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Abstract Let k be a positive integer and G = (V, E) be a connected
graph of order n. A set D C V is called a k-dominating set of G if each
z € V(G) — D is within distance & from some vertex of D. A connected
k-dominating set is a k-dominating set that induces a connected subgraph
of G. The connected k-domination number of G, denoted by v§(G), is
the minimum cardinality of a connected k-dominating set. Let § and A
denote the minimum and the maximum degree of G, respectively. This
paper establishes that y§(G) < max{l,n — 2k — A + 2}, and 7{(G) <
(1+oa(1))n%ﬁ%‘, where m = [£],t = 3|'§'| —k, and 05(1) denotes
a function that tends to 0 as § — oo. The later generalizes the result
of Caro et al's in [Connected domination and spanning trees with many
leaves. SIAM J. Discrete Math. 13 (2000), 202-211] for k = 1.
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1 Introduction

For terminology and notation on graph theory not given here, the
reader is referred to [2] or [13]. Let G = (V, E) be a finite simple graph with
vertex set V = V(G) and edge set E = E(G). The order, the maximum
degree and the minimum degree of vertices of G are denoted by n(G),
A(G) and 6(G), respectively. The distance dg(z,y) between two vertices
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z and y is the length of a shortest zy-path in G. For S C V(G), G[S]
denotes the subgraph of G induced by S, and for v € V(G), dg(v,S) =
min,ey(s){dc(v,u)}. The eccentricity eg(v) of v is maXqcv(c){da(v, z)}
The radius rad(G) is the smallest eccentricity of a vertex in G. Let k be a
positive integer. For every vertex z € V(G), the k-neighborhood Ni(z) of
z is defined by Ni(z) = {y € V(G) : dg(z,y) < k,z # y}, and Ny(z) is
usually called the neighborhood of z in G.

A set D of vertices in G is called a k-dominating set of G if every vertex
of V(G)—D is within distance k from some vertex of D. A k-dominating set
D is called to be connected if G[D] is connected. The minimum cardinality
among all k-dominating sets (resp. connected k-dominating sets) of G is
called the k-domination number (resp. connected k-domination number) of
G and is denoted by vx(G) (resp. ¥5(G)). The concept of the k-dominating
set was first introduced by Chang and Nemhauser [4, 5].

Since the distance versions of domination have a strong background of
applications, many efforts have been made by several authors to consider
the distance parameters (see, for example, [4] ~ [10], [12, 14]).

It is quite difficult to determine the value of 4x(G) or v§(G) for any
given graph G. In this paper, we prove that for any nontrivial connected
graph G with order n, 7f(G) = minvy{(T), where the minimum is taken
over all spanning trees T of G. We also get two upper bounds for v£(G) in
terms of the maximum degree A = A(G), that is,

7%(G) < max{l,n — 2k — A + 2},
and the minimum degree § = §(G), that is,

Infm(@+1)+2—t¢
mié+1)+2-t '

%(G) < (1+05(1))n

where m = [%], ¢ = 3[£] — k, and 05(1) denotes a function that tends to
0 as § — oo. The later generalizes the result of Caro et al's [3] for k = 1,
that is,
In(é +1)

0+1
The method used here is a generalization and refinement of theirs.

71(G) < (1+05(1))n

2 Elementary Results
Theorem 1 Let G be a nontrivial connected graph, and &k be a

positive integer. Then v£(G) = minyg{(T), where the minimum is taken
over all spanning trees T of G.
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Proof Let G be a nontrivial connected graph and T be a spanning
tree of G. Then any connected k-dominating set of T is also a connected
k-dominating set of G. Therefore, vi(G) < ¥i(T). Thus we have that
Y£(G) < miny§(T'), where the minimum is taken over all spanning trees T
of G.

Now we show the reverse inequality. If G is a tree, then the theorem
holds trivially. So we may assume that G is a connected graph containing
cycles. Let D be a minimum connected k-dominating set of G and C be a
cycle in G. If we can prove that D is also a connected k-dominating set of
G — e for some cycle edge e € E(C), then 7¢(G — e) < |D| = v¢(G). By
applying this process a finite number of times, we have v5(T) < v§(G) for
some spanning tree T of G. Thus, we have that minyg(T) < v£(G), where
the minimum is taken over all spanning trees T of G.

If V(C) C V(D), then obviously G[D] — e for any e € E(C) is also
connected and the vertices in V(G) — D are also all within distance k to
D.

If V(C) € V(D), then we select an edge zy in C such that dg(x, D) +
de(y, D) = max{dg(u,D) + dg(v,D) : uv € E(C)}. Now we will show
that D is a connected k-dominating set of G — {zy}.

First for any two adjacent vertices » and v in G, we have |dg(u, D) —
de(v,D)} £ 1. Then if w is a vertex in V(C) such that dg(w,D) =
max{dg(v,D) : v € V(C)}, we have that w = z or w = y. Without loss
of generality, suppose that dg(z, D) = max{de(v,D): v € V(C)}.

Let z be another neighbor of z different from y in V(C). So we imme-
diately have that dg(z, D) < dg(y, D). Thus, we get the distance between
a vertex in V(G) — D and D is not influenced by deleting the edge {zy}.
That is to say, dg_zy(v, D) = dg(v, D) for all vertices v in V(G). Hence,
D is also a connected k-dominating set of G — e for some cycle edge e. 1

Proposition 2 Let G = (V, E) be a nontrivial connected graph, and
k be a positive integer. If rad(G) < k, then v{(G) = 1.

3 Main Results

Theorem 3 Let G be a connected graph of order n > 2 with maxi-
mum degree A = A(G), and k be a positive integer, then

76(G) < max{l,n — 2k — A + 2}.

Proof By Theorem 1, it is sufficient to show that v¢(T) < max{l,n—
2k — A + 2}, for any spanning tree 7' with maximum degree A = A(T).

If rad(T") < k, then by Theorem 2, we get v5(T") = 1. So we may assume
that rad(T) > k. Let P be a longest path in T with end-vertices u and
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v. Then there exists two vertices z and y of P such that dr(z,«) = k and
dr(y,v) = k. Let Py, be the zy-subpath of P, and let D’ = V(P)-V(P,,).
Let D = V(T)—-(D'UZ(T)), where #(T) is the set of leaves of V(T'). Thus
D must contain a connected k-dominating set of T'. Since u,v € D'N.Z(T),
and Z(T) > A, we have

%(T) <|V(D)|-|D'vZ(T)
S|V(D)| - 1D - |£L(T)| + D' n2L(T)|
<n-2k-A+2

as required. ]

We use probabilistic method to give an upper bound of v£(G) in terms
of the minimum degree § = §(G) below. This bound improves the results of
Caro et al [3] for k£ =1 and the method is a generalization and refinement
of theirs.

For an event A and for a random variable Z of an arbitrary probability
space, P[A] and E[Z] denote the probability of A, the expectation of Z,
respectively.

Lemma 4 (Xu, Tian and Huang [14]) Let S be a k-dominating set of
a connected graph G. If G[S] has h components, then

"%(G) < 18| +2(h - 1)k

Theorem 5 Let G be a nontrivial connected graph of order n with
minimum degree J, then

72k + 20km? + 17+ 0.5y/Ing + Ing
q )

where g=m(6+1)+2—t, m=[%] and t =3[§] - k.

Proof Let k = 3m —t, wherem > 1,0 <t < 2. For §(G) <
72[%] + 20km, we immediately have v¢(G) < n, and the theorem holds.
We assume that 6(G) > 72| £ ] + 20km > 92 below. Let p = 'lq‘l, where
g=m(d + 1) + 2 — t, and let us pick, randomly and independently, each
vertex of V with probability p. Let X be the set of vertices picked. Let Y be
the random set of all vertices that are not picked and have no k-neighbors
in X. By the choice of Y, X UY is a k-dominating set of G.

Claim 1 dg(X,Y)=k+1.

Proof of Claim 1. Tt is clear from the choice of Y that de(X,Y) > k+1.
Now let a € X, b € Y be two vertices whose distance in G is the smallest,
that is, dg(a,b) = de(X,Y). Let P be any shortest path from a to b and
let v be the second-last vertex on P. Then v ¢ Y. If dg(a,b) > k + 2,
then v has no k-neighbors in X. By definition of Y, we should get v € Y,
a contradiction. 1

"%(G) <n 1)
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Let @ = |X|, B = |Y| and Pxy denote one shortest path from X to
Y. By Claim 1, we have |V(Pxy)| = k£ + 2. Let p denote the number of
components in G[X]. Then X UY UV (Pxy) is a subgraph of G having at
most z + § — 1 components. By Lemma 4, we have

V(G S a+B+k+2(u+P—1—-1)k=c+(2k+1)8+ 2ku— 3k

In order to prove (1), it therefore suffices to show that with positive prob-
ability,
2
o+ (2k+ 1)f + 2k — 3k < n72k + 20km? + 1:/1+ 0.5/Ingq + lnq' @

Claim 2 |Ng(v)| > m(6+1)+1—¢ for any v € V(G).

Proof of Claim 2 Let X;(v) ={u € V(G): dg(u,v) =1}.

If v e XUY, then by dg(X,Y) = k+1 and G is connected, X;(v) # 0
for i = 1,--+,k. Clearly, |X;(v)| = 4. For 2 < i < k — 2, we have that
1 X: ()| +] Xix1(v)|+] Xir2(v)| = 6+1. In fact, for any v € Xiy1(v), Ni(u) C
Xi(v) U Xig1(v) U Xig2(v), thus, [ X;(v)| + | Xip1(v)] = 1 + | Xis2(v)| 2 6.
So, we have

|Nk(v)]

X2 ()] + [ X2(v)] + - - - + | Xi(v)]

oo |55 @ (ko105

d+(m-1)(6+1)+(2-1)
mé+1)+1-—%.

Let v € V(G) — (X UY). Ifdg(v,Y) 2 k or dg(v, X) > k, using the
same discussion as above we get |Nix(v)| > m(d + 1) + 1 — ¢t. Now suppose
that dg(v,Y) < k and dg(v, X) < k. Since dg(X,Y) =k + 1, there must
exist a shortest path between a vertex a € X and a vertex b € Y through v
such that dg(a,b) > k+1, dg(v,b) < k and d¢(a,v) < k. We only consider
the worst case dg(a,b) = k + 1, and let P,; denote the shortest path from
a to b passing through v.

Let v; and vp be two neighbors of v on P,;, from b to v and from a to
v, respectively. Let dg(b,v1) = ¢, dg(a,v2) = €p. Thus, &; + ¢l =k — 1.
We only consider three cases. The other one are analogue or immediate by
symmetry.

If ¢ = 1(mod 3), £ = 1(mod 3), then k = 0(mod 3), that is, k = 3m,

v il

t=0.
INe@)| > a+(li}J+[“J)(a+1)+z
= 6+ﬁ—f’§2—_(6+1)+2
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-3
5+’-°T(5+1)+2

= d+(m-1)(F+1)+2
= m(d+1)+1

If £; = 1(mod 3), £, = 2(mod 3), then k = 1(mod 3), that is, k = 3m—2,
t = 2. Notice ¢, = 2(mod 3) and dg(v,a) < k, then Ny(a) C Ni(v), thus
| Xe,~1(v2)] + | Xep (v2)] + | Xeg+1(v2)] > 8 + 1. So we have

5+ (lé—lJ + I%J)(6+1)+1+(6+1)

G —140,-2
L—%—(6+1)+6+2
k-

- 6+T4(6+1)+6+2
= m(f+1)
> m@E+1)+1-t

INk(v)]

v

If £, = 2(mod 3), £ = 2(mod 3), then k = 2(mod 3), that is, k = 3m—1,
t = 1. By the discussion as above, we also get | Xg,—1(v1)| + | Xe¢, (v1)] +
| Xe,+1(v1)] = 6 + 1. Thus, we have,

¢ 14
INk()] 2 5+([§‘J+lﬂ)(5+1)+2(5+1)
= 6+e‘_2#(6+1)+26+2
= 6+k——;—3(6+1)+26+2
= m@@+1)+46
> m(6+1)
The Claim 2 follows. ]

Claim3 P|5> 17% < 0.059.

Proof of Claim 8 For each vertex v, the probability that v € Y is
that Plv € Y] = (1 — p)IN«(®)I+1 By Claim 2, we already have that
|Nk(v)| > m(6+1)+1—t for any v € V(G) and since 3 can be written as a
sum of n indicator random variables x,, where x, =1ifv €Y and x, =0
otherwise, it follows that the expectation of g satisfies E[8] < n(1 — p)9.
By using Taylor’s formula,

(5 <=3
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we have E[f] < 2. By Markov’s inequality, for any s > 0, P[8 > s] < E—gﬂ,
we have,

17
as required. ]

Claim4 Pla> n'lqg +'ng'5—qlﬂ < 0.892.

Proof of Claim 4 Since a can also be written as a sum of n indicator
random variables that each having probability p of success, we also have
Ela) =np = nlﬁ‘q—‘l. We use an inequality attributed to Chernoff in (1], that
is, for any s > 0:

P [/3 > 17%] <L <0050

Pla > Elo} + 3] 5exp{W‘;2+§)}.

Take s = no'—S@ to this inequality, we have

P [a > n!“;‘l +nJCO'5 Ing ]

q

— n
= exP( 8q+33”I¢m—q)

< exp (— 8¥1.34

1
—_—
VIn[93m+42-¢] )

1
< exp (—m% < 0.892.

Here n > [Ni(v)| + 1 2 g. The Claim 4 follows. 1
Like [3], we say that a vertex v € V(G) is weakly dominated if v has
fewer than -8—,}15 In ¢ neighbors in X. Let N{¥(v) denote the set of neighbors
of v in X. Let 2 denote the set of weakly dominated vertices in X.
Claim 5 P [19] > 19n1%] < 0.047.

Proof of Claim 5 First we have, for any v € V(G),

E[IN*®] = |M@)p>dp
= -Ing
> 92 1
= Bmyo—_it
> 2
= ®Bmt2 P
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where -2- is an increasing function for . By using linearity of expectation
and another inequality of Chernoff [1], that is, for any s > 0,

8

2
P [IN{(v)| < E[IN{ (v)]] - 5] < exp (“'2E'[|Nf‘ (v)ll) '

we have,

P[IN¥(v)| < gizIng] = P [m|N¥(v)| < gk Inq]
P [m|N{¥ (v)| < G232 B[N (v)]]

8mx92

= P |mINX()| - EImIN¥ @)]] < - (m - §22) BINK (v)]

8mx92
- 2
< exp _(m- G B INF @)

2mENEX ()]
—93m+2) 2 oy r X
I %m—ﬁ;)" 0 1(v)u)
2
46 93m+-2
< exp  — gt (m - SoiR) lnq)
2
2 93 2
< op (-t (1- 2228) 1no)
2
< exp (= (1- %)’ Ing)
0.367
< (l) .
- q

Since the event that a vertex v is picked into X is independent of the
event that v is a weakly dominated vertex. Hence, the probability that a
vertex is in X and is weakly dominated is,

1
P[veX; |Nf{(v)|<§1—n—21nq]
=PlveX] P |Nx(v)|<Llnq
1 8m?2
1 0367
< - .
= (3)

1 0.367 lnq
E[|2]) <np (5) =n i3er

By Markov’s inequality,

Thus, we have

Ing 1 1
P [|@| > 19nq1.34] < o007 < {gxgz00% < 0.047
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as required. 1
From Claim 3, Claim 4 and Claim 5, we find that all of these events
that

a < nl_xl_q+n___0.5, nd
q q
n

g < 17—
q
Ing

91 < 19n 7

could happen simultaneously with positive probability, that is,
1—0.892 — 0.059 — 0.047 = 0.002 > 0.

Now we choose a set X satisfying all of these events simultaneously.
Every component of X that contains no weakly dominated vertex has size
at least glzIng, and 2 has at most |9| components. Thus, we have the
number of components in G[X] satisfies,

o Ing
+ 19n—qL34 .

p=
gz ing

Since f(8) = -'H’;— is a decreasing function for § > 72| £ | + 20km > 92, we
obtain

Ing < In(93m + 2 —t) < In(95 — ¢t) < In(93)
0 34 — (g3m +92— t)034 - (95 - t)o .34 — (93)0 .34

<1,

that is IQnEl;'l,ng < 19%. Now we take
Ing 0.5vIngq

al<n—+n
q q

to the inequality above, we have

g 2 g
__10m?+19
q ?
where
1 1 1 1 1
Clmre—————— { —————— < < =
ving = \/In(9Bm+2-¢t) ~ /In(95-¢) /In(93) 2
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Finally, we have
72k + 20km? + 17+ 0.5\/Inqg+Ing
. .

So, the inequality (2) is proved and the theorem follows. 1
Remark 1 For k=1,

. 109 + 0.5\/M( + 1) + In(8 + 1
¥(G) < n ‘Z((SH)) né+1)

a+(2k+1)8+2kp—-3k<n

It improves the bound in (3], that is,

. 145+ 0.5,/ + 1) + In(8 + 1)

Remark 2 Since X UY is also a k-dominating set of G, and E[a] +
E[p] < n%‘l, there is at least one choice of X C V(G) such that vx(G) <
|XUuY| < n%‘l, where g =m(6+1)+2—t, m=[%], and t = 3[&] - k.
It improves the well-known result of Lovédsz [11], that is,

1+In(d+1)

1n(G)<n T+ 1

Theorem 6 For any nontrivial connected graph G with order n and
minimum degree 4§,

¥(G) < (1+ 06(1))'“1an,

whereg=m(§+1)+2—-¢t, m= f%], andt=3|'§] — k.
Proof By Theorem 5, we have

¥ (G) < nlan (1 +

72k + 20km? + 17 + 0.5
Ing ving /-~

We get the theorem as

72k+20km2+17+ 0.5 )_0
Ing ving )

Remark 3 Theorem 6 generalizes the result of Caro et al [3] for k =1,
that is,

lim

6—00

In(6 + 1)
d+1

For ¢ is sufficiently large, we also find that the upper bound for v¢(G)
behaves like the upper bound for vx(G).

71(G) < (1+05(1))n
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