) > A(D) + 2, then for every vertex u € I(B), d~(u) =
A(D) — 1. Otherwise, d~(u) < A(D) — 2, then b(D) < d~(u) + d(v) <
(A(D)-2)+3 = A(D)+1, a contradiction. So for each u € I{(B), we have
d~(u) = A(D) =1 >4. Let B’ = I{B). Observe that for any two distinct
vertices vy, vy € B, there exist two distinct vertices ui,us € B’ such that
(u1,v1), (ug,v2) € A(D). This implies that |B’| > |B|. Notice that the
indegree of each vertex in V — (B U B’) is no less than 3. Let D* be the
underlying graph of D. We immediately obtain

|E(D)|=1A(D)] = ) d (v)

veEV

= Yd@+Y.d@+ > d (@
veB vE B’ veEV—-(BuB’)

> (2+4)|B|+3(n-2|B))

> 3n,

contrary to Lemma 2.4. The theorem follows. O

For an oriented tree, we obtain the following result.

Theorem 4.5 [f T is an oriented tree, then b(T) < A(T), and this bound
s sharp.
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Proof. Let T be an oriented tree. Then there exists a vertex u such that
d(u) = 1. If d~(u) = 0, there exists a vertex » € O(u), then b(T) <
d™(u) + d{v) < A(T). If d~(u) = d(u) = 1, there exists a vertex v € I(u),
then b(T) < d~(v) + d(u) = d~(v) +1 < d(v) < A(T).

That the bound is sharp, may be seen by considering the orientation
7?1,,. of graph K , with center vertex u and d~ (u) = n. It is easily checking
that B(K,.) =n=A(K ). O

Theorem 4.6 Let D be an oriented graph with underlying graph D*, and
Vi={veV(D)|dwv)=1},Vo = {v € V(D) | d(v) = 2}. If D* has no
minor isomorphic to K4 and for every u € V(D) — (V) UVW,), there exists
at most a vertez v € V3 UV, such that wv € E(D*), then b(D) < 4.

Proof. Let D be an oriented graph satisfying the hypothesis. Assume to
the contrary that b(D) > 5. We can deduce that if Vj # @ then d(u) > 5
for every u € N(V}). Otherwise, if there exists a vertex v with d(v) = 1,
and d{u) < 4 for v € N(v). By Corollary 2.1, (D) < d(u) + d(v) —
1 < 4, contradicting our assumption. Now if Vo = 0, then D* — V] is a
graph with minimum degree at least 3. By Lemma 2.5, D* has a minor
isomorphic to K4, a contradiction. Hence, we can suppose that V, # 0.
Let Vo = {uj,us,...,ux}. Clearly, V5 is an independent set in . Suppose
N(u;) = {zi,4i}, 1 <1 < k. Define Dy = D* and for 1 <7 < k,

{ Di_y —us + ziyi, i ziys € E(D*)

D; =
D1 -y il z;y; € E(D*)

Since D* has no minor isomorphic to K4, D) — Vi also has no minor iso-
morphic to K4, and so Dy — Vi has a vertex of degree at most 2. By
the assumption of the theorem and the structure of Di, there must exist
r € {1,2,...,k} such that z,y, € E(D*) and min{d(z,),d(y-)} = 3. Sup-
pose d(z,) = 3, without loss generality we assume that (u,,z,) € A(D),
then b(D) < d™ (u,) + d(z,) < 1+ 3 = 4, a contradiction. The theorem
follows. O

Theorem 4.7 Let D be an oriented digraph of order n > 4. If y(D) € 2,
then b(D) < A(D).
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Proof. If (D) = 1, then there exists a vertex v such that d*(v) =n —1
and for any vertex w € V — {v}, it must be d*(w) < n — 2. Hence
v(D - (v,w)) > 2> v(D), and so b(D) =1.

If (D) = 2, suppose to the contrary that b(D) > A(D) + 1. Let u
be the vertex such that d*(u) = AT(D), then v(D — A,) = v(D). This
implies that there exists a vertex v such that Sy = {u, v} is 2 dominating
set of D — A, and so d*(v) =n — 2.

Case 1. (u,v) € A(D). Since d*(u) > dt(v), I(u) = 0. We choose a
vertex z € O(u) N O(v), then y(D — A;) = y(D). That is, there exists a
vertex z; such that S2 = {z, 21} is a dominating set of D—A,, 2; # u,v, and
21 is adjacent to all vertices except z. But I(u) = 0, this is a contradiction.

Case 2. (u,v) € A(D). Since d*t(u) > d*(v), then d~(u) < 1. If
d=(u) = 0, as discussed in Case 1, a contradiction will be yielded. If
d~(u) = 1, there exists a unique vertex w € I(u). We choose a vertex
z € O(u) N O(v), then v(D — Az) = (D). That is , there exists a vertex
z1 # u such that S3 = {z,z,} is a dominating set of D — Az, and z; is
adjacent to all vertices except z. Since u ¢ Ss, in order to dominate wu, it
must be the case that z; = w. But (w,v), (z,v) € A(D), this implies that
v can’t be dominated by S3, a contradiction. So, (D) < A(D). O

When (D) = 3, b(D) < A(D) is not necessarily correct. This can be
seen from the bondage number of strong connected orientation C: of the
5-cycle Cs, b(a—:) =3 = A(C_s') + 1.

A digraph D is transitive if whenever (u,v) and (v,w) are arcs of D,
then (u,w) is also an arc of D. The tournaments have been received the
greatest attention in oriented graphs. The [ollowing result gives a bondage
number of a transitive tournament.

Theorem 4.8 If a tournament T is transitive, then b(T) = 1.

Proof. Assume that T is a transitive tournament of order n. Let u,v €
V(T) and assume that (u,v) € A(T). For each w € O(v), since (v,w) €
A(T) and (u,v) € A(T), it follows that (u,w) € A(T). Thus d*(u) >
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d*(v)+1. This implies that no two vertices of T have the same outerdegree,
so A*(T) =n-1and ¥(T) = 1. Let z be the vertex with d*(2) = A*(T) =
n — 1. For every other vertex w € V — {z}, it must be d*(w) < n — 2.
Hence, (T — {(z,w)}) 22> v(T)=1. So, b(T)=1. D

5 An upper on 2-domination number of a di-
graph

Theorem 5.1 ([1]) A loopless digraph D has an independent set S such
that each vertez of D not in S is reachable from a vertez in S by a directed
path of length at most two.

Theorem 5.2 If D is a digraph of order n and 6= (D) > 1, then vo(D) <

n

3-

Proof. Let S be a maximal independent set of vertices of D. Since §~(D) >
1, then for every v € S, there is a vertex u € V — S such that (u,v) € A(D).
This means that V — S is a dominating set of D. Hence, y2(D)+Bo(D) < n.
By Theorem 5.2, there exists a 2-independent dominating set for digraph
D, so v2(D) < ia(D) < Bo(D). Consequently, v2(D) < n/2. O
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