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Abstract

A graph U is (induced)-universal for a class of graphs X if every
member of X is contained in U as an induced subgraph. We study
the problem of finding universal graphs with minimum number of
vertices for various classes of bipartite graphs: exponential classes,
bipartite chain graphs, bipartite permutation graphs, and general
bipartite graphs. For exponential classes and general bipartite graphs
we present a construction which is asymptotically optimal, while for
the other classes our solutions are optimal in order.
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1 Introduction

Denote by I',, the class of all simple (undirected, without loops and multiple
[> o]
edges) graphs with vertex set {1,2,...,n} and let I' = |J I';. Given a

n=1

graph G € I, we denote its vertex set by V(G) and its edge set by E(G).
Also, |G| = |V(G)| is the order of G. If W is a subset of vertices of G,
then G[W] is the subgraph of G induced by W, i.e. the subgraph of G with
the vertex set W and two vertices being adjacent if and only if they are
adjacent in G. If a graph H is isomorphic to an induced subgraph of G, we
say that H is embeddable into G. As usual, we denote by K, the complete
graph on n vertices and by K, ,, the complete bipartite graph with parts
of size n and m.

By &;,; we denote the class of graphs whose vertices can be partitioned
into at most ¢ independent sets and j cliques. In particular, & is the class
of bipartite graphs, & 2 is the class of co-bipartite graphs, and &;,; is the
class of split graphs [12].
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A class of graphs X C I is called hereditary if G € X implies H € X
for every graph H isomorphic to an induced subgraph of G. Let us denote
Xn=XnNT,.

For an arbitrary hereditary class X, a graph UX, is called an n-
universal X-graph if every graph in X,, is isomorphic to an induced sub-
graph of UX,. From obvious cardinality arguments, we have

log; | Xn| < nlog, [UXy|.
Also, we trivially have
nlog,n < nlog, |UX,|.

A sequence of universal X-graphs {UX,, n = 1,2,...} will be called
asymptotically optimal if

lim nlog, |UX,| _
n—co max (log, | X,|, nlog. 1) ~

and optimal in order (order-optimal) if there is a constant ¢ such that for
any n > 1,
n log‘.! |U‘¥n|

max (log, | Xn|,nlogan) =

In the present paper we construct optimal universal graphs for sev-
eral families of bipartite graphs, such as general bipartite graphs, bipartite
permutation graphs as well as some specific families defined in the next
section.

2 Preliminaries

It has been proven in {2] that for any infinite hereditary class X different
from the class of all graphs,
. logs | X5 1

LT TR (1)
where k(X)) is a natural number called indez of the class X (this result
can also be found in [7]). The index k(X') of a class X is the maximum
k such that X contains a class &;; with i + j = k. Let us extend this
definition by assuming that the index of any finite hereditary class is 0,
and the index of the class of all graphs is infinity. With this extension,
the family of all hereditary classes is partitioned into countable number of
stratums, each of which consists of classes with the same index. Moreover,
the classes &; ; with the same value of 7 + j are the only minimal classes
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in the respective stratum. In particular, for ¥ = 2 there are exactly three
minimal classes: bipartite graphs, complements of bipartite graphs, and
split graphs. Therefore, an infinite hereditary class of graphs has index
1 if and only if it contains none of the three listed classes. The classes
of index 1 and the respective stratum has been called in [3] unitary. The
unitary stratum is of particular interest for several reasons. First, the uni-
versal algorithm proposed in [1] for asymptotically optimal representation
of graphs in any non-unitary class X does not work for unitary classes,
since equality (1) does not provide the asymptotic behavior of log, | Xy|
when k(X) = 1. Second, the unitary stratum contains many classes of
theoretical and practical importance, such as forests, planar, interval, per-
mutation, chordal bipartite, line, threshold graphs, cographs, etc. In order
to provide a differentiation of the unitary classes in accordance with their
size, let us introduce the following definition: two graph classes X and Y
will be called isometric if there are positive constants ¢;, ¢co and ng such
that |Y,|* < |X,| < |Y,]°? for any n > ne.

Clearly this isometry is an equivalence relation. The equivalence classes
of this relation will be called layers.

All finite classes of graphs constitute a single layer, and all classes of
index greater than 1 also constitute a single layer. Between these two
extremes lies the unitary stratum, and it consists of infinitely many layers.
To see this, consider the class Z? of bipartite graphs containing no K, ,
as an induced subgraph. From the well-known results on the maximum
number of edges in graphs in Z? (see e.g. [6, 10]), we have:

an? 7 < log, |2F] < can®"F log, n. (2)

This implies, in particular, that ZP and Z?” are non-isometric.
The first four lower layers in the unitary stratum have been distin-
guished in [17):

e constant layer contains classes X with log, | X,]| = 0(1),

o polynomial layer contains classes X with log, | X,| = ©(log, ),
e ezponential layer contains classes X with log, | X,,| = ©(n),

o factorial layer contains classes X with log, [X,| = ©(nlog, n).

Independently, the same result has been obtained by Alekseev in [3]. More-
over, Alekseev provided the first four layers with the description of all min-
imal classes. In particular, the factorial layer has 9 minimal classes, three
of which are subclasses of bipartite graphs, another three are subclasses of
co-bipartite graphs and the remaining three are subclasses of split graphs.
The three minimal factorial classes of bipartite graphs are:
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P; : the class of 2K»-free bipartite graphs, also known as chain graphs
[19], difference graphs [15] or bisplit graphs [13]. A “typical” graph in
this class is described in Section 4, where we study universal chain
graphs.

Pa : the class of graphs with vertex degree at most 1;

P3 : the class of bipartite complements of graphs in P», also known as
almost complete bipartite graphs.

Along with the description of minimal classes, [3] proposes a structural
characterization of the classes in the first three layers (some more involved
results can be found in [5]). In particular, the structure of exponential
classes of graphs can be characterized as follows.

Theorem 1 For each exponential class X, there is a constant k such that
every graph G € X can be partitioned into at most k subsets each of which
is either an independent set or a clique and between any two subsets there
are either all possible edges or none of them.

This characterization shows that all exponential classes have a rather simple
structure, which leads, in particular, to a simple construction of order-
optimal universal graphs for the classes in this layer (Section 3).

The factorial layer is substantially richer. In fact, most of the unitary
classes mentioned above are factorial (the unique exception in the above
list is the class of chordal bipartite graphs, which is superfactorial [18]) and
most of the works on induced-universal graphs relate to factorial classes,
such as threshold graphs [14], trees (forests), planar graphs, or graphs of
bounded arboricity [4, 8, 16]. In the present paper we supplement this
list with two new results: universal graphs for minimal factorial classes of
bipartite graphs (Section 4) and bipartite permutation graphs (Section 5).

Very little is known about universal graphs for non-unitary classes. In
Section 6 we describe asymptotically optiinal universal graphs for the class
of general bipartite graphs, which is one of the three minimal non-unitary
classes.

3 Exponential classes of graphs

Let X be an exponential class of graphs and & a constant associated to
it. Denote [n] = {1,2,...,n}. The n-universal X-graph UX,, is defined as
follows: Let 'y contain exactly one graph from each isomorphism class of
Ty.
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(a) The vertex set of UX,, is

V(UX.a) ={(G,i,5,6) | GeTy, i€ k], j€[n), 6 €{0,1}}.

(b) Two distinct vertices (G1, i1,J1,61) and (Ga,ia, J2,082) are adjacent in
UX, if and only if G; = G2 and either iyi2 € E(G)) or i) =2, 61 =
6 =1.

First let us show that the constructed graph is indeed n-universal for the
class X.

Theorem 2 Every n-vertez graph in X is embeddable into UX,,.

Proof. Let G be a graph with n vertices in X. Since X is an exponential
class, the vertices of G can be partitioned into independent sets V,...,V,
and cliques V541, ..., V, with p < k such that if two vertices u and v belong
to the same subset V; then Ne\v;(u) = Ne\v;(v). For each subset let us
define a bijection ¢; : V; = [|V;]] C [n]. By contracting each subset V;
into a single vertex v; we obtain a new graph H with at most k vertices.
Then H is isomorphic to an induced subgraph of some H € [y; let the
isomorphism be given by v : V(H) = V(H) = [k]. It is easily verified that
mapping a vertex v € V; to (I-{,1/J(v.-),¢,~(v),5,~), where §; = { (1) :g: § : ,
provides us with an embedding of G into UX,,. =

Since log, |X,,| = O(n) for any exponential class X we now conclude
that

Theorem 3 The graph UX,, defined by (a) and (b) is asymptotically op-
timal for the class X.

4 Minimal factorial classes of bipartite graphs

In this section we show that for each of the three minimal factorial classes
of bipartite graphs P; (j = 1,2,3) there is an n-universal P;-graph with
2n vertices. For j = 2 and j = 3, the statement is trivial. Now we prove it
for j = 1, i.e. for the class of chain graphs. To this end, let us introduce
the following definitions and notations.

A bipartite graph will be called prime if it is connected and any two
distinct vertices of the graph have different neighborhoods. It is known
(see e.g. [11])) that in a prime chain graph G with parts 1] and Va, the
cardinality of V) equals the cardinality of V5. Moreover, for each i = 1,2
and each j = 1,...,|V;|, V; contains exactly one vertex of degree j, and the
vertices of V; can be ordered under inclusion of their neighborhoods (i.e.
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the neighborhoods of the vertices form a chain, which explains the name
of these graphs). We shall call a vertex ordering "<” increasing if z < y
implies N(z) C N(y), and decreasing if 2 < y implies N(y) C N(z).

Denote by Hp . the graph with nm vertices which can be partitioned
into n independent sets Vi = {v11,---,v1,m}s -+ Vo = {¥n1y---r,Unm}
so that for each i = 1,...,n — 1 and for each j = 1,...,m, vertex v;; is
adjacent to vertices vi41,1,%i41,2,--+,Vit1,; and there are no other edges in
the graph. In other words, every two consecutive independent set induce in
H, m a prime chain graph. The graph H,, ,, will be called canonical. An
example of a canonical graph is given in Figure 1.

=

Figure 1: Canonical graph Hs 5

Theorem 4 The graph H» , is an n-universal chain graph.

Proof. Let G be an n-vertex chain graph with parts V} and V. We shall
assume that the vertices of V] are ordered decreasingly, while the vertices
of V, are ordered increasingly. The graph Hs , containing G will be created
by adding to G some new vertices and edges. To this end, we partition ;
and V5 into modules (i.e. subset of vertices with the same neighborhood)
and denote the modules of V; by V!, V3, V3,...,¥?*"! and the modules
of Va by V2, VA, VS, ..., V;” (observe that the number of modules in Vj
and Vo must be equal). Now, for each odd i = 1,...,2p — 1, we create
a set of new vertices V4 of size |V}|, and for each even j = 2,...,2p, we
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create a set of new vertices Vlj of size |V§7| The desired graph Ha, will
contain two parts of vertices V{ = V UVF U...UVZ*1uV2F and V) =
VA UVRU.. .UV 1YV2* of the same size. To complete the construction,
we first re-index the vertices in V| and V5 consecutively, following the
order of subsets, and then for each j = 1,2,...,|V2]|, we connect by an
edge the j-th vertex of V to the (not yet adjacent) i-th vertex of ¥y for
each i = 1,2,...,j. According to the construction, the obtained graph
Hs ,, is clearly a prime chain graph. Moreover, it contains G' as an induced

subgraph since no new edge connects two old vertices. ®

From definition of factorial classes and Theorem 4 we conclude that

Corollary 1 Graph H, ,, is an asymptotically optimal universal chain graph.

5 Bipartite permutation graphs

In this section we extend the result of the previous one to the class of
bipartite permutation graphs, i.e. the intersection of classes of bipartite
graphs and permutation graphs. The result presented here is based on the
following theorem proved in [9].

Theorem 5 A connecled graph G is bipartite permutation if and only if
the vertex set of G can be partitioned inlo independent sets Vy,...,Vy so
that

(a) any two vertices in non-conseculive sets are non-adjacent,

(b) any two consecutive sets V; and Vi, induce a chain graph, denoted
Gj,

(c) for each j = 2,...,q — 1, there is an ordering of vertices in the set
V;, which is decreasing for G;_1 and increasing for Gj.

With every connected bipartite permutation graph G we shall associate
a partition as in Theorem 5 and the respective independent sets V;,...,V,
will be called the layers of G. Observe that the graph H, ,, defined in
the previous section is a bipartite permutation graph. We will show now
that H, , contains all n-vertex bipartite permutation graphs as induced
subgraphs.

Theorem 6 Graph H, , is an n-universal bipartite permutation graph.

Proof. Let G be an n-vertex bipartite permutation graph. The proof
will be given by induction on the number of connected components of G.
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Assume first that G is connected. We will show by induction on the
number of layers in G that H,, , contains G as an induced subgraph, more-
over, the i-th layer of G belongs to the i-th layer of H, ,. The basis of the
induction is established in Theorem 4. Now assume that the proposition is
valid for any connected bipartite permutation graph with k > 2 layers, and
let G contain k+ 1 < n layers. For j = 1,...,k+1, let V; denote the set
of vertices in the j-th layer of G, n; = |V;| and also let m =n; +... + ng.

Let Hi , be a canonical graph containing the first k layers of G as an
induced subgraph. We denote the layers of Hy, ,, by Wi,..., W,. Now we
create an auxiliary graph H' out of Hy ,, by

(1) adding to Hj, ., the set of vertices Vi41,

(2) connecting the vertices of V; (belonging to W}) to the vertices of
Vi+1 as in G,

(3) connecting the vertices of Wy —V;, to the vertices of Vj.4; so as to make
the existing ordering of vertices in W}, decreasing in the subgraph
induced by W and Vi,;. More formally, whenever vertex wy; in
W — Vj. is connected to a vertex v in Vi), every vertex wy, ; with
J < i must be connected to v too.

According to (2) and (3) the subgraph of H' induced by W, and V., is
a chain graph. We denote this subgraph by G'. Clearly H' contains G as
an induced subgraph. To extend H' to a canonical graph containing G we
apply the induction hypothesis twice. First, we extend G’ to a canonical
chain graph as described in Theorem 4. This will add m new vertices to
the k+1-th and n; new vertices to k-th layer of the graph. Then we extend
the first k layers to a canonical form. The resulting graph has k+1<n
layers with n vertices in each layer. This completes the proof for the case
when G is connected.

Now assume that G is disconnected. Denote by G, a connected com-
ponent of G and by G- the rest of the graph. Also let k) = |V(G})| and
ka2 = |V(Ga2)|. The first k; vertices in the first ky layers of H, , induce the
graph Hy, 1,, which, according to the above discussion, contains G; as an
induced subgraph. The last k2 vertices in the last k2 layers of H,, ,, induce
the graph Hy, ,, which contains G2 according to the inductive hypothesis.
Therefore, H, 5 contains G and the proof is complete. m

Corollary 2 Graph H, , is an order-oplimal universal bipartite permuta-
tion graph.

In the rest of this section, we show that some similar results hold for
unit interval graphs, i.e. intersection graphs of unit intervals of the real

352



line. Indeed, between bipartite permutation graphs and unit interval graphs
there is a close relation, which can be described as follows. Given a bipartite
permutation graph G with layers Vg, V1,...,V, replace each independent
set V; with a clique (in other words, connect every two vertices in Vj).
In this way, we obtain a unit interval graph. On the other hand, every
connected unit interval graph can be partitioned into layers each of which
is a clique. More formally,

Theorem 7 A connected graph G is unit interval if and only if the vertex
set of G can be partitioned into cliqgues Vp,Wi,...,Vy so that

(a) any two vertices in non-consecutive cliqgues are non-adjacent,

(b) any two consecutive cliques V;_; and V; induce the complement of a
chain graph, denoted G,

(c) for each j = 1,2,...,q — 1, there is an ordering of vertices in Vj,
which is decreasing for G; and increasing for Gj4;.

This theorem can be proved by analogy with Theorem 5, for the prove
of which the intersection model of bipartite permutation graphs has been
used. We advise the reader to use the intersection model of unit interval
graphs and leave the proof of Theorem 7 as an exercise. The relation
between bipartite permutation and unit interval graphs suggests a similar
construction of universal unit interval graphs.

6 General Bipartite Graphs

Let Dy, n, denote the set of all bipartite graphs G = (V}, Va2, E') with parts
of size |Vi| = n; and |Va| = na. Also,

Dn = U Dnl,n-_n D= U Dn'

ny+ng=n n=1

We will construct an n-universal bipartite graph UD,, in the following
way. With each partition n = n; + na we associate a connected compo-
nent UD,, n, of the graph UD,, which contains all graphs from D, ,, as
induced subgraphs.

Lemma 1 For a complete bipartite graph K, », = (V1, V2, Ex) (|V1| = 1,
|Va| = na) there exists a partition Ey = E, U* Es such that for all v €
Vi, degg, (v) < [L‘-‘%-"»] holds (i = 1,2).

Proof. Let us assume n; < no. Then there exists a set of edges Ey C Ey
such that

353



¢ degg, (v) = rm-'},i""] forallv e ¥,

o |degg, (w) — degg, ()| < 1 for all w, z € Va.

Let E; = Eg \ Ey; then for v € V> we have degg,(v) < n) ~

n 'l,-i-ll'!
na ?

ny nytna

ng

therefore it suffices to show n; — [ } < [m] or equivalently,

n|+un
ny — [Run2] < m o~ ] . By rearranging this we get nyns < (n; +

no) [213422], which is true since by the mequahty between arithmetic and
geometric means we have njns < (—1—"‘?‘—’*1) < (ng +np) [2dm2] . m

Now, using the notations from the above theorem and denoting the
neighborhood of a vertex v with respect to an edge set E by Ng(v) =
{u | uv € E}, we define UD,, ,, as follows:

e The vertex set of UDp, n, is Uy UUa, where

Ui={(v,F) | veV;, FC Ng(v)}
e Two vertices (vy, F1) € U and (va, F2) € Us are adjacent in UDy,, »,
if and only if either v; € F5 or v2 € F.

Let us consider an arbitrary bipartite graph G = (V},V2,E) in Dy, ng-
Then (still using our previous notations) it is easy to verify the following:

Proposition 1 Mapping a vertezv € V; to (v, Ng(v) N Ng,(v)) € U; (i=
1,2) provides us an embedding of G into UDy, ny.

Proof. Let us first observe that the mapping is injective and the image of
V; lies inside the independent set U; (i = 1,2). Therefore the proposition
follows from the next chain of equivalences for a pair of vertices v; € W}
and v, € Va:

nnweEEeum e ENEr®vum €€ ENE, or yva € ENE,

& v2 € Ng(v1) N Ng,(v1) or vy € Ng(va) N Ng,(va)
& (v, Ne(v1) N Ng,(n1)) € Uy and (va, Ng(va) N Ng,(v2)) € Us

are adjacent in UD,,, »..

As an immediate corollary we obtain

Theorem 8 The graph UD,, constructed above is an asymplotically opti-
mal n-universal bipartite graph.
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Proof. The universality of UD,, follows from the previous proposition.
According to our construction

[UD,| = Z {UDp, mo| £ Z 2[{‘1]11 < (n® +n)2%+l.

n)4na=n n+n2=n

It is known (see e.g. [7]) that | D,| = 27*/4*+°("*) which implies asymptotic
optimality. ™
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