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Abstract. A semigraph G is an ordered pair (V,X) where V is a non-empty
set whose elements are called vertices of G and X is a set of n-tuples (n > 2),
called edges of G, of distinct vertices satisfying the following conditions:

i) any edge (v1,v2,...,v,) of G is the same as its reverse (vn,Un—1,---, 1),
and ii) any two edges have atmost one vertex in common.

Two edges are adjacent if they have a common vertex. G is edge com-
plete if any two edges in G are adjacent. In this paper, we enumerate the
non-isomorphic edge complete (p,2) semigraphs.
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Introduction

Sampathkumar [1] introduced a new generalization of Graphs called
Semigraphs. The edges of a Graph G can be interpreted in the following
two ways:

A. Each edge uv of G is a 2-element subset of the vertex set V of G.
B. Edges of G are 2-tuples (u,v) of vertices of G satisfying the following:
(u,v) and (v',v') are equal iff either u = v’ and v =v' oru =7 and v =o',

The hypergraph theory generalizes graphs using the Approach A, whereas
the semigraph theory generalizes graphs using the Approach B.

A semigraph G is an ordered pair (V,X) where V is a non-empty set
whose elements are called vertices of G and X is a set of n-tuples (n > 2),
called edges of G, of distinct vertices satisfying the following conditions:

i) any edge (v1,v2,...,vn) of G is the same as its reverse (vn, Un—1,---,%1),
and ii) any two edges have at most one vertex in common.

Linear hypergraphs are hypergraphs where each edge has cardinality at
least two, and two edges have at most one vertex in common. Semigraphs
can be regarded as linear hypergraphs, where the vertices in each edge
are arranged in a given order.

Let G = (V, X) be a semigraph and let E = (v,, v2, ..., v, ) be an edge of G.
The end vertices of E are v; and v, and the middle vertices or m-
vertices of E are v;, 2 < ¢ < n — 1. In diagrammatical representations of
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semigraphs thick dots denote end vertices of an edge and small circles
denote middle vertices of an edge. If an m-vertex of an edge E,; is an end
vertex of another edge E», we draw a small tangent to the circle at the end
of the edge E>. Two edges are adjacent if they have a common vertex.
Let G; = W,X1) and G2 = (V2,X2) be two semigraphs. G is
isomorphic to G if there exists a bijection f : Vi — V3 such that
E = (v1,v2,...,9y) is an edge in Gy iff (f(v1), f(v2), ..., f(vn)) is an edge in
G,. In this case, we denote (f(v1), f(v2), ..., f(vn)) as f(E).
A semigraph G is edge complete if any two edges in G are adjacent.
A semigraph with p vertices and q edges is referred to as a (p,q) semigraph.
Sampathkumar posed the problem of enumerating the edge complete
semigraphs with p > 6. In this paper, we consider all the possible edge
complete (p,2) semigraphs.
If G is an edge complete (p,2) semigraph, then the two edges of G have
a common vertex (say) v. Now, these semigraphs can be classified into
three types as follows:
Type 1: v is an end vertex of both the edges.
Type 2: v is an end vertex of one edge and is an m-vertex of another edge.
Type 3: v is an m-vertex of both the edges.
Theorem 1: If G is a semigraph of Type i and H is a semigraph of Type
Jj(G#1),14, j€{1,2,3}, then G is not isomorphic to H.
Proof: If f is an ismorphism between G and H, then a vertex v is an end
vertex (m-vertex, respectively) of E iff f(v) is an end vertex (m-vertex,
respectiely) of f(E). Hence the result follows easily.

Type 1: The common vertex is an end vertex of both the edges
L)

vie.
1o

Ukl
Ups2

U3

v3

G

Let G denote a (p,2) semigraph of Type 1, where E; has k middle
vertices (and E; has p — 3 — k middle vertices). Note that for a fixed &,
there is only one non-isomorphic semigraph G (of Type 1).
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Let Gy = (V,X) with

V = {'Ul, V2, V3, Ul, U2, ..oy up_.3},
X = {Ew, Ex},
E1k= (Ulv ULy ULy .oy Uk, 7)2) and

E2k= (’021 Uk+1, Uk42, ---y Up-3, v3)’ where k € Z’ 0< k <p- 3.
Theorem 2: For0<k<p-3, Gx 2G, wherel=p-k- 3
(V', X’) is the edge complete (p,2) semigraph with

V= {vla 'U2, '03,7.1,1, ’U.~2, ) p—3},
! ! '3

X' = {Ey, Ezz}, where Eu = (v}, ui, Uy, .., U}, v3) and
-

Ey= (v3, U41s Ui o up—3’ v3).

Define f:V > V' by f(v1) = v3, f(v2) = v3, flva) = v,

flur) = {"L—z—r’ Lsr<k

ui_k_r_'_l, k+1£7‘§p—3.
In particular, f(ux) = up_x o = ujy, and f(up-3) = u;. Now fis a
bijection.

F(EBrx) =Ef(’01), (ul), f(u2), s flux), f(v2))

V3, Up_g3, Up_gy - Upyrr V2) = By

(f(vz) f(uk+1) o f(up-3), f('Us))

Also, f(Ezx) =
= (V3, U, Uy _q, - U, 'Ul) = Ej;.
Thus, G, = G,.

Theorem 3: Gy, is not isomorphic to G, when k # m and
0<k m< |52

Proof: Suppose Gx 2 Gy, for some k # m and 0 < k, m < |253].
Then there exists a bijection f: V — V' such that

{f(Bw), f(Ear)} = {Eim: E2m}-

By has k& middle vertices and E1,, has m middle vertices and &k # m.

So, f(Ewk) # Bl and f(Eox) # Ejn. Hence, f(Blx) = By

Then (f(v1), f(u1), -y flur), F(v2)) = (V3 Upnp1s Umnyzs oo Up_3s V3)
andsok = p—~m—-3>p-3—|22]| > [52]. Also, k < | 252]

Then & = ”;—3 = m, which is a contradiction.

Theorem 4: The number of non-isomorphic edge complete (p,2) semi-
graphs of Type 1 is | 252 ].
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Proof: Whenk > |252| then! = p—k—3 < |2;*| and using Theorem 2,
Gk 2 G;. Thus Gy, Gy, G2, ... Glp_i_sj are the only non-isomorphic edge
complete (p,2) semigraphs of Type 1. Hence, number of non-isomorphic
edge complete (p,2) semigraphs of Type 1 is [%3] +1 = [%‘J

Type 2: The common vertex is an end vertex of one edge and a
m-vertex of another edge

L Y Iljﬂ Uy
P Upyy
P ups
P u,3
b
V3
ij

Let Gi; denote a (p,2) semigraph of Type 2, where E; has k middle
vertices (and E; has p — 3 — k middle vertices); u; is the common vertex,
where u; is an m-vertex of E; and an end vertex of Es.

Note that for a fixed k and 7, there is only one non-isomorphic semigraph
Gi; (of Type 2).
Let Gi; = (V, X) with V = {v1,v3,v3,u1, %2, ..up-3} , X = {E1xj, Eaxj},
Eikj = (v1,81,U2, e Uy, .oy Uk, V2) @0d Eggj = (U, Uk, oy Up—3,V3),
wherek, j€Z, 1<k<p-3andl<j<k

Theorem 5: For o fizedk, 1 <k <p—3, Gij = Gu,
wherel = k—j+1, 1<j<k.

Proof: Proof is similar to Theorem 2.

Theorem 6: For a firted k, 1 < k <p— 3, Gyi; is not isomorphic to G,
when j #1 and 1 < j, | < |51

Proof: On the contrary, suppose that Gx; = G

for some j # I, 1 < j, 1 < |5£|. Then there exists a bijection f : V — V'
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such that { f(E1x;), f(Eakj)} = {Eix» Egry }- Now u; is the common vertex
in Gy; and u; is the common vertex in Gx and so f(u;) = u.

Since vy, v are end vertices in Eyxj, f(v1), f(v2) are end vertices of an edge
in Gyi. So, f(Ewkj) = Ejy; and f(Eakj) = Egyy.

Also, v3 is an end vertex in G; and so f(v3) is also an end vertex in G-
Then f(Ea;) = Ej, implies that

(f(uj)7 f(uk+1)’ ey f(up—3)’ f(’03)) = (u';? u;c-g-l’ ey u;;.-av 'Ué)

So, f(u;) = u; and f(u,) =u,, fork+1<r<p-3.

f(Ewj) = E3,, implies that

(f(vl): f(u'l)) ey f(uj)’ Bt f(uk)v f(vZ)) = (vi!ui:u,m ] uiv -"au;cv 'Ué) ‘“(1)
OF (F(01), £ 1)y s F(t5)s s k), F(02)) = (W Uy ooy Uy iyt 01) -er(2)
If (1) is true, then f(u,) = ul,for1<r<k.

In particular, f(u;) = u}. This contradicts the fact that f(u;) = uj,j # .
If (2) is true, then f(u;) = u}, f(u2) = uj_y, ..., flux) = v,

Hence f(ur) = uj_,,,. In particular, f(u;) = w;_;,,. So,u; = wj_j,,.
Then,! = k—j-+1andsol+ j=k+1. This contradicts the fact that
j#land1<yj, 1< [!‘%lj

Thus, Gy; is not isomorphic to Gy, for j #land 1 < j, | < | &].
Theorem 7: For a fized k, 1 < k < p — 3, the number of non-isomorphic
edge complete (p,2) semigraphs of Type 2 is | &£ |.

Proof: Proof is similar to Theorem 4.

Theorem 8: The number of non-isomorphic edge complete (p,2) semi-

graphs of Type 1 and Type 2 is I_(”—;—I)ZJ

Proof: case 1: p is odd

Using Theorem 4, the number of non-isomorphic edge complete (p,2) sem-
igraphs of Type 1is |25%] = Z3i.

Using Theorem 7,

when k = 1 (or) 2, number of non-isomorphic edge complete (p,2) semi-
graphs of Type 2 is 1;

when k = 3 (or) 4, number of non-isomorphic edge complete (p,2) semi-
graphs of Type 2 is 2; etc.,

when k = p-4 (or) p-3, number of non-isomorphic edge complete (p,2)
semigraphs of Type 2 is ?;—3

So, number of non-isomorphic edge complete (p,2) semigraphs of Type 2 is
2(1+2+3+..+23) = (&) (&3).

Hence, total number of non-isomorphic edge complete (p,2) semigraphs of
Type 1 and Type 2is = (252) + (252) (55%) = (33%)" = | (522)’].

case 2: p is even

Using Theorem 4, number of non-isomorphic edge complete (p,2) semi-
graphs of Type 1is |25t| = 232,

Using Theorem 7,
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when k=1 (or) 2, number of non-isomorphic edge complete
(p,2) semigraphs of Type 2 is 1;
when k = 3 (or) 4, number of non-isomorphic edge complete (p,2) semi-
graphs of Type 2 is 2; etc.,
when k =p-5(or) p-4, number of non-isomorphic edge complete
(p,2) semigraphs of Type 2 is ”-;—4;
when k = p-3, number of non-isomorphic edge complete (p,2) semigraphs
of Type 2 is "—;—2-

Therefore, number of non-isomorphic edge complete (p,2) semigraphs
of Type 2i8 2 (1 +2+... + B5%) + 232,

Thus, total number of non-isomorphic edge complete (p,2) semigraphs
of Type 1 and Type 2 is ri-4-_22 = l(%l)zj

Type 3: The common vertex is an m-vertex of both the edges

k
Gt't

Let G% denote a (p,2) semigraph of Type 3, where E; has k middle
vertices (and E; has p — 3 — k middle vertices); z is an m-vertex of both
E1 and Ez.

Note that for a fixed k, ¢ and i, there is only one non-isomrophic semigraph
G% (of Type 3).
Let Gk = (V, X) with

V = {vla vz, V3, Y4, T, W1, W2, ..., Wk—1, Ui, '"1up—~k—4}’
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k
= {Ef,, E,}, where
}Cn = (v1, w1, Wa, .., W, Ty Wetl, -y Wh-1, V2),
21t = ('U3, Uy, U2y ey Uiy Ty Uigly -ooy Up—k—4q, 1)4),

where t, i, ke Zand 0 <t <k -1,
0<i<p—k—-4, 1<k<p-4andxisthe common m-vertex.
Theorem 9: For a fized k and t, G, = Gﬁ whenl =p—-k—-4—1 and
0<i<p-k-4

Proof: Proof is similar to Theorem 2.

Theorem 10: For a fized k and t, G%, is not isomorphic to G¥

jt?
and0 <1, j< Ifﬂ;—'ij

when i # j

Proof: Suppose G%, = G%,,

forsomei#jand 0<1i, j < [E';—'iJ
Then there exists a bijection f:Vv-Vv

such that {f(Eht 2::)} {Eljt’ 2jt

Suppose f(EY,) = Ezﬁ Then by equating the number of m-vertices in
EY, and Ef;,, weget k=p—k—3 (1)

(F(v1), fwn), f(wa), ooy f(we), F(@), f(Wes1)s oo, fwi—1), f(v2)

= (v5, ), U,y ey UG, T Uy gy ey Up g g, V) OT

(F(v1), f(wr), fws), .., f(we), f(2), f(Wes1), -0, fwr—1), f(v2))

= (Vs Up_j— gy ooy W1 Ty Wy eeny Y, U3)

=j=torj = k—-1-t -(2)

Similarly, f(ES;,) = Ef; implies thati=tandi=k—-1-1.

Since i # j, either j =tandi=k—1—torj=k—-1—tandi=t.
In both the cases, j+i = k-1 = p-k-4 (by 1)

i.e., j+i = p-k-4, which contradicts the fact that ¢ # j, and
0<i,j< lt’;;"J

Therefore, f (E¥,) # E 2;1 and f (EE,) # Em

Hence f (Ef;) = Efj, and f (Ef,) = Ej;,.

f (E3it) = Ef;, and i # j implies that

(f(vs), £(wa), f(u2), ..., f(ws), f(@), f(wis1), ooy F(tip—r—a), £ (va))
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= (v{,,u;,_k_4,...,u;._,_l,:z:’,u;-,...,u{,v{,)

Sp—k—4—i=j

= i+ j = p— k — 4, again a contradiction.

Thus, G¥ is not isomorphic to G%,, when i # j and 0 < i, j < ll"’;—"’J
Theorem 11: For a fized k and i, G, = G%,,

wheres=k—-1—-t, 0<t<k-1.

Proof: Proof is similar to Theorem 2.

Theorem 12: For a fixed k and i, G, is not isomorphic to G¥,,, when
t#mand0<t, m< |52

Proof: Proof is similar to Theorem 10.

Theorem 13: For a fired i and t, G¥, 2 G, wheren=p—k -3,
1<k<p—4.

Proof: Proof is similar to Theorem 2.

Theorem 14: The semigraphs G%,, where 0 < i < [?L’;'ﬁ J ,0<t < |55t
and1 <k < ?;—3 are all non-isomorphic.

Proof: Suppose G¥, = G, for some (i,t,k) # (j,m,h), 0 < j < I_t;'-_—ﬁJ,
0<m< |25 and 1 <h< 253,
Then there exists a bijection f : V(G%,) — V(G%) such that

{f(E{tjm)1 f(Egjm)} = {E{:it’Egit}'

If f(EY,,) = EY, and f(E};,) = E§,;, then equating the number of
m-vertices, we have h = k.

Also f (E{'jm) = E¥,, = either m=t or m=k-1-t.

m=k-1-t = m+t=k-1 >m=t =51 Thusm =+¢.

Similarly, f(El;,) = ES,, implies that § = j.

Thus, (i,t,k)=(j,m,h), which is a contradiction.

If f(EY.,,) = E§, and f(E};,) = Efj;, then equating the number
of m-vertices, we have h+k = p-3, a contradiction.

Theorem 15: When p is odd, let 0 <i, j < |=5=4], 0 <¢, m < | 532

and k = 252, Then Gk, 2 Gk, iff {i,t} = {j,m}.
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Proof: Suppose G¥, & G;’m, where 0 < 4,5 < I_R:I;ij and 0 < t,m <
L5

Then there exists a bijection f : V(G'?m) - V(GE

such that {f( Jm) f(Eggm)} {Eht’ Egit}’

If f(EIJm) = Ef,, and f(Ef;,,) = Ef;, as in Theorem 14, we get m=t and
i=;j.
Suppose f(El]m) - Egzt and f( 2jm Efit‘

We note that I_%“J = [%J and 50 0 < i,j < I.k%lJ

f(Bf;n) = Ef;, implies that
(f(vl)) f(wl)a f('CU2), e f(wm)1 f(x)7 f(wm-f-l), R3] f(wk—l)a f(’Uz))

= (U3, U1, U2y -y Uiy Ty Ui 1, o-ey Uk—1,V4) OF

(f(w), f(wn), f(we), .., fwm), f(@), f(wmt1), ..., f(wk-1), f(v2))
= (V4, Uk—1, -osy Yi+1, T, Ui, ---, U1, U3). Then either m=i or m=k-1-i
Now, 0 <i,m < | &5} | implies that m = i.
Similarly, f(ES;,,) = E¥,, implies that j = t. Thus, {i,t} = {j,m}.

Conversely, let {i,t} = {j,m}. If (j,m) = (i,t),G%,, = Gk.
If (j,m) = (t,4), by Theorem 13, GX, =~ G}, whenn=p—k — 3.

Since k = L3n=1"L3 k and so G¥, = Gk. Thus,Gﬁ:Gk

Theorem 16: The number of non-isomorphic edge complete (p,2) semi-
graphs of Type 3 is given by

P(P 2)(P 4), if pis even
A1 = (p 1)(p®> - 5p+12), if pis odd and p =1 (mod 4)
(p 3)(p* —3p+8), ifpisoddandp=3 (mod4).

Proof: Let A denote the family of all edge complete (p,2) semigraphs of

Type 3. Then
A={Gt /i, t, k€ Z2,0<i<p—k—-4,0<t<k-1,1<k<p-4}.

Using Theorem 14, the semigraphs G%
where 0 <i < |2==4|, 0<t < |452] and 1< kb < 252
are all non-isomorphic. (1)
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When i |_ 5 J using Theorem 9, GX = G§,
wherel=p—k—-4— l 'k'4J -(2)
When t > |32, us ng Theorem 11, G, = G%,,

where s=k—-1-t< [5;—1J -(3)
When k > 253, using Theorem 13, G%, =~ Gg,

wheren =p—k — 3 < 252, .-(4)

Let A; denote the family of all non-isomorphic edge complete
(p,2) semigraphs of Type 3. Using (1), (2), (3) and (4), we have

={Gh/itkez,0<i<|eht], o<t <[5, 1<k < |22}
Case 1: p is even

Now %3 is not an integer and so k cannot be equal to %3

-3

Er
Hence |A4,;| = [EIJ lL'z‘_gJ |52

= 122 (3 + 1252 13) .+ | 2L | |

+ lp-z-zl“?JJ [W‘;J“J ............ 5)

Case 1.1: p=0 (mod 4)

on. = T P
Now, | 2221 | - | o= | gy g,
Ll | |G| = gy ot m 2y,
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Mil=[(-2)1+ (5 -2+ [(§-3)2+(§-3)2] +..
+[(5-0(F-1)+(E-0) (-1

=2((5-2) 14 (-3)2+..+ (- (3 -1)

=2{8(1+2+3+..+(2-1)) - (1.24+23+..+2(2-1))}

2{ﬂ——L fn(n+1)}

]

1’8_2 (g — 1) - 2{(5“1)(?(”'5'3) + (5—21)5}

#(G-1)Br-(-2)-6

|41l = ggp(p — 2)(p - 4).
Case 1.2: p=2 (mod 4)

Now, |A;| = [(2-2)1+(8-2)1] +[(B-3)2+ (B -3)2] +..
G+ G-+ (G+1) (B-]+E
On simplification, we get

l41] = F5p(p - 2)(p — 4).

Hence |A;| = 75p(p —2)(p—4), if p is even and p = 0 or 2 (mod 4).
Case 2: p is odd
%3 is an integer. Using Theorem 15, when k = ”;—3,
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Gk, = G, iff {i,t} = {j,m}.
We have |2=5=4 | = | 451] = | 22| and 50 0 < 4,5 < [ 238).
Number of distinct 2-element sets {i,t}, where 0 < i,¢ < | 22| is given by
(lLZ—‘J)
2 .
For every such {i,t}, G = Gk.
Hence number of non-isomorphic edge complete (p,2) semigraphs of Type

3is
= (E =) - (7).

WA= [252] 2] + |25 |2) + - + {v—z—y"rs) J l(n};)ﬂ J

e ),
On simplification, we get,

Al = (p—1)(p* - 5p+12), when p=1 (mod 4)

il = { “P(p 3)(p?> —3p+8), whenp=23(mod4).
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