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Abstract

Let G = (V(G), E(G)) be a graph. Aset S C V(G) is a
dominating set if every vertex of V(G)— S is adjacent to some
vertices in S. The domination number ¥(G) of G is the min-
imum cardinality of a dominating set of G. In this paper, we
study the domination number of generalized Petersen graphs
P(n,3) and proved that y(P(n,3)) =n —2|%](n # 11).
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1 Introduction

We consider only finite undirected graphs without loops or multiple
edges.

A graph G = (V(G), E(G)) is a set V(G) of vertices and a subset
E(G) of the unordered pairs of vertices, called edges. We use [7] for
the terminology and notation not defined here.

The open neighborhood and the closed neighborhood of a vertex
v € V are denoted by N(v) = {u € V(G) : wvu € E(G)} and
N[v] = N(v)U{v}, respectively. For a vertex set S C V(G), N(S) =
léJSN (v) and N[S] = Lé'sN [v]. The maximum degree of vertices in
V(G) is denoted by A(G).

A set S C V(G) is a dominating set if for each v € V(G) either
v € S or v is adjacent to some w € S. That is, S is a dominating
set if and only if N[S] = V(G). The domination number v(G) is the
minimum cardinality of a dominating set of G.

The study of domination in graphs was initiated by Orel11l,
Topic on domination number and related parameters have long at-
tracted graph theorists for their strongly ;ractical background and
theoretical interest. It has been proved [°! that the decision prob-
lem corresponding to the domination number for arbitrary graphs is
NP-complete. So much work was done to establish bounds on (G).
There is the well known bounds on v(G) in terms of the number of
vertices n and maximum degree A(G).

Theorem 1.1 [1, 12] For any graph G, [H_—X(E)-] <G <n-
A(G).

In 1995, Molloy and Reed (101 studied the dominating number of
a random cubic graph and proved .2636n < v(G) < .3126n.

The dominating numbers of very few families of graphs are known
exactly. By [7], we have, ¥(Kn) = 1, Y(Kin-1) = 1(n > 2),
'Y(Km.n) =2(m 2> 2,n22),y(P) = T%L Y(Cr) = f%]

The Cartesian product of two graphs G and H is the graph de-
noted GOH, with V(GOH) = V(G) x V(H) and ((u,v'), (v,v')) €
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E(GOH) if and only if ' = ' and (u,v) € E(G) or u = v and
(u',v") € E(H). The grid graph Gk, = P,OF,.

In 1983, M. S. Jacobson and L. F. Kinch (8] determined the dom-
ination number y(Gk) for k < 4. In 1993, T. Y. Chang and W. E.
Clark 12 determined (Gj.n) for 5 < k < 6. In 1993, D. C. Fisher
determined (Gk,) for 7 < k < 16 and given out the following

conjecture[4] :

Conjecture 1.2 ¥(Gp ) = [(m +2)(n +2)/5] — 4.

The cross product of two graphs G and H is the graph denoted
G x H, with V(G x H) = V(G) x V(H) and ((u, '), (v,v")) € E(G x
H) if and only if (u,v) € E(G) and (v/,v') € E(H).

In 1995, S. Gravier and A. Khelladi 6] determined the domina-
tion number (P, x P) for every n > 2 and k > 4. In 1999, R.
Chérifi, S. Gravier, and X. Lagraula et al (8] determined the dom-
ination number (P, x P;) for £ < 8, y(P, x Py) for n > 8 and
Y(Pp %X P) for 10< k<33 and 1 <n < 40.

In 1995, S. Klavzar and N. Seifter ()determined the domination
number v(C,0OC}) for k < 5.

The generalized Petersen graph P(n, k) is defined to be a graph
on 2n vertices with V(P(n,k)) = {vi,u; : 0 < ¢ < n— 1} and
E(P(n,k)) = {vivit1, viti, Uitk : 0 < i < n— 1, subscripts modulo

In 2002, Zelinka and Liberecwere (13 studied the domination in
P(n,k) and proved the domatic number d(P(n,k)) = 4 if and only
if n =0 mod 4.

In this paper, we consider the domination number of P(n, 3)(n >
4) and prove that y(P(n,3)) = n—2[%] (n # 11); v(P(11,3)) = 6.

2 The domination number of P(n,3)

Let m = | %] and ¢t = n mod 4, then n=4m+t.
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Lemma 2.1. 4(P(n,3)) <n-2|%].

Proof. Let
{vai, vgiye : 0< i <m—1}, )
S = {vas, ugive : 0< i <m—1} U {ugm-1}, ,

{vai, vgive : 0< i <m—1} U {vgm—1, %m},
{vai, ugie2 : 0 < <m — 1} U {Vam, Yam+1, Uam+2},

Then N{S] = V(P(n,3)), S is a dominating set of P(n, 3) with |S| =
n—2[%]. Hence, v(P(n,3)) <n-2|%]. 0

Lemma 2.2. v(P(11,3)) =6.

Proof. Let S = {vo, u2, vy, us, us, vs, }, then N[S] =V(P(11,3)), S
is a dominating set of P(11,3) with |S| = 6. Hence, v(P(11,3)) <
6. By theorem 1.1, v(P(11,3)) > [2Ll] = [2] = 6. Hence

v(P(11,3)) = 6. e 0

In Figure 2.1, we show the dominating sets of P(n,3) for 11 <
n < 15, where the vertices of S are in dark.

Figure 2.1. The dominating sets of P(n,3) for 11 <n < 15

Let S be an arbitrary dominating set of P(n,3), then for each
vertex v € V(G), N[v] NS # 0, and v is being dominated |[N[v] N
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S| > 1 times. we define the function rd counting the times v is
re-dominated as follows:

rd(v) =|Np]NnS|-1.

For a vertex set V' C V(G), let rd(V') = Yy rd(v), then, for
n > 4 and n # 6,

rd(V(P(n,3))) = Xuev(c)Td(v)
=3 vevie) (IN[]N S| - 1)
= 45| - 2n.

Lemma 2.3. If ¢t = 0, then v(P(n,3)) > n —2[%].
Proof. Let |S| = v(P(n,3)), since 4|S|—2n = rd(V(P(n,3))) =0,
we have, 4|S| > 2n = 8m, v(P(n,3)) = |S| > 2m =n - 2[%]. O

Lemma 2.4. If t = 1, then v(P(n,3)) > n—2|%].

Proof. Let |S| = y(P(n,3)), since 4|S| — 2n = rd(V(P(n, 3))) > 0,
we have, 4|5| > 2n = 8m+2, 7(P(n,3)) = |5]| > [Z2] =2m+1 =
n—2[%]. m

Let V'(k,z) = {vktj, uk4; © 0 <J <z — 1}, we have

Lemma 2.5. If there exists a V'(k,4) with |SNV’(k,4)| < 1, then
rd(V(p(n,3))) > 2 for n > 9 and rd(V(p(n, 3))) > 3 for n > 14.
Proof. Suppose that there exists a V'(k,4), say V’(0,4), with
[SNV'(0,4)] < 1. Since N[vjJNS # @ and N[vg] NS # O, we
have SN V’(0,4) € {vi,v2}. By symmetry, we can assume that
SNV’ 0,4) = {v1}. Since N[v3] NS # 0, we have v4 € S. Since
Nlug] NS # 0, we have ug € S. Since N[upg) NS # @, we have
Up—3 € S. Since Nfup] NS # B, S contains at least one vertex of
{un—1,us}.

Case 1. u,_; € S. If S contains at least one vertex of {up—4, Vn—4,
Un—3,Un—2,Vn—1}, then rd(V'(n —4,4)) > 2, else, since N[v,—o] N
S # 0 and N[v,_4) NS # 0, we have u, 5 € S and v,-5 € S,
rd(V'(n—5,7)) > 2. If |SNV'(4,4)| > 2, then rd(V'(4,4)) > 1, else,
since N[v7] NS # @ and N[us] NS # 0, we have vg € S and ug € S,
rd(V'(8,1)) > 2 (see Figure 2.2 (1)).

Case 2. u,—1 € S, then us € S. Since N[v,_1]NS # @, S contains at
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least one vertex of {vn_2,vn-1}, rd(V'(n — 3,4)) > 1. Since N[v7]N
S #0,rd(V'(4,5)) > 2 (see Figure 2.2 (2)).

From cases 1-2, 7d(V’(n — 5,14) > 3, hence, rd(V(p(n, 3))) > 3
forn > 14. Ifu,_; € S, then rd(V'(n—5,9)) > 2, else rd(V'(0,9)) >
2, hence rd(V(p(n,3))) > 2 for n > 9. m

Figure 2.2.

Lemma 2.6. If ¢t = 2, then rd(V(p(n, 3))) > 1.
Proof. It is easy to check that the Lemma 2.6 holds when n =
6, and we therefore assume n > 10 in the rest of the proof. By
contradiction, suppose rd(V (p(n,3))) = 0. If SN{wo, v1,...,Vn-1} =
0, then S = {ug,u1,...,un—1}, rd(V(p(n,3))) = 4|S|-2n=2n > 1,
a contradiction with rd(V(p(n,3))) = 0. Hence S contains at least
one vertex of {vo,v1,...,Un-1}, say v;. For 0 < i < m, by Lemma
2.5, |SNV'(43,4)| > 2. Since rd(V(p(n,3))) = 0, SNV'(0,4) =
{v1,us}.

Since rd(V (p(n, 3))) = 0, we have SN{vy,uq4} = 0. Since N[vg]N
S # 0, we have vs € S. By Lemma 2.5, |SNV'(4,4)] > 2. Since
rd(V (p(n,3))) = 0, we have SN V' (4,4) = {vs, ur}.

Continuing this way, we get SNV’ (44,4) = {v4i41,u4i43} for 0 <
it <m — 1. Then rd(V(p(n,3))) > rd(ug) > 1, a contradiction with

rd(V (p(n, 3))) = O(see Figure 2.3). o
i i i
ssanssanifeasnsisns
Vo A i V4m—4 Vam V0
Figure 2.3.

Lemma 2.7. If ¢t = 2, then v(P(n,3)) > n—2|%].
Proof. From Lemma 2.6, 4|S| — 2n = rd(V(P(n, 3))) > 1, we have,
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48| > 2n+1=8m+5, |S| > [¥E ] =2m+2=n-2}]. O

Lemma 2.8. For t = 3 and n > 15, if S contains a pair of vertices
a,b with (a,b) € E(P(n,3)), then rd(V(p(n, 3))) > 3.

Proof. By contradiction. Suppose that there exists a pair of vertices
a,b with (a,b) € E(P(n,3)) and rd(V(p(n, 3))) < 2. By symmetry,
we only need to consider the cases (a, b) € {(vo, uo), (vo,v1), (vo,u3)}.

Case 1. (a,b) = (vg,ug). Since rd(V(p(n,3))) < 2, SN{v,ve,v3} =
@. Since N[vg) NS # @, we have ug € S. Since rd(V(p(n,3))) < 2,
S N {vg,v3,ug} = @. Since N[vz] NS # B, we have v4 € S. Since
rd(V(p(n,3))) < 2, S does not contain any vertex of {vs, u3, u4, s, us,
ve, Ug}, i.e. |SNV'(3,4)] = 1, by Lemma 2.5, rd(V(p(n, 3))) > 3, a
contradiction with rd(V (p(n,3))) < 2(see Figure 2.4 (1)).

case 2. (a,b) = (vo,v1). Since rd(V(p(n,3))) < 2, SN{va,v3,u3} =
0. Since N[us] NS # 0, we have v4 € S. Since rd(V(p(n,3))) <
2, SN {up—1,u2,v2} = 0. Since N[ug] NS # O, we have us €
S. Then rd(V(p(n,3))) > rd(V'(0,6)) > 3, a contradiction with
rd(V (p(n, 3))) < 2(see Figure 2.4 (2)).

Case 3. (a,b) = (up,us). Since rd(V(p(n, 3))) < 2, SN{vg, v1, vz, v3}
= (. S contains both vertices u; and ug. Since rd(V(p(n,3))) < 2,
SNV’'(4,3) = 0, |SNV'(3,4)| = 1, by Lemma 2.5, #d(V (p(n, 3))) > 3,
a contradiction with rd(V (p(n, 3))) < 2(see Figure 2.4 (3)). (m]

Figure 2.4.

Lemma 2.9. For ¢t = 3 and n > 15, if there exists a set V'(j,3)(0 <
j <mn—1) with |[SNV'(4,3)| > 3, then rd(V(p(n, 3))) > 3.

Proof. By contradiction. Suppose that there exists a set V'(4,3),
say V'(0,3), with |SNV'(0,3)] > 3 and rd(V(p(n,3))) < 2, then
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by Lemma 2.5, |[SNV'(4i 4+ 3,4)] > 2(0 < i < m — 1). Hence,
rd(V(p(n,3))) =4S - 2n >4 x (2m+3)-2x (dm+3) =6, a
contradiction with rd(V (p(n,3))) < 2. O

Lemma 2.10. For t = 3 and n > 15, if there exists a set
V'(3,2)(0 < 4 < n—1) with |SNV'(4,2)| > 2, then rd(V (p(n, 3))) > 3.
Proof. By contradiction. Suppose that there exists a set V'(z,2),
say V'(1,2), with [SNV'(1,2)| > 2 and d(V (p(n, 3))) < 2, then by
Lemma 2.9, |[SNV'(1,2)| = 2. By symmetry, we only need to con-
sider the cases SN V'(1,2) € {{v1, w1}, {v1,us}, {v1, v}, {u1,u2}}.
By Lemma 2.8, V'(1,2) # {v,w} and V'(1,2) # {v1,ve}. By
Lemma 2.9, SN 1’4 (0,4) € {{v1,u2}, {u1,u2}}.

Case 1. SNV'(0,4) = {u1,us}. Since N[vz] NS # B, we have
vg € S. Since Nfug] NS # 0, we have ug € S. Since N[vg) NS # 0,
we have vgmi2 € S, 7d(V'(4m + 2,8)) > 2. Since rd(V(p(n,3))) <
2, S does not contain any vertex of {u4, vs,us,ve,u7,v7}, we have
SNV'(4,4) = {v4,ue}. Continuing this way, we have SNV (4l,4) =
{v4¢,u4¢+g} for 1 <! <m. Then SN V’(4m, 3) = {'v4m,u4m_,.2},
rd(V'(4m,3)) > 3, contradicting that rd(V (p(n,3))) < 2(see Figure
2.5 (1)).

Case 2. SNV'(0,4) = {v1,us}. Since N[vz]NS # B, we have
vg € S. Since N[ug)N S # 0, we have ug € S. Since N[up) N S # 0,
we have uy,, € S. Since N[vgms1]NS # 0, we have rd(V'(4m, 6)) >
2. Since rd(V(p(n,3))) £ 2, S does not contain any vertex of
{u4,vs, us, ve, uz, v7}, we have SN V'(4, 4) = {v4,ug}. Continuing
this way, we have SNV’ (4l,4) = {vq,ug42} for 1 <! < m. Then
SNV'(4m,4) = {vgm, wams2}, 7d(V' (4m, 6)) > 3, contradicting that
rd(V(p(n, 3))) < 2(see Figure 2.5 (2)). O

Lemma 2.11. If t = 3 and » > 15, then rd(V (p(n, 3))) > 3.
Proof. By contradiction. Suppose 7d(V(p(n,3))) < 2. If SN
{vo,v1,...,vn-1} =0, then S = {up, u1,...,un-1}, rd(V(p(n,3))) =
4|S] —2n = 2n > 30, a contradiction. Hence, S contains at least one
vertex of {vp,v1,v2,...,Un-1}, say v1. Since rd(V(p(n,3))) < 2, by
Lemma 2.10, |SNV'(0,3)] = 1. By Lemma 2.5, |[SNV'(0,4)| > 2,
by Lemma 2.9, |S N V'(1,3)] < 2, hence |SNV'(0,4)] = 2 and
SnV'(0,4) € {{v1,vs}, {v1,us}}-
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Figure 2.5.

Case 1. SNV'(0,4) = {v,vs3}. By Lemma 2.10, |SNV'(3,2)| =1,
since N[ug]NS # 0, hence u7 € S. By Lemma 2.10, |SNV'(6,2)| = 1,
since N[vg] NS # 0, hence vs € S. Since N[ug] NS # 0, we have
ug € S. Since N[vg] NS # 0, hence |V'(7,3)| > 3, contradicting
Lemma 2.9(see Figure 2.6 (1)).

Case 2. SNV'(0,4) = {v1,u3}. By Lemma 2.10, |SNV'(3,2)| = 1.
Since N{vg)NS # 0 and N[ug)NS # 0, hence vs € S and u7 € S. By
Lemma, 2.10, S does not contain any vertex of {vs, us, us, vs, ug, v7},
hence S N V'(4,4) = {vs,u7}. Continuing this way, we have SN
V’(4i,4) = {v4git1,u4i43} for 1 < 4 < m. Then, ugm43 = uo € S,
contradiction with $ N'V'(0,4) = {v1, u3}(see Figure 2.6 (2)). O

Figure 2.6.

Lemma 2.12. If ¢t = 3, then v((P(n,3)) > n — 2|2 |(n # 11).
Proof. We leave for reader to verify that y((P(n,3)) > 6 = n—2| %]
for n = 7. For n > 15, by Lemma 2.11, 4|S|—2n = rd(V(P(n, 3))) >
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3, we have, 4|S| > 2n+3 = 8m+9, |S| > [3842] = 2m+3 = n—2|3].

O
From Lemmas 2.1-2.4,2.7,2.12, we have
Theorem 3.1.
6, n =11,
V(P(n,3) = { n—2\2), n#llL
a
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