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Abstract

The multicolor Ramsey number R,(H) is defined to be the smallest
integer n = n(r) with the property that any r-coloring of the edges
of complete graph K, must result in a monochromatic subgraph of
K, isomorphic to H. In this paper, we study the case that H is a
cycle of length 2k. If 2k > r + 1 and r is a prime power, we show
that R-(C2) > P 4+2%-—r—1.
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1 Introduction

We consider only finite undirected graphs without loops or multiple edges.
For a graph G with vertex set V(G) and edge set E(G), we denote the
order and the size of G by p(G) = |V(G)| and ¢(G) = |E(G)|, respectively.
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If there exists a r-coloring of the edges of a graph G such that there is
no monochromatic subgraph of G isomorphic to H, we say that H is r-
avoidable in G. The multicolor Ramsey number R,.(H) is the smallest
integer n such that H is not r-avoidable in K.

A cutpoint of a graph is one whose removal increases the number of
components. A nonseparable graph is connected, nontrivial, and has no
cutpoints. A block of a graph is a maximal nonseparable subgraph. Let K,,
be a complete graph with order n, K, n be a complete n by m bipartite
graph. Cp, is a cycle of length m. (G; S) denotes the induced subgraph of
vertex set S C V(G).

Chung 21 showed that
R.(K3) > 3R._1(K3) + R._3(K3)— 3.

Chung, Graham!® and Ivring[8] independently proved that

R (Cy)2 1 — 14 2
for 7 — 1 being a prime power, and

R(CH< ™ +r+ 1
Lazebnik and Woldar!® gave that

RA(Cy)>r* + 2

for odd prime power r, and the result was extended to any prime power 7
in [10, 11).

Bondy and Erdés!!) obtained that
Ro(Cogqr) = 4k + 1,
and conjectured that
R3(Cok+1) =8k+1, k=2
Faudree and Schelp (6] determined that
Ry(Cor) =3k —1.
Graham, Rothschild and Spencerm gave that

27k < Rp(Cor41) < 2(r + 2)! k,
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Rr(Ca) > (r—1)(k - 1),
R(Cax) < 201rk, < 10%/201k.
Dzido, Nowik and Szucal®) proved that

R.(C2x) > (r + 1)k + (r mod 2) — 2. (1.1)
In [13], it was shown that
R.(Co) >2(r—1)(k—1)+1. (1.2)

For the literature on small Ramsey numbers we refer to [12] and the relevant
references given in it.

In this paper, we study the case that H is an even cycle Cyi such that
2k > r +1 and r is a prime power, and prove that

R (Cox) >7r° +2k—7—1. (1.3)

In order to accomplish this, we first describe a special Cy,-free graph F;
with order 72 and size r(r? — 1)/2, where r is a prime power and m =r+1.
We show how to color the edges of the complete graph K,z in r colors such
that each monochromatic subgraph is isomorphic to F.. Such colorings
can be viewed as edge decompositions of K2 into isomorphic copies of F;..
Clearly, the existence of such colorings implies that R,.(Cy,) > r2. Then
we show that the edge coloring of K2 can be extended to r-coloring of the
edges of K,2,,_r—1 such that each monochromatic subgraph is Cy,-free
when m > r + 1. Taking m = 2k, this will prove inequality (1.3).

2 Construction and Proofs

The graph F, with order 72 and size r(r? — 1)/2 is defined as follows:
V(F) = {w;:1<4,j<r},
E(F) = {(vij,vwj):1<i<i’'<nl1<j<r}u
{(vijynj):1<j<j <r}
Then F consists of » + 1 blocks with order r, hence, for any cycle Cy, for

m 2> r+1, we have Cy, ;(_ F. .(see Fig. 1-2, where F3 = G3; and Fy = G4
respectively).

Lemma 1. Let r be a prime power. If m = r + 1, then C,, is r-avoidable
in K,.'z.
Proof. Let

V(K,2) = {‘Uij: 1<4,5 S’I‘}

335



Since r is a prime power, there must exist a complete set of mutually

orthogonal latin squares {Lz, L3, ..., L.} with elements 1,2,...,r (see [4,
p. 167, Theorem 5.2.4]). Let
[ Ltll LiZ e Ltlr 1
Ly, Ly, ... L%,
Lt= ' ’ o ) ) t=1)23 ' Ty

| Lh L oL
whereLij=jfor1§j5randL}j=jfor25i$r,15j5r,namely,

1 2 T
1 2 T
L=
[ 1 2 ... 7]
Then the sets S; ; of vertices are defined according to the following rule:
Sij = {viivery,.-»vry}y 1SiSn 1<j<n,
Sire1 = {vir,vie,...,vir}, 1<i<r (2.1)
Let
Bij = (K Si5), 1<i<r 1<j<r+1,
E, = Ulsi,jsr E(Bi,;),

E; = U<i<r E(Birs1).
Since Lo, L3, ..., L, are mutually orthogonal latin squares, it follows that

E(K;2) = E1UE;,
EinE, = @,
E(B;;)NE(By j) = 0, 1<, <r, 14,7 <r,
G5 # @5,
E(Bir+1)NE(Birt1) = 0, 1<i<i' <
Hence
r+1 41
(UEB: )N (JEBy;) =0, 1<i<i<r
j=1 i=1
Let
r+1
EG) = |JE@B:), (2.2)
j=1
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then
Gr,i

E(Gr,i) N E(Gr,il)

R
:’}J

Since ¢(Gr;) = r(r? = 1)/2 for 1 < i < r, it follows that

E(K,2) = UE(G,,i).

i=1

Hence, the edges of K2 can be decomposed into r isomorphic copies of F;..
We can color the edges of E(K,2) in r colors as follows: all the edges of
G,,; will be in the i-th color for 1 <% < r. So, Cy, is r-avoidable in K,2. [

We use two examples, taking » = 3 and 4 in Lemma 1, to illustrate the
construction. Assume that » = 3, by Lemma 1, we have

1 23 123 12
Li=|12 38|, Li=|2 3 1|, Li=|3 1
1 2 3 31 2 2 3

Then the sets S; ; for 1 <4 <3 and 1 < j <4 are given as follows:

N W

S1,1 = {v11,v21,v31}, S1,2 = {v12,v22,v32},
51,3 = {v13, v23,v33}, S1,4 = {v11,v12,v13}.

Sa2,1 = {v11,v22,v33}, S2,2 = {v12,v23,¥31},
S2,3 = {v13, v21,v32}, S2,4 = {va21, va2,v23}.

S3,1 = {v11,v23, 32}, S3.2 = {v12,v21,v33},
S3,3 = {v13,v22,V31 }, S3,4 = {v31, v32,v33}.

Hence, the 3-coloring of the edges of Ky is shown in Fig. 1, where G3;
denotes the subgraph of K9 whose edges are all in the i-th color for 1 <
1< 3.

Assume that 7 = 4, by Lemma 1, we have

1 2 3 4 1 2 3 4
1 2 3 4 2 14 3
Li={] 93425341 2|
1 2 3 4| [ 43 2 1|
[1 2 3 4] [1 2 3 4]
1341 2 143 21
Ls=) 4 3 9 1| le={9 1 43
(2 1 4 3 |3 4 1 2|
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vy s vza v vi 23
v v22 V32
V23 V32 V32 vi2 n3 V21
Gs,1 Gs2 Gsg3
Fig. 1. A 3-coloring of the edges of Kg

Then the sets S;j for 1 <7< 4 and 1 < j £ 5 are given as follows:

51,2 = {vi2,v22, V32, va2},
31,4 = {v14,v24,'034,v44},

S1,1 = {v11,v21,v31,va1 },
81,3 = {v13, v3, V33, va3},
S1,5 = {v11,v12, 013, v14}.

S2,1 = {v11,v22, V33, V44 },
Sa3 = {v13,v24, v31, Va2},
Sa,5 = {v21,v22, V23, v24}.

S3,1 = {v11,v23, V34, Va2},
S3,3 = {v13,v21, V32, Vas},

82,2 = {v12,v21, V34, v43},
S2,4 = {v14,v23,v32,va1},

S3,2 = {v12,v24, V33, V01 },
S3,4 = {v14,v22, V31, va3},

S3,5 = {va1, va2,vas, vas}.

S, = {v11,v24,v32,va3},
S4,3 = {v13, v22, Va4, va1},
Sa,5 = {v41, V42,43, Va4 }-

S4,2 = {v12,v23,v31,v44},
S4,4 = {v14,v21,v33, va2},

Hence, the 4-coloring of the edges of K¢ is shown in Fig. 2, where G4
denotes the subgraph of K6 whose edges are all in the i-th color for 1 <
1<4.

The above coloring way can be extended to r-coloring of the edges of
K2 m_r—1 by the following lemma.

Lemma 2. Let r be a prime power. If m > r + 1, then C,, is r-avoidable
in Kr2+m—r—l-

Proof. Suppose that the vertices of K,z ,,_,_; are ordered: uy,us,...,
Um—r—1, V11, V124 -+ 3 Vlsy e o+ 3 Upl, Ur2,y - - -, Urr. Let Gx be the induced sub-
graph of the first m — r — 1 vertices of K,24;.r-1, Gy be the induced
subgraph of the remaining 2 vertices. And let Gy be the edge-disjoint
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va v4y v22 vaz Ut v23 v v12 v v32 12 v23

v21 U "2 Us2 V33 vaz v 12 V42 Va4 Va3 V4
Va4 Vg Vi3 v23 Vi vza U4 V31 v2 U3 U3z V44

v34 V24 Va3 V33 vi4 V43 v21 un3 L3 N4 U v22

G4 04,2 Gag3 Gia

Fig. 2. A 4-coloring of the edges of K4

union of Gy,,Gy,,...,Gy,, where Gy, = G,; defined as (2.2), i.e.,

ViGx) = {ui: 1<i<m—-r—-1},
V(GY) = {'l),'j 01 S i,j S T},

E(Gx) = {wu;: 1<i<j<m-—r-1},
E(Gy,) = E(Gri), 1<i<r,

E(Gy) = Ui E(Gv)

Then

E(Gx)NE(Gy) = 0,
E(Gy,) N E(GY;) , 1<i<j<r

Let Gxy be the complete bipartite graph with order 2 +m —r — 1,
V(Gx) and V(Gy) be its two parts respectively. And let Gxy be the
edge-disjoint union of Gxy,,Gxy;, ..., Gxy.,, where Gxy; is isomorphic to
Km—r—l,ra i.e.,

V33 11 11 v23
v22 V32
vz V21 V23 U3zl V22 U3} v3s V12
V23 U u2 Uz Y32 U U2 V12 v13 U} u2 V21
Gig,1 G3p2 G363

Fig. 3. A 3-coloring of the edges of K1;
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v34 v2q v43 V33 va v32 v13 Va2 V14 vq3 L3 n3 v Vi4 V34 v22
Gag,1 Gae2 Gi63 G4

Fig. 4. A 4-coloring of the edges of K;7

V(Gxy) = V(Gx)UV(Gy)
= {ui: 1<i<m—-r—-1}U{vp: 1<j, k<7},

E(Gxy,)) = {ujvir: vk € Sipq1, 1<j<m—-7r-1,1<k<7},
1<i<Lr,
kd
E(Gxy) = |JE(Gxv),
i=1

where S; 41 are defined as (2.1). Then we have

E(K,24m-r—1) = E(Gx)UE(Gxy)U E(Gy),

E(GXY‘)nE(GXYj) = $7 ISZ<JST$
E(Gx)NE(Gxy) = 0,
E(Gy)NE(Gxy) = 0.
Let
E(G,p g = { BCX)UEGxy)UEGy), i=1,
it E(Gxy.) VU E(Gy,), 2<i<r.
Then
E(Grmi)NE(Grm,j) = 0, 1<i<j<r,
E(Kr2+m—r—1) = U E(Gr,m,i)-
i=1

We can color the edges of E(K,24,,..r—~1) in 7 colors as follows: all the
edges of G, i will be in the i-th color for 1 < ¢ £ r. Now we consider the
graph Gr ;. Every Gy, is composed of r + 1 blocks. Notice that the
center block has m — 1 vertices and the other blocks have r vertices. Since
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m > r + 1, it follows that G, n,; is composed of r + 1 blocks which have
the order at most m — 1 for 1 <7 < r. Hence,

Cm ¢_ Gr,m,'i: 1 S 1 S T.

We conclude that C,, is r-avoidable in Ky24p—p- form > r+1. O

Taking » = 3 and m = 6 in Lemma 2, we may have Cs is 3-avoidable
in K1;. And taking r = 4 and m = 6 in Lemma 2, we may have Cs
is 4-avoidable in Kj7. Their r-colorings are shown in Fig. 3 and Fig. 4
respectively, where G, . ; denotes the subgraph of K,z m_,_1 Whose edges
are all in the ¢-th color for 1 < < r.

3 Conclusion

Taking m = 2k in Lemma 1 and 2, we have

Theorem 1. For a prime power r, if 2k > r + 1, then R.(Cax) > % +
2k~r-1.

So, for a prime power r, when (r+1)/2 < k < r+(1—(r mod 2))/(r—1),
the results of inequality (1.3) are better than the ones of inequality (1.1),
and are better than the ones of inequality (1.2) whenr+1 < 2k < r +
2/(r = 2) + 3. The comparison between the inequalities (1.1) and (1.3) is
shown in Tab. 1, and the comparison between the inequalities (1.2) and
(1.3) is shown in Tab. 2, where r is a prime power and 2k > r + 1.
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