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Abstract

In this paper, it is shown that every extended directed triple
system of order v can be embedded in an extended directed triple
system of order n for all n > 2v. This produces a generalization of
the Doyen-Wilson theorem for extended directed triple systems.
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1 Introduction.

A directed triple system of order n, DTS(n), is a pair (V,T), where T is
a collection of transitive triples from a n-set V, such that every ordered
pair of distinct elements of V' is contained in exactly one transitive triple
of T (The transitive triple [a, b, ¢] contains the ordered pairs ab, be, ac but
not ab, be, ca). This concept was introduced by Huang and Mendelsohn
(6], who proved that a DTS(n) exists if and only if n # 2 (mod 3). In
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the same way, Steiner triple systems and Mendelsohn triple systems have
been generalized to extended triple systems [3, 7] and extended Mendelsohn
triple systems [2], respectively. The concept of such a system, similar to
a DTS, is introduced in which a triple may have repeated elements. An
extended directed triple system of order n, EDTS(n), is a pair (V, B), where
B is a collection of ordered triples from a n-set V (each ordered triple
may have repeated elements) such that every ordered pair of elements of
V, not necessarily distinct, is contained in exactly one ordered triple of
B. The elements of B are called blocks. There are five types of blocks:
(1)[a, b, d, (2)[a,b,a], (3)[a,a,b], (4)[b,a,a] and (5)[a,a,a] in which they
are the set of ordered pairs {ab, bc, ac}, {ab, ba, aa}, {aa, ab}, {ba,aa} and
{aa}, respectively. For convenience, we call the transitive triple for type (1),
2-arc lollipop (2-lollipop for brevity) for type (2), 1-arc lollipop (1-lollipop
for brevity) for type (3) or (4), and loop for type (5). In the following
paragraphs, b3, ba, by, and by are used to denote the number of blocks of
(V, B) that are of the type (1), (2), (3) or (4), and (5), respectively. A
simple counting argument shows that if (V, B) is EDTS(n), then

by = %(n(n —1) = 2by— by) (1)
bp = n—by—-b (2)

Evidently bs and bg are determined by b2 and by. Let {n;bp, b1} denote
the class of EDTS(n) with parameters b; and by. We say that {n; bz, b1} ex-
ists if there is a design with the specified parameters. A necessary condition
for the existence of {n;bs, b1} is

n(n - 1) - 2b2 bt bl = O(mod 3) (3)
and

0<b+b <. 4)

In [5), it was shown that the necessary and sufficient conditions for the
existence of a {n; by, b1}, with by # 1 and 0 < b3 + b; < n, are:

(1) be = by (mod 3) for n # 2(mod 3);
(2) bz = by + 1(mod 3) for n = 2(mod 3).

In graph notation, a DTS(n) is equivalent to the decomposition of di-
graph D,, into directed triples, where D, is the complete symmetric digraph
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of order n. And an EDTS(n) is equivalent to the decomposition of digraph
D} into directed triples, 2-lollipops, 1-lollipops and loops, where D is
the digraph obtained by attaching a loop to each vertex of D,,. From now
onwards, the decomposition of a digraph G is a decomposition of G into
directed triples, 2-lollipops, 1-lollipops and loops.

Extended directed triple systems are the brothers of extended Mendel-
sohn triple systems. We define an extended Mendelsohn triple to be a loop,
a loop with symmetric arcs attached (known as a lollipop), or a directed
3-cycle (known as a cyclic triple). An extended Mendelsohn triple system of
order n is an ordered pair (V, B), where B is a set of extended Mendelsohn
triples defined on the vertex set V' which partitions the edges and loops of
D7 . It has been shown by Castellana and Raines [4] that every extended
Mendelsohn triple system of order v can be embedded into an extended
Mendelsohn triple system of order n for all n > 2v. In the same way,
we want to produce the embedding theorem for extended directed triple
systems.

An extended directed triple system (V, B) is said to be embedded in an
extended directed triple system (V/,B’) if V C V’ and B C B’. Suppose
|V| = v and |V’| = n. Then such an embedding can be thought of as
a decomposition of D} with the arcs and loops of D} removed. We use
the notation D¥\DZ to denote this digraph. The focus of this paper is to
prove the following main theorem, thus obtaining a result analogous to the
results obtained by Castellana and Raines for extended Mendelsohn triple
systems [4].

Main Theorem Every EDTS(v) can be embedded in an EDTS(n) for all
n > 2v.

2 Preliminary results

We start with some definitions and preliminary results. The directed 2-
factors Py of D}, for k = —[n/2],---,[n/2] is defined as follows,

(3,7) € Pr <= j — i = k(mod n)
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It can easily be verified that Pp is a set of n loops, Py is a set of m
directed n/m-cycles, where m = gcd(k,n), and P_[, 9] and Pjp/9) are the
same if n is even. Thus, the arcs of D} fall into n disjoint classes P or
P\ {P-{ns2)} for odd n or even n, respectively, where P = {Py, Pi), Pi2,
“++, Pg[n/2)}, and we call them the difference partition of D}. The set
AU(-A) or AU (—A)\ {~[n/2]} is called the differences of D} for odd n
or even n, respectively, where A = {0,1,2,---,[n/2]}.

Now, we define three operators on those directed 2-factors of D;}. Let
C = (aj, a2, ,am) and  # a; for all i, 01(C, z) = {[a1, z, a2}, [a2, z, a3),
<oy [8m=1,%,8m)], [@m,Z,01]}. Let Po = {C; |i=1,2,---,m} and z ¢
V(Px), we define O1(Pg,z) = {O1(Ci,z) | ¢ = 1,2,---,m} for k # 0
and Oy (P, z) = {[i,x,i] |i=1,---,n}. Let Oa(Px, Py) = {[&,5,i+ k) |i=
1,2,---,n}fork # 0 and O3(Py, Py, Pe) = {[i,3+a,i+a+b] | i =1,2,--+,n}
for ¢ = a + b, where the sum is modulo n.

We need the following Skolem partition and O’Keefe partition to obtain
the main theorem.

Definition 2.1 A Skolem partition of order n is a partition of {1,2, - --,3n}
into n triples {i,ai,i+a;}, 1 <i<n.

Lemma 2.2 [1] A Skolem partition of order n exists if and only ifn =10
or 1 (mod 4).

Definition 2.3 An O’Keefe partition of order n is a partition of {1, -+, 3n—
1;3n + 1} into n triples {i,a;,i +a;}, 1 <i < n.

Lemma 2.4 [1] An O’Keefe partition of order n exists if and only ifn =2
or 8 (mod 4).

3 The embedding

Now, we want to show that every EDTS(v) can be embedded in an EDTS(n)
for all n > 2v. So, we write n = 2v + ¢. The main theorem is equivalent to
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the decomposition of the digraph D3, ,\D;. The digraph D3, +q\Dy can
be regarded as a union of subgraph Dy 44 and D:'_,,q, where the partition
set of the directed bipartite graph Dy v4q are Vi UVa, Vi = {21, -+, %y}
and Vo = V(Dj'_,_q) ={1,2,---,v+ q}. The main theorem is proved by the
following three lemmas.

Lemma 3.1 A decomposition of D, 5 \D} exists.

Proof. Case 1: Let v = 2{ + 1, for some positive integer [.

If k = 2m, the set of differences of D} ,q,, is AU (—A) U {0, £(3m +
1),2(3m +2),---,+£(3m + 1)}, where A= {1,2,---,3m}. When m =0 or
1 (mod 4), by Lemma 2.2, there exists a Skolem partition {,a;, + a;} of
A Let Ty = {OS(P:ki»P:i:auP:I:(i+a.~)) I i=1,-- -,m} and Tp = {Ol(Po,
21)} U{O1(P3mi, Tit1),| ¢ = 1,2, 1} U {O1(P_3miys Tiwit1)s] & =
1,2,---,1}, then Ty UT; is a decomposition of D, ... \DF. When m = 2
or 3 (mod 4), by Lemma 2.4, there exists an O’Keefe partition {%, b;, %+ b;}
of AU {3m + 1} \ {3m}. Let Ty = {O3(Pxi, Pss,, P:i:(i+b.-)) |i=1,.-.,m}
and Tz = {O1(Po, 1), O1(Pam, T2), O1(P-3m, 23)} U {O1(Psmi, Tiv2) |
1=23,- -,l} U {01(P_(3m+,~), Tipit1) l 1=23,- -,l}, then Y UT; is a
decomposition of D3, ¢, \D¥.

If k = 2m+1, the set of differences of D} ¢, 3 is AU(—A)U{0, £(3m+
4),£(3m+5),- -, £(3m+1+1),3m+1+2}, where A = {1,2,---,3m+3}.
Ifm+1=0or1 (mmod4), by Lemma 2.2, there exists a Skolem partition
{i, a;,t+ a,-} of A. Let T) = {03(P:§:i, P:i:anp:l:(i+a.-)) | i=1:---m+
IN\{O3(P1, Py, Prya,)} and T3 = {O1(Po,z1), O1(P1,22), O1(Pa,,z3),
O1(P11ay, %4); O1(Pamat42, 25)} U {O1(Pamati, Tiv2) | 1 =4,5,--+, [+ 1}U
{O1(P_(3m+i), Ti4i) | i = 4,5,---,1+ 1}, then T} UT> is a decomposition
of D}, 6m+3\Df. If m +1 =2 or 3 (mod 4), by Lemma 2.4, there exists
an O’Keefe partition {3,b;,i + b;} of AU{3m +4}\ {3m +3}. Let T} =
{O3(Pxi, Pip;y Pigizny) | i =1, -+, m+ 1}\{O3(Py, Py,, P14t,)} and
Ty = {O1(Po, z1), O1(Py, z2), O1(Po,, 23), O1(Pr4b,, Z4), O1(Pami+2, Ts),
O1(P3m+3, %6), O1(P_(3m+3), Z7)}U{O1(Pam+i, Tigs) | ¢ = 5,6, - -, 1+1}U
{O1(P_(3m+i), Ti4i) | i = 5,6,---,1 + 1}, then T} UT5 is a decomposition
of D;v+6m+3\DIf .

Case 2: Let v = 2, for some positive integer [.
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If k = 2m, the set of differences of D¢, is AU (—A) U {0,+(3m +
1),+(3m+2), -+, £(8m+1-1),3m+1}, where A = {1,2,---,3m}. When
m = 0 or 1 (mod 4), by Lemma 2.2, there exists a Skolem partition
{i,a.,-,'i + ai} of A Let Ty = {OS(P:ki:P:!:anP:b(i+aa)) |i=1,-- ',m} and
T; = {O1(Po, 1), O1(Pam+i, £2)} U {O1(Pamati, Tiv2)y | i = 1,2,---,1 -
1} U {O1(P-3m+i), Ttgit1)s| & = 1,2,---,0 =1}, then H UT; is a de-
composition of D, ¢,,\D¥. When m = 2 or 3 (mod 4), by Lemma 2.4,
there exists an O’Keefe partition {i,b;,7 + b;} of AU {3m + 1} \ {3m}.
Let Ty = {OS(P:I:i7P:!:pr:t(i+b,~)) |i=1,---,m+ 1} and Tp = {Ol(Po,
1), O1(Pam+t, 22), O1(Psm, 23), O1(P-3m, £4)} U {O1(Pam4i, Ti43) | i =
2,3,-.-,1— 1} U {01(P_(3m+i), Tipitl) | 1=2,3,--+, 01— 1}, then TYUT, is
a decomposition of D3, ¢, \D¥.

If k = 2m+1, the set of differences of D} . .3 is AU(-A)U{0, £(3m+
4),+(3m + 5),---,%(3m + I + 1)}, where A = {1,2,---,3m + 3}. If
m+1 =0 or 1l (mod 4), by Lemma 2.2, there exists a Skolem parti-
tion {i, ait+ a,~} of A Let T) = {Os(P:H, Py, P:&(i+a.~)) |i=1,---,m+
IN\{O3(P, Py, Pr4a,)} and T2 = {O1(Po,z1), O1(P1,22), O1(Fa,,23),
O1(Pitay, Ta)} U {O1(Pami, Ti1) | i = 4,5,--+,1 + 1} U {O1(P_3m+i)»
Ti4i-1) | = 4,5, -, 1+1}, then TyUT: is a decomposition of D3, , 613\ Dy -
If m+1=2or 3 (mod 4), by Lemma 2.4, there exists an O’Keefe parti-
tion {i, bi, i+ bi} of AU {3m + 4} \ {3m +3} Let Th = {03(P=|:i, Py,
P:t(i+b¢)) I t=1] ., m+ 1}\{03(P1,P51,P1+b,)} and T> = {OI(POv
xl): 01(P1,$2), ol(anxS)a Ol(Pl-i-bnmtl)) 01 (P3m+3; x5)7 OI(P—(3m+3))
26)} U {O1(Pam+i, Tit2) | £ = 5,6, -+, 1+ 1}U{O1(P-@3m+i), Tt4i-1) |1 =
5,6,--+,1+ 1}, then T UT> is a decomposition of D, . 3,2,\D7. ©

Let AU {d} be the set of differences of D}, 4, ,,, where A is the set
of differences of D 5, and d is [(3k + v + 1)/2] if 3k + v + 1 is even;
—[(8k+v+1)/2] if 3k + v+ 1 is odd. Using the proof of Lemma 3.1, we
obtain the decomposition T of (DF, | 3,.1\D¥)\E, where E is the edge set
of P;. In the construction of Lemma 3.1, the connection of P by operation
O, is always at the vertex z;. So, (T\O1(Po, z1))U{O1(Py,z1), Po} form a
decomposition of DF, 4, ,1\D¥. Therefore, we obtain the following lemma.

Lemma 3.2 A decomposition of DF, q;.,\D7 exists.

Similarly, the set of differences of D, 5, ., is AU {a,b}, where A is
the set of differences of D} +ax- Using the proof of Lemma 3.1, we obtain
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the decomposition T of (Dj,, 4,2 \D)\E, where E is the edge set of
P, and P,. Therefore, (T\O1(Po,z1)) U {O1(Pq, 1), O2(Ps, Po)} form a
decomposition of DF, 4, .,\D7.

Lemma 3.3 A decomposition of D}, ,4,...\DF ezists.

Combining Lemmas 3.1-3.3, the following main result is obtained.

Main Theorem Every EDTS(v) can be embedded in an EDTS(n) for all
n > 2vu.
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