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Abstract
The main result of this paper is an upper bound on the number of inde-
pendent sets in a tree in terms of the order and diameter of the tree. This new
upper bound is a refinement of the bound given by Prodinger and Tichy [Fi-
bonacci Q., 20 (1982), no. 1, 16-21]. Finally, we give a sufficient condition
for the new upper bound to be better than the upper bound given by Brigham,
Chandrasekharan and Dutton [Fibonacci Q., 31 (1993), no. 2, 98-104].

1 Introduction

Given a graph G, a subset S C V(G) is said to be independent, if no two vertices
of S are adjacent in G. We follow the notation given by Jou and Chang (2000),
that is, the set of all indcpendent sets of a graph G is denoted by I(G) while the
cardinality of I(G)) is denoted by #(G). For undefined concepts the reader may
refer to Diestel (1997).

Erdds and Moser were the first to study the problem of determining the number
of maximal independent sets in a graph and it is now well-studied. For a survey
on this research area see Jou and Chang (1995) and Jou and Chang (2000). Along
the same line, Prodinger and Tichy (1982) considered the problem of determining
i(G). They proved the following result.

Theorem 1.1 (Prodinger and Tichy, 1982)
For any tree T on n vertices, fib(n + 2) < i(T) < 2"~! + 1. Moreover, i(T) =
fib(n-+2) ifand only if T = Py, andi(T) = 2"~ +1 ifand only if T ~ K, n_;.
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Here fib(n) denotes the nth Fibonacci number, which is defined inductively by
fib(0) := 0, fib(1) := 1 and fib(n) := fib(n — 1) + fib(n — 2) forn > 2.

Lin and Lin (1995) considered the problem of determining the trees T" with large
or small value of the graph parameter i(T'). That is, Lin and Lin characterized all
trees T of order n > 8 with 2*~2 4+ 7 < ¢(T) < 2*~! 4 1 and they showed that
i(T) > 2fib(n) + 3fib(n — 3) for any tree T' % Py.

For any graph G on n vertices, the power set of V(G) has cardinality 2" and

therefore i(G) < 2". Obviously, equality is obtained only if G consists of n
isolated vertices.

Observation 1.2

Let G denote a graph and let H denote any spanning subgraph of G. Theni(G) <
i(H).

Using this observation together with Theorem 1.1, we find that any connected
graph G on n vertices has at most 2" ! 4 1 independent sets, that is, at most half
the nonempty subsets of V(G) are independent sets.

Observation 1.3
If G is a graph with components G,, . .., Gk, theni(G) = Hf=1 1(G5).

This observation gives the following result.

Proposition 1.4
Let G denote a graph. If i(G) is a prime number, then G is connected.

Proposition 1.5
Let G denote a connected graph and let = denote any vertex of G. Then i(G) <
2i(G — z)

Proof. Let z denote any vertex of G and let ¥ denote a neighbour of z. We may
write I(G) = AUB, where A consists of the independent sets of G, which contain
z, and B consists of the independent sets of G, which do not contain z. Observe
that B is equal 1o the set of independent sets of G — z.

Every set A — {z} € A is also a member of B and so |A| < |B|. But {y} € B
corresponds to no set A—{z} € A. Thus, |A| < |B|and i(T") = |A|+|B| < 2|B].
n

The main theorem of this paper states that i(T') < fib(d) + 2"~¢fib(d + 1) for
any tree T of order » > 2 and diameter d. Moreover, we determine the trees for
which equality occurs. In order to prove this theorem we need some preliminary
results about a certain type of trees, which we call brooms.
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2 Brooms

For any triple of intcgers (n,d, k) whered > 3,n >d+1landl1 <k <n-d,
let By 4, denote the graph constructed from Py_; : z;...z4-1 by attaching k
pendantedges at z; and n+1 —k—d pendantedges at z4_1. The graphs By, 4« are
called brooms and, in particular, By, 4,1 and By, 4.»—q are called simple brooms.
Thus, By, 4% is a tree of order n and diameter d, and it contains precisely two
stems z, and 4, with k and n — k — d + 1 =: k’ leaves, respectively. Note that
n=k+k'+d—1and By gk = Bngdx. As an example, the broom Bjs 5 5 is

shown in Figure 1.
>t 23 I3 ’oé

Figure 1: The broom Bjags,s.

Lemma 2.1
For any pair of integers (n,d) whered > 3,n > d+1,

i(Bn,d,l) = i(Bn,d,n—-d) = ﬁb(d) + 2n_dﬁb(d + 1)

Proof. Since By, 4,1 and B;, ¢ g4 are isomorphic, we need only consider B, g n—d.
Let Pyt = zoz1 .. . z4 denote a diametrical path of By 4 —q. Any independent
set of By, 4,»—d, Which does not contain z1, can be constructed by choosing some
of the n — d leaves at z; (possibly none) and some independent set of the Py_;-
component of By, 4.1 — ;. Thus, there are 2"~ 4i(Py_,) = 2" ~%fib(d + 1) inde-
pendent sets of B, 4.4, which does not contain z,. The number of independent
sets of By 4,n—d, which contain z,, is equal to the number of independent sets of
Bn,d,n—d - N[:l’:l] =~ P;_o.1tfollows that i(Bn,d,n-—d) = 2"_dﬁb(d+ 1 ) + ﬁb(d)
]

Theorem 2.2
For any triple of integers (n, d, k) whered > 3,n >d+1andl <k <n-d,

i(Bn.a) = fib(d — 3) + (2* + 2"’) fib(d - 2) + 2" 1fib(d — 1), (1)
where k/ = n — k — d 4 1. Moreover,
i(Bn,a,k) < fib(d) + 2" %fib(d + 1), )

and equality holds if and only if k € {1,n — d}.
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Proof. First, we count the number of independent sets in Bp k. Let Payy :
oI ...zq denote the underlying path such that z; denotes the stem with k lcaves
and z4_; denotes the stem with k' =n — d + 1 — k leaves.

Any independent set in B, 4, which do not contain z1, can be constructed by
choosing some of the leaves at z; and choosing some independent set of the
B k—1,da-2,1-component of B, 4,1 —Z1. Thus, there are 2’°i(B,._k_1,¢_2,1) dis-
tinct independent subsets of By, 4 » which do not contain x;.

Clearly, the number of independent sets in By, 4 &, which contains z1, is equal to
the number of independent sets in By gk — N{[z1] = Bn_k-2,d-3,1.

Thus, i(Bn,d'k) = 2"'5(3 —k—1,d—2,1)+ i(Bn_k_z,d_s,l) and so, by Lemma 2.1,
i(Baax) = 2¢ (ﬁb(d —2) 4 2 k1D (4 — 1)) +
fib(d — 3) 4 2"~ *~2-(@=3fih(d — 2)
= ok (ﬁb(d —2) + 2¥fib(d — 1)) + fib(d — 3) + 2¥'fib(d — 2)
= fib(d—3)+ (2°+2*) fib(d - 2) + 2**¥ ib(d — 1).

Hence, (1) is established. Next we establish inequality (2). By (1),

#(Bn,1) = fib(d — 3) + (2 + 2"7%) fib(d — 2) + 2"~ **fib(d - 1),

and so in order to establish (2), we nced only that 2 4 2n—4+1-k < 2 4 9n—d for
every integer k, where 1 < k < n — d. Lct a := n — d. The required inequality
follows by a bit of arithmetic;

k < a =
% < 2 =
(zlc—l _ 1)2k+1 < (2k—l _ 1)26+l =
92k | gatl o gatk y ok+l
2k+2a+l—k < 20.+2 S
gk pon-dtl-k o ogn-d g

Thus, inequality (2) holds and equality occurs if and only if k € {1,n — d}. This
completes the proof. |

Corollary 2.3
For any tree of order n and diameter d, where1 < d < 3,

#(T) < fib(d) + 2" %fib(d + 1). (3)

Furthermore,
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(i) ifd =1, then T ~ K and equality holds in (3).
(i) Ifd =2, thenT ~ K »n—1 and equality holds in (3)

(iii) Ifd = 3, then T ~ By 3 for some pair of positive integers (n, k), where
1 < k < n - 3, and equality holds in (3) ifand only ifk € {1,n — 3}.

Proof. Statements (i) and (ii) are easily verificd and statement (iii) follows from
Theorem 2.2, |

The following result shows that if = is kept fixed, then i(B,, 4,1) is a strictly de-
creasing function of d.

Proposition 2.4
Foranyd>3andn >d+1,

i(Bn,a,1) < 1(Bn,d-1,1)

Proof. The inequality is proved by the following calculation.
1 < ¢ —
fib(d—2) < 2" %fib(d-2) =
fib(d) — fib(d—1) < on—d (2fib(d) — fib(d + 1)) =
fib(d) + 2" %fib(d+1) < fib(d —1)+ 2"~ Dfib(d) =
i(Bng1) < i(Bng-1,)

3 An Upper Bound on the Number of Independent
Sets in a Tree

In this section we give an upper bound on the number of independent sets in a

tree. The bound is a function of the order and the diameter of the tree, and it is

optimal in the sense that, given any pair of integers (n,d), wherel <d <n -1,
there exist a tree T of order  and diameter d such that :(T") equals the bound.

Theorem 3.1
Let T denote a tree of ordern > 2 and diameter d. Then

i(T) < fib(d) + 2"~#fib(d + 1) = i(Bna,1) )

and equality occurs if and only T =~ By, 4,1.
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Proof. We apply induction on the order of the tree. Let T, ¢ denote a tree on
n > 2 vertices and with diameter d. If n < 4, then the diameter of T, 4 is at
most three and so by Corollary 2.3 the statement is true. Hence we may assume
that » > 5 and that the statement is true for any tree with less than n vertices. By
Corollary 2.3, we may also assume that d > 4.

Let P : y1,z12273 . . . 4 denote a longest path in Ty, 4. Let Y denote the set of
leaves at z; and let k = |Y| > 1. Note that k < n — dand k = n — d if and only
if Ty q is a simple broom.

Let Hy =Tna— {1} and Hy = Ty g — (Y U {z1}). We observe that i(T}, 4) =
i(Hy) + 25— 1i(Hy). Since d > 4 both H, and H> contain at least two vertices
and so the induction hypothesis may be applied to these graphs.

(i) For k = 1 we find that A has diameter d; > d — 1 and order = — 1 while
Ho has diameter d2 > d — 2 and order n — 2. The induction hypothesis,
along with Proposition 2.4 and Lemma 2.1, implies

< i(Bn-1,411) € i(Bno1,4-11) = fib(d — 1) + 2"~ V=(¢=Dfib(d) and
i(H2) < i(Bn-2ds1) < i(Bn-2,d-2,1) = fib(d = 2) + 2*~D=(d-Dfip(d — 1).

By using the above inequalities along with the inductive definition of the
Fibonacci numbers, we obtain i(T;,,4) < fib(d) + 2"~9fib(d + 1). More-
over, equality can only occur if both Hy and Ha are simple brooms with
diameters d — 1 and d — 2, respectively. Consequently, both z; and x5 have
degree two in T}, 4, implying that T,, 4 is also a simple broom.

(i) For k > 2 we find that H, has order n — 1 and diameter d while Hs has
order ng := n — k — 1 and diameter d3 > d — 2. The induction hypothesis,
along with Proposition 2.4, gives us the following inequalities.

i(H1) < i(Bn-1,4,1) = fib(d) + 2"~ '~%fib(d + 1) and
i(H2) < i(Bnyda,1) € i(Bny,d-2,1) = fib(d — 2) + 20 —k-D=(d=2gpg _ 1),

We use the above inequalities to derive an upper bound for (75, q).

i(Taa) < fb(d)+ 2" Yib(d + 1) + 25~ 'fib(d — 2) + 25~ 12(n—%-D-1d-fpg

fib(d) + 2"~ 'fib(d + 1) + 2*~'fib(d — 2) + 2" ~%fib(d — 1).

In Lemma 2.1 we have an expression for the number of independent sets
in a simple broom. Using this, along with the inductive dcfinition of the
Fibonacci numbers, the following expression is obtained through simple
calculations.

i(Bn,a,1) = fib(d)+2" ¢ fib(d+1)+2" 4" fib(d—2)+2"fib(d—1).
(6
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Now the inequalily k < n — d together with (6) and (5) implics i(Th,q4) <
1(Bn,d,1)- Moreover, if equality occurs then we must have k = n — d, that
is, Tn,d = Bn,d,lo

In each case we have proved that i(Ty, 4) < i(Bn q4,1) and that equality occurs if
and only if Ty, g is isomorphic to By, 4,1. Hence the proof is complete. |

4 A Comparative Study of Two Upper Bounds for
i(T)

It is easy to show that the upper bound in Theorem 3.1 is better than the bound in
Theorem 1.1. In the following we compare the upper bound in Theorem 3.1 with
an upper bound given by Dutton et al. (1993).

Theorem 4.1 (Dutton et al., 1993)
Let T denote a nontrivial tree on n vertices. Let 8, denotc the matching number
of T. Then

2 [/3\P
i(T) < 32° (Z) + 28171 =: p(n, By).

Now the question is which of the upper bounds g(n, d) := fib(d) +2"~%fib(d+1)
and h(n, £1) is beticr. The main result of this section gives a sufficicnt condition
for the bound g in Theorem 3.1 to be better than the bound & in Theorem 4.1.

Theorem 4.2
Let T denote a tree of order n and diameter d > 3. Let 31 denote the maiching
number of T, If d > 0.68n + 3, then g(n,d) < h(n, B1).

The proof of Theorem 4.2 is established through a few lemmas. To simplify nota-
tion we write 3 instead of 5.

Lemma 4.3
For pairs of integersn > 2and g € {1,...,|n/2]},

h(n: ﬂ) < h(naﬂ - 1)
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Proof. A bit of arithmetic establishes the desired inequality.

n
< =
ﬁ_2=>
<7n 2=>
10 10

nin(2) = In(8/9)
In(8/3) " In(8/3)
In((8/3)%) < nIn(2)+In(8/9) =

a8
(3) < 2§=>

B n+1
ZBG) < 22 4 =
2z
4

U\—/"Q ®
A

on+l 73\ P _
< 37\3) 3
() < T )
271 3 \4) \3
g+l 73\ P on+l 13\P 4
3 p-1 4. 082
3 (4) T < 3 (4) 3+?

h(n,B) < h(n,B-1).

]
Corollary 4.4
For any integern > 2 and B € {1,...,|n/2]},
h(n, B) > h(n,n/2).
It is well-known that the nth Fibonacci number may be wrilten as
1 (1- n
znf

See for instance Redmond (1996). Using (7) and the Triangle Inequality we obtain
the following result.

Lemma 4.5
For any positive inlegern,

L (-4 cmo < L5 103)
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Finally, we are able to give a proof of Theorem 4.2.
Proof of Theorem 4.2, Observe that

g(n, d) < 2"94fib(d) + 2" °fib(d + 1) = 2" ~%fib(d + 2).
Since d > 3, we have (1 + s2r) < 1% and so, according to Lemma 4.5,
2 16

d+2
1+v3\"" 17
2 165

%u+®<(

By Corollary 4.4,

2. 3\ a2
h(n,B) > h(n,n/2) = 52" (Z) +on/2-1 5 §(\/§)”

Thus, to prove g{n, d) < h(n, B) it sufficcs 1o prove

d+2 :
gn—d (1 + ‘/5) LA §(~/§)"- ®)

2 16v5

Define

=ln(5l(ll+\/\g_g)2), y:=|n(l%/—g> and z:=ln<§).

We note that y ~ —0.212, (—z/y) =~ 2.9433 < 3 and z/y =~ 0.6787 < 0.68. By
the hypothesis we have d > 0.68n + 3, thereforc d > nz/y — z/y. Using this, we
derive inequality (8).

\%

d nzfy—-z/y =
z+dy < nz =
exp(z)exp(y)? < exp(z)* =

51(1 + V/5)? (1+\/§)d - (_\2_5)" _

128v/5 4
d n
o7+l 3.17 (14 v5)? (1+\/§) on+1 (ﬁ) _

3 4-2-16 /5 4 3 \2
d+2
9m17 (1+\/§>+

2 n
2416v5 \ 4 < 3V,

which is the desired inequality (8). |
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5 A Table of Trees with Less Than Nine Vertices

When studying the behavior of the graph parameter < on the class of trees, it is very
helpful to have a list of all non-isomorphic trees of “small” order. Such lists may
be found in Harary (1969) and Read and Wilson (1998). All the trees of order < 8
are listed below along with the value of the graph parameter <. The numeration of
the trees follows that of Read and Wilson (1998).

It follows from Figure 6 that two non-isomorphic trees 77 and 7> may satisfy
i(Th) = i(T2).

L] > *—0—0
T T2 3
=2 i=3 i=5

Figure 2: The trees with 1, 2 or 3 vertices.

Lo e T

i=9 im8 i=17 i=14 i=13

Figure 3: The trees with 4 or 5 vertices.

X = X<

T T10 T
iw33 i=26 i

T2 ™
=22 im21

Figure 4: The trees with 6 vertices.

i=65 i
T T21 T2
im40 P-d) i=38 im3?
™ T 28
=36 =33 i34

Figure 5: The trees with 7 vertices.



T
i=129 =98 =89 i=80
T30 ™ T2 ™
i=83 (=78 =77 =70
T35 T3¢
i=68 i=66 Y]

7 I 1. < =<
b T8 739 T¢0 T4l
i-66 i-62 iR i-63 Y]

Ta2 T43 T4 T4S T46

i P61 i=60 i-87 i=58

47 T4
i=59 i3

Figure 6: The trees with 8 vertices.

6 Concluding Remarks

In this paper we have obtained an optimal upper bound of i(T') in terms of the
order and diameter of the tree T'. The analogous problem of obtaining an optimal
lower bound of #(T) in terms of the order and diameter is still open.
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