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Abstract. Let G = (V, E) be a graph. A subset DCV is called a dominating set for
G if for every ve V-D, v is adjacent to some vertex in D. The domination number
Y(G) is equal to min {|D| : D is a dominating numbers of G}.

In this paper we calculate the domination numbers y(C,,xC,) of the product of
two cycles C,, and C, of lengths m and n for m = 5 and n = 3(mod 5), also for m =
6, 7 and arbitrary n.
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1. Introduction.

Let G = (V,E) be a graph . A subset of vertices DCV is called a dominating
set for G if for every vertex v of G, either ve D or v is adjacent to some vertex in
D. The domination number of G, denoted by ¥(G), is the minimum cardinality of
a dominating set of G . For an extensive survey of domination problems and a
comprehensive bibliography, we refer the reader to the survey volume (4] edited
by Hedetniemi and Laskar.,

The Cartesian product G;xG, of two graphs G, and G, is the graph with
vertex V(GXG;) = V(G)xV(G,), where two vertices (v;,v;),(u;,u3)€ V(G;XG,)
are adjacent if and only if either v,u;€ E(G;)) and v, = u; or v; = u; and
Vaure E(Gz)

The determination of the domination number of the product of two graphs
seems to be a difficult problem. For the product of two path P, and P,, the
domination number y(P,,xP,) were calculated for m = 1, 2, 3, 4 by Jacobson and
Kinch [2] and for m = 5, 6 by Chang and Clark [3] . Beyond m = 6, the problem
seems to be getting more difficult.

For the product of two cycle, Klavzar and Seifter [1] proved the following
Results:

YC3 x Co)y=[3nA4] (N,
YCsxCy)=n 2,
YCsxCy)=n n=0 (mod 5) 3),
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YCsxCy)=n+1 n=3 or n=1, 2,4 (mod5) 4,
MCsxCo)<n+2 n = 3(mod 5) 5),

The graph of the product of two cycles is a toroidal grid compared to planar grids
Arising from products of paths. Naturally, the domination problem for such
toroidal grids is expected to be easier than that for planar grids due to the extra
symmetries. It even might break into finitely many cases.

In this paper, we calculate the domination number Y(Cmx C, ) for the
remaining case of m = 5 and for m = 6,7 and arbitrary n.

2. Notations and terminology.

Let C, denote an n —cycle with vertices 1, 2, ..., n. Then
CX Co={(i,j): 1 £i<m, 1<j < n}. The jth column of C;;x Cy is
Ki={G,j):i=1,2,...,m}.
Let D be a dominating set for C;,x C, . We put W=D K;_ Let sj = [W;|. The
sequence (S, Sa, --., Sa) is called the dominating sequence corresponding to D.

We define
Xi=|{:5=i}l, i=0,1,...,m.

Then we have
X0+X|+...+Xm=n.
ID| =X, +2X; + ... + mXm.

Suppose that s; = 0 for some j. The vertices of jth column can only be dominated
by vertices of the (j-1)st and (j+1)st columns (addition of subscripts is modulo n).
Thus we have s;., + s;; 2 m. In general we have s;; + 3s; + 55, 2 m. we shall
repeatedly make use of these facts. We shall also make use of the following
useful lemma.

Lemma 1. There is a minimum dominating set D for C,xC, with dominating
sequence (S), Sy, .., Sp) such that, forallj=1,2, ..., n,

s<l3m/5], m=0,1,3,4(mod5), m25,
sj$|_3m/5_]- 1, m=2 (mod 5).

Proof. Let D be a minimum dominating set for CxC, with dominating sequence
(s1, 82, ..., Sq). The idea of the proof is as follows. If for some j, s; is large then we
show how to modify D by moving two vertices from column j, one to column j-1
and the other one to column j+1 such that the resulting set is still a dominating
one for Cyx C,. Repeating this process if necessary eventually leads to a
dominating set with the required properties.
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Consider that 1< j < nand 1<i<m. Put W;=D n {(i, j), (i+1, )), ..., (i+4, j)}. If
|Wj | > 4 then we define D'= (D - W) )u{(, j), (i+2, j-1),(i+2, j+1),(i+4, j)}.
Then D' is also a dominating set for C,,xC,. Thus we can assume that every five
consecutive vertices of the jth column contain at most three vertices of D. This
shows that §; <[ 3m/5 .

Let us now the case m = 5k + 2. We assume that s; = [3m/5] = 3k +1. We also
assume that every five consecutive vertices of the jth column contain at most
three vertices of D. The sct W; must contain two adjacent vertices, say
(1,5), 2,))e W;. KWiN{(3,)), 4, j)} # @ and Win{(m-1, j), (m, j)} # D, then we
put D'= (D - {(1, j), (2, PHu{(], j-1), (2, j+1)}. Again D' is dominating set for
CwXC,. To finish the proof, assume that one of Win{(3, j), (4, j)} and
Win{(m-1, j), (m, j)} is empty, say Wjn{(m-1, j), (m, j)} = . This forces the 5k
vertices (1, j), ..., (m-2, j) to contain 3k +1 vertices of D which implies that some
five consecutive vertices of them contain at least four vertices of D. This
contradiction completes the proof of the lemma.0

3. The Domination number y(CsxC,).

Theorem 1.,

YCsxCp) =n if n=0 (mod 5) (6),
WCsxCp)=n+1 if n=3 or n=1,2,4 (mod 5) ),
YCsxCy)=n+2 if n=3(mod5), n#3 (8),

Proof. (1) Forn=0, 1, 2, 4 (mod 5), see [1].

(2) n = 3 (mod 5). From (5) we have Y(CsxC,) < n + 2. Aiming to get a
contradiction, we assume D is a dominating set for CsxC, with [D| =n + | and
having a dominating sequence (s, s, ..., S,)- We finish the proof through a series
of Facts.

n
Fact 1. If some sj=0 then | D |= Zs.i 2n+2.
J=l
Proof. We have n = X, + X; + X; + X3 and |D| = X, + 2X, + 3X;. Suppose that
Xo > 0. Observe that if s; = 0 then s;, + sj:) 2 5 and thus, by Lemma 1, one of s,
sj+1 is at least 3 and the other is at least 2. We now consider two cases:

Case (a). Xp<2.
In this case we have X, + X3 2 X+ 1 and X3 2 1. This implies that |D| = n + 2.

Case (b). X, 2= 3.

In this case we have X, + X3 = X and X3 2 X¢/2 2 2. Again we can deduce that
[D| 2 n + 2. This completes the proof of Fact 1.
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Fact2. y(CsxC,)=n+2.

n
Proof. By Fact 1, we can assume that all s; are > 1. Since Zs ;=n+ 1, then all
=l
sj are equal to 1 except one of them which equals 2. Suppose that s; =5, =...= s,
= |, and that s, = 2. Without loss of generality, we can assume that D contains the
vertices (1, 1), (3, 2) and then deduce that D contains also the vertices (5, 3),
2,4, 4,95),(,6), ..., (3, n-1). In order to cover the vertices (4, 1), (5, n-1) we
must have (5, n), (4, n)eD and that must be all of D. However, this is a
contradiction, since the vertex (2, n) is not covered by any vertex of D. This
contradiction completes the proof of Fact 2 and thereby, finishes the proof of the
theorem.O

4. The Domination number y(C¢xC,).

Theorem 2.
WCexC,) <[ 4n/3] if n=0, 1,4 (mod 6) ),
NCexC,) s[4n/3T1+1 if n=2,3,5 (mod 6) andn ¥ 5(mod 18) (10,
WCexC,) <[4n/3] if n=5 (mod 18) (1,
Proof. Let

D, = {(1, 6k + 1) : 0 Sk <l (n-1)/6 3U{(4, 6k +2) : 0 < k <| (n-2)/6 J}u
{2, 6k +3) : 0 sk < (n-3y/63U{(6, 6k + 3) : 0 < k< (n-3)/6 3u
{(4, 6k +4) : 0 sk <L (n-4)63u{(1, 6k + 5) : 0 < k <L (n-5)/6 J3u
{(3,6k) :1<sks<lo6lyuf(s, 6k : 1<k<|n6l},

D2 = {(4’ l)}’ D3 = {(3a n)» (Ss n)}a

D' ={(,3k+1):0sk<l(n-1)3],1<j<6,j=k+1(mod 6)}uU
{G,3k+2): 0sk<(m-2)3]),1<j<6,j=k+3(mod 6)}u
{G,3k) :1<ks<lw3l, 1<j<6,j=k+4(mod 6)}u
{G,3k) :1<k<ln3l, 1<j<6,j=k+5(mod 6)},

DI2 = {(5’ n)}'

The sets D,, D% are illustrated in Figures 1, 2 respectively forn=9, 18.
We can check that |D,| = |D"| = | 4n/3]. Furthermore, each of D,, D', covers all the
vertices belonging to columns 2, 3, ..., n-1. This implies that the following sets

are dominating sets for C¢xC, as indicated:

D, when n=0(mod 6),
DyuD, when n= 1, 4(mod 6),
D,uUD; when n=2, 3, 5(mod 6),
D'yuDY, when n=5(mod 18).
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Figure 1. The set D..

1 23 45 6 7 8 9 10111213 14151617 18

O—O—0O) O—O—0O—0 Q) O—0)
Y 080884
00000000000 000000,
9.0.0.99.0.8.0.0 99999099
P00 0.0.0.0.0 9909909999
2090 0.0.08.0.0.0.00.9.99909:

Figure 2. The set D',.

We note that these sets have the appropriate cardinalities. This completes the
proof of the theorem. O

Lemma 2. W(CexC,) 2 [4n/3].

Proof. Let D be a minimum dominating set for CexC,, with dominating sequence
(s, S2, .-, Sy). By Lemma 1, we can assume that each s; < 3. Then we have

n=Xo+ X +Xa+ X (12),
ID| =X, +2X, +3X; (13).

Observe that if s; = 0, then s;,| + s;; = 6 which implies that s;, = sj4; = 3. Also, if
sj =1, then s;,, + sjs; 2 3 and this implies that at least one of s;., s;+; is 2 2.

Case 1. Xy =n/2 (where n is even). This implies that X3 = n/2. Then we have
WCexCy) = 3X;3 = 3n/2 2[4n/3].
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Case 2. 0 <X, <n/2. The observations we made above imply that

Xo+ 15X, (14),

Xo+Xi2X,+ X5 (15).
We claim that

X;+X32n/3 (16).

Suppose that X, + X3 <n/3. Then using (12), (14) and (15), we get
n<2Xe+ X, + X, + X3 <2(X5 + X3) + X5 + X3 < 3(n/3) =n,
which is a contradiction. Now we have
CeXCp) =X +2X, +3X3=n-Xo+ Xz + 2X;
2n+X,+ X3+ 12n+n/3+1>[4n3]
Case 3. Xy=0. Here we have
X, + X532 X,/2.
Then we get
n=X1+X2+X3Z3X1/2
This implies that
'Y(CGXC") =X;+2X;+3X3=n+ X3 +2X,
2“+X2+X3=ZH—X| 24n/3.

This completes the proof of the lemma. O

Theorem 3.

YCexCo) =[4n/3] n=0, 1,4 (mod 6) 17,
WCexCo)=l4n/3] +1 n= 2,3, 5 (mod 6) butn # 5 (mod 18) (18),
YCexCp) =l4n/3] n=>5 (mod 18) (19).

Proof. Theorem 2 together with Lemma 2 implies (17) and (19). Assume that
n=2,3 or 5 (mod 6), where n # 5(mod 18). Further assume that n > 8. Aiming to

get a contradiction, we suppose that there is a dominating set D for CexC, with
dominating sequence (s, Sy, ..., Sn) Where [D| = [4n/3]. By Lemma 1, we can
assume that each s; < 3. The proof of Lemma 2 shows that in cases | and 2 we
have Y(CexC,) > [4n/37. Thus we can assume that X, = 0, that is, we are in case 3
of Lemma 2. Since Y(CexC,) = [4n/3] then we must have X, =2n/3], X, =[nw3]
and X; = 0. Thus the sequence (si, Sy, ..., Sp) consists of 1's and 2's. Furthermore
if ;= 1 then at least one of s and s;, is equal to 2. Hence we can assume that
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sj=1 if j=lor2(mod3):j#n,
s;=2 if j=0(mod3) or j=n.

Assume, without loss of generality, that (1, 1)eD. If one of the vertices (1, 2),
(2, 2), (6, 2) belongs to D, then this vertex togcther with the vertex (1, 1) and the
two vertices of D in column 3 will not suffice to dominate all the vertices of the
second column. Therefore we must have that D contains exactly one of (3, 2),
(4, 2), (5, 2). The cases (3, 2)e D and (5, 2)e D are similar by symmetry. Thus we
are left with two cases.

Case 1. (3, 2)eD.

Here, in order that the two vertices (5, 2), (6, 2) be covered, we must have that
(5, 3), (6, 3)eD. Similarly, in order that the vertex (2, 3) be covered, we must
have that (2, 4)eD. Continuing in this argument we see that D coincides, up to
the (n- 1)st column, with the set D', defined in the proof of Theorem 2. However,
then there will be no possible choice for the remaining two vertices of D in the
nth column in order that D will be a dominating set for CexC,i.

Case 2. (4,2)eD.

Here, we use an argument similar to the Case (3, 2)e D to show that D contains
the vertices (4, 2), (2, 3), (6, 3), (4, 4), ... . Now D will coincide, up to the (n-1)st
column, with the set D, defined in the proof of Theorem 2, and again, there will
be no possible choice for the remaining two vertices of D in the nth column.
From the above two cases, we sce that the assumption that |D| =[4n/3] leads to a
contradiction. Thus we have Y(C;xC,) =[4n/3] + 1. This inequality together with
(10) implies (18) which completes the proof of the theorem. O

5. The Domination number y(C,xC,).

Theorem 4. Forn=>7

WCsxC,) <[ 3n/2] n=0,5,9 (mod 14) (20),

WCxCH<[3n/21+1 n=1,3,4,6,7,10,11, 13 (mod 14) @1,

WCXC)<3/2+2  n=2,8, 12 (mod 14) (22).
Proof. Let

Dy={k,2j+1):0<j<(n-1)2,1 £k<7, k=j+ 1 (mod 7}
{(k, 2j) :1<£j<n/2,1£k <7, k=j+3 (mod 7)}u
{(k, 2j) :1<j<n/2,15k<7, k=j+5 (mod 7)} (23).

It is clear that [Dy| = | 30/2). We can check that the following sets
are dominating sets for C,xC, as indicated :
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D, whenn=0 (mod 14),

Dyu{@, 1)} whenn=4,9 (mod 14),
Dyu{@, 1)} whenn=6 (mod 14),
Dyu{(6, 1)} when n =5, 10 (mod 14),
Dyu{@@, D} U{(5, n)} whenn=1,8 (mod 14),
Dyu{(4, 1)} u{(1, n)} whenn=2,7 (mod 14),
Diu{@, 1} V{6, n)} whenn=3 (mod 14),
Dyu{(4, 1)} U{3, n)} whenn=11 (mod 14),
Dyu{(4, )} U{(7, n)} whenn=12 (mod 14),
D\u{(4, D} u{4, n)} whenn=13 (mod 14),

(We illustrate the cases n = 14 and n = 12 in Figures 3 and 4
respectively). This completes the proof of the theorem.O

1234567891011121314

Figure 3. A dominating set for C;xC,14.

NN AW e

1 2 3 4 5 6 7 8 9 1011 12

Figure 4. A dominating set for C;xC;,.

N O bR W
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Lemma 3. y(C:xC,) 2[3n/2] (24).

Proof. Suppose that D is a dominating set for C;xC, with dominating sequence
(s1, 82, «.., Su). From Lemma 1, we can assume that | < §; < 3. we have

X| +X2+X3=ﬂ (25)

The graph C;xC, is 4-regular so that each vertex in D covers 4 vertices other than
itself. Thus we have 5X; + 10X, + 15X; > 7n. However this inequality can be
strengthened due to fact that some vertices of C;xC, are doubly dominated, i.e.,
dominated by more than one vertex of D. We write this inequality as
53X, + 10X; + 15X; - N 2 7n where N is a lower bound on the number of doubly
dominated vertices. We wish to estimate N. Since no s; = 0, then in any column,
say the jth one, at least one vertex is dominated by a vertex from W, and at least
another one is dominated by a vertex from Wj,,. Consider now a column j for
which s; = 2. Each one of the two vertices of W; dominates two vertices in the jth
column other than itself. Thus the jth column must contain at least one vertex
which is doubly dominated. A similar argument shows that if s; = 3 then the jth
column contributes 4 to the value of N. Hence we take N = X, + 4X;. Then we
have

5X,+9X,+11X327n (26).

From (25) and (26) we get that 4X, + 6X3 = 2n, that is
2X,+3X32n 7).
Now, using (25) we have |D| = X, + 2X; + 3X; =n + X, + 2X;. From (27), we get
IDI=H+X2+2X3ZH+H/2+X3/2
That is
D] = 3n/2 + X3/2 (28).
This implies that |D} 2 [3n/2 ] as required.0
Lemma 4. v(C;xC,) = [3n/2] forn=0, 5, 9 (mod 14).
Proof. This follows from (20) and (24).0
Lemma 5. Ify(C;xC,) =[3n/2] then X5 =0.
Proof. Assume that D is a dominating set for C;xC, with dominating sequence
(S1, 2, ---, Su). Where D} =[3n/2]. If n is even then the required result follows

from (28). Let n be odd. Then (28) implies that X; < 1. Suppose that X3 = 1. We
have
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[3n/2]=Dj=n+X,+2X;=n+X,+2

Then X, = [n/2] - 2 and therefore, X, = [n/2]. This implies that for some j, we
have s; = s;,; = |. We then have s;; = s = 3 which is a contradiction. This
completes the proof of the lemma.O

Let us introduce a definition. Suppose that D is a dominating set for C;xC,
and assume that 1 < j, k < n. We say that the kth column of D is an m-shift of its
jth column if (t, j)e D & (t + m, k)e D where the indices t, t + m are reduced
modulo 7.

Lemma 6. Let D be a dominating set for C;xC, with dominating sequence
(sy, 82, - .., o). Assume that for some j we have Sj2 =8 = Sjs2 =] and sj.; = sj4 = 2.
Then the two vertices of D in each of columns j-1 and j+1 are at distance 2 apart.
Moreover, for k = j-2, j-1, j, column k+2 is a 1-shift (res. a 6-shift) of column k.

Proof. Without loss of generality we assume that W; = {(l, j)}. Then for each
3 < k < 6, we have either (k, j+1)e W, or (k, j-De Wj,. If Wy, = {(3, j+1),
(4, j+1)} then in order to cover the vertices (6, j+1), (7, j+1) we must have
(6 j*+2), (7, j+2)e W;.,. This contradicts the fact that s, =l1. Similarly, if

Wi = {(4, j+1), (5, j+1)} or Wiy = {(5, j+1), (6, j+1)} then sj:; 2 2 which is a
contradiction. Finally if Wj,, = {(3, j+1), (6, j+1)} then W;,, = {(4, j-1), (5, j-1)}
which implies that s;, > 2. Thus we are left with only two possibilities:

JJ,. = {(4,j+1), (6,j+1)} and Wy, = {(3, j-1), (5, j-1)}. This implies that
={(7,j-2)} and Wjip = {(2, j*+2)} or

,” ={(3,j*1), (5,j+D)} and Wy, = {(4, j-1), (6, j-1)}. This implies that
Wiz = {(2,j-2)} and Wj,2 = {(7, j+2)}.

The required result now follows.O

Lemma 7. If n is even and n £ O(mod 14) then Y(C;xC,) > 3n/2. In particular,
YCyxC,) = 3n/2 +1 for n=4, 6, 10(mod 14).

Proof. Assume that n is even but n # O(mod 14). By Lemma 3, we have

Y(C7xC,) 2 3n/2. Suppose that D is a dominating set for C;xC, with dominating
sequence (S, S, .-, Sp). Where |D| = 3n/2. From Lemma 5, we get that X; = 0.
Then X; = X, = n/2. It follows that the sequence s, Sz, ..., S, consists of
alternating 1's and 2's. From Lemma 6 every jth column is a 1-shift (res. a 6-shift)
of the (j-2)nd column. This implies that n is divisible by 14 which is a
contradiction. Thus Y(CyxC,) = 3n/2 +1. Now if n = 4, 6, 10(mod 14) then (21)
imply the required result.O

60



Lemma 8. Y(C:xC,)=[3n/2]+1 forn=1, 3,7, 11, 13 (mod 14).

Proof. Suppose n = 1, 3, 7, 11, 13 (mod 14). From Lemma 3, we get that
WCsxC,) 2[3n/2]. Suppose that D is a dominating set for C;xC, with dominating
sequence (sy, Sy, ..., S,). Where |D| = [3n/2]. From Lemma 5, we have X; = 0.
Hence X, = |_n/2J, X, = [n/2]. We can assume that

s;=1 forl £j<n-2,jodd,

si=2 for2<j<n-l,jeven,

sy = 2.

We can also assume that W, = {(1, 1)}, W, = {(4, 2), (6, 2)} and W,, = {(3, n),
(5, n)}. Now we deduce that column 2 is a |-shift of column n, column 4 is a 1-
shift of column 2, ... column (n - 1) is a I-shift of column (n — 3). Thus the
(n — 1)st column is a k-shift of the nth column where 1 € k £ 7 and
(n - 1)2 = k (mod 7). We have k = 0, 1, 3, 5 or 6 respectively when
n=1,3,7,11, 13 (mod 14). Hence W,.., = {(3+k, n-1), (5+k, n-1)} where the first
index is reduced modulo 7. Now the vertex (7, n) is not dominated since
(7,1)¢ W, and (7, n-1)g W,,,. This contradiction shows that Y(C;xC,) = 3n/2]+1.
From (21), we get the result.0

Lemma 9. Let n =2, 8 or 12 (mod 14). Suppose there is a dominating set D for
CyxC, with |D|=3n/2 +]. Then X; =0.

Proof. From (28), we get that X; < 2.

Case (a). X3 =2.

We have 30/2 + | = |D|=n+ X, + 2X;. Then X; =n/2 — 3 and X; =n/2 + 1. This
implies that there are two distinct values of j for which s; = s;,; = 1. There cannot
be three consecutive terms in the dominating sequence which equals 1. Also if
8j = 83 = | then s, = s, = 3. This implies that X; = 3, which is a contradiction.

Case (b). X3=1.
Here we have X; = n/2 -1 and X, = n/2. We can assume that the dominating
sequence has the form :

sj=1 for j odd,

si=2 for2<j<n-2,jeven,

s, = 3.

We can also assume that W, = {(1, 1)} and W, = {(4, 2), (6, 2)}. This implies that
the (n -1)st' column is a (n/2 -1)-shift of the first column. Assume first that
n = 2 (mod 14). Then the (n -1)st column coincides with the first column. We
conclude that W, = {(1, n -1)} and W, = {(3, n-2), (5, n-2)}. In order to cover
all the vertices of the (n -1)st column we must have (4, n), (6, n)e W, and in order
to cover the vertices of the first column we must have (3, n), (5, n)e W,,. This is a
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contradiction since s, = 3. Similar calculations show that {(2, n), (7, n), (3, n),
(5, n)}cW, when n = 8 (mod 14) and that {(2, n), (4, n), (3, n), (5, n)}cW,, again
a contradiction. This completes the proof of the lemma.O

The remaining cases for Y(C;xC,) are when n=2, 8, 12 (mod 14). We shall prove
only the case n = 8 (mod 14), the proofs for the other values of n are similar and
will be omitted. For this end we further need a lemma.

Lemma 10. y(C;xCyg) = 14.

Proof. From (22) and Lemma 7 we have 13 < y(C;xCg) < 14. Suppose that
Y(C7%Cyg) = 13 and let D be a dominating set for C;xCy with dominating sequence
(s1, 83, ..., Sg), where [D| = 13. By Lemmas | and 9 we can assume that 1 <s; < 2.
Thus X, = 3 and X, = 5. We have two cases:

Case (a). The dominating sequence has a subsequence ..., 1,2,2,2, 1, ... . We
can assume that

si=1 for j=1,3,5,

sj=2 otherwise.

We further assume that W, = {(1, 1)} and W, = {(4, 2), (6, 2)}. This implies that
W; = {(2, 3)}, Wy = {(5, 4), (7, 4} and W5 = {(3, 5)}. In order to cover the
vertices (3, 1), (5, 1) we must have (3, 8), (5, 8)e Wy, i.e., Wg = {(3, 8), (5, 8)}.
Also to cover the vertices (6, 5), (1, 5) we need W4 = {(6, 6), (1, 6)}. Finally, in
order to cover the vertices (4, 6) and (7, 8), we deduce that W, = {(4, 7), (7, T)}.
However the vertex (2, 7) is not covered which is a contradiction.

Case (b). No three consecutive s; are equal to 2. We assume that
si=1 for j=1,3,6,
sj=2 otherwise.

Let W, = {(1, )}. Since s, = s3 = 1, then the two vertices of W, must cover at
least 5 vertices in the second column, thus these two vertices of W, cannot be
adjacent. Therefore W, is equal to one of the sets {(3, 2), (5, 2)}, {(4, 2), 6, 2)}
and {(3, 2), (6, 2)}. The cases W> = {(3, 2), (5, 2)} and W, = {(4, 2), (6, 2)} are
similar by symmetry.

Subcase (b.1). W, = {(4, 2), (6, 2)}.

We deduce that Wy = {(3, 8), (5, 8)}, W3 = {(2, 3)} and W4 = {(5, 4), (7, 4)}.
Furthermore, the vertices (3, 4) and (7, 8) require that (3, 5)e W5 and (7, 7)e W,
respectively. The set D contains further three other vertices, one on each of the
5th, 6th and 7th columns, and these vertices have to cover those vertices of these
columns which are not yet covered. However, as can be seen from Figure 5, there
is no possible choice for these extra vertices of D.
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Figure 5. The vertices marked X have to be covered.

Subcase (b.2). W, = {(3, 2), (6, 2)}.

In order to cover the vertices (4, 1), (5, 1) we must have that Wy = {(4, 8), (5, 8)}.
Also in order that the vertices (2, 8), (7, 8) be covered, we get that
Wi = {2, 7), (7, 7)}. Since s; = s4 = 2 and s; = |, then column 3 contains no
doubly dominated vertices and this implies that we have no choice but
W = {(1, 3)}. This implies that W, = {(4, 4), (5, 4)}. Now the vertices (2, 4) and
(7, 4) require that Wy = {(2, 5), (7, 5)}. However this is a contradiction since no
single vertex of column 6 would cover those vertices of this column which are
not yet covered. This shows that {C;xCy) = 14.0

Theorem 5. v(CyxC,) = 3n/2 + 2 for n=8(mod 14).

Proof. We shall use induction on n = 8(mod 14). The Theorem is true for n = 8 by
the previous Lemma. Assume that n = 8(inod 14) where n = 22, From (22) and
Lemma 7 we have 3n/2 + 1 < y(C7xC,) < 3n/2 + 2. Aiming to get a contradiction
we assume that y(C;xC,) = 3n/2 + 1 and let D be a dominating set C;xC, with
dominating sequence (sy, S, ..., S,) where |D| = 3n/2 +1. By Lemmas | and 9 we
can assume that | <5< 2. Thus X; =n/2 — | and X, = n/2 +1. Suppose that there
is an index 1 £ k < n such that

Sk =Sks2 =S4 = ... = Spepa = 1,

Sk+] T Sk43 T Sk45 = v S Sz = 2.

This implies that column k + 14 is a 0-shift of the kth one. If we delete columns
k+1,k +2, ..., k +13 and identify the (k +14)th column with the kth one then we
get a dominating set for C;xC,.,s having cardinality 3(n-14)/2 +1. This
contradicts the hypothesis of the induction. Therefore we assume that there is no
alternating subsequence of the form 1, 2, 1, 2, 1, ..., 2, 1 whose length is greater
than or equal to I5. This can only happen for n = 22 where dominating sequence
has the form 2, 2, S, 2, 2, S, where S, and S, denote two subsequences of the
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form 1, 2, 1, ..., 2, 1 whose lengths is less than 15. Thus the length of each of §,,
S, is between 5 and 13 inclusive.
We assume that s, =8, = 2,83 = 1,85 =2, 85 = 1, ..., Son = Soe1 = 2, Some2 = 1,
San+3= 2, ..., S21 = 2 and s = | where 4 < m < 8. The subsequence s, S3, ..., Sun
imply that column 2m is an (m-1)-shift of column 2. Similarly, the subsequence
Samtls S2m+2s ---» Sn, S; imply that the first column is an (11-m)-shift of column
2m+1. We would like to calculate the possible shift from column 1 to column 2
and from column 2m to column 2m + 1. With no loss of generality, we assume
that W, = {4, 2), (6, 2)} and W, = {(2, 3)}. Then (1, 1)e W,. Thus we have
= {(1, 1), 3, D} or W, = {(6, 1), (1, 1)}. This implies that the second column
is either a 3-shift or a 5-shift of the first column. In a similar way column 2m + |
is a 3-shift or a 5-shift of the first column . Summing up the shift from column |
to column 2 then to column 2m, then to column 2m +1 and back to column | we
get the value (3 or 5) + (m - 1) + (3 or 5) + (11 — m). This value is, therefore,
equal to 16, 18, or 20. On the other hand this value of the shift has to be a
multiple of 7. This contradiction completes the proof of the theorem.O

We summarize the results of this section in the following

Theorem 6. Forn=7

YCxC,) =1 3n/2] n=0,59 (mod 14),
WCxCy) =3n/21+1 n=1,3,4,6,7,10,11,13  (mod 14),
WCxC) =[3n/21+2 n=2,8,12 (mod 14).0
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