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ABSTRACT. Beck’s coloring is studied for meet-semilattices with 0.
It is shown that for such semilattices, the chromatic number equals
the clique number.
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1. PRELIMINARIES

Beck [3] introduced the notion of coloring in commutative rings as fol-
lows. Associate to a commutative ring R a simple graph G whose vertices
are labelled by the elements of R and with two vertices z,y adjacent (con-
nected by an edge) in case xy = 0. The chromatic number x(R) of R is
the chromatic number of G, namely the minimal number of colors which
can be assigned to the vertices of G in such a way that adjacent vertices
of G have different colors. If this number is not finite write x(R) = 0. A
subset C = {z1,22,---} of R is called a clique in case z;z; = 0 whenever
i # j. If R contains a clique with n elements and every clique has at most
n elements, then the clique number of R, is Cligue(R) = n. If the sizes of
the cliques are not bounded, then Clique(R) = oco. The clique number of R
is then the least upper bound of the number of vertices in a complete sub-
graph of G. We always have x(R) > Clique(R) and Beck (3] conjectured
that x(R) = Clique(R), but Anderson and Naseer [1] gave an example of
a commutative local ring R with 32 elements for which x(R) > Clique(R).

Notice that the definitions above depend only on the multiplicative struc-
ture of R, and thus can be made just as well for a commutative semigroup
S with 0. Assuming this is done, we can consider the coloring problem for
semigroups and in particular for meet-semilattices with 0.

A commutative semigroup S in which 22 = z for all z € § is a partially
ordered set with 2 < y if and only if z = zy. It becomes a meet-semilattice
with a A b = ab. Each meet-semilattice determines and is determined by a
commutative semigroup S in which every element is idempotent see; page
24 of Clifford and Prestou [4].
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In this article we show that the chromatic number and clique number of
a meet-semilattice S with 0 (the least element) are the same. Thus Beck’s
conjecture holds for such semilattices. Further we show that if these num-
bers are finite, then these are determined by the number of minimal prime
semi-ideals of S. In section 2 we show that an infinite distributive lattice
L with 0 (the least element) and 1 (the greatest element) and with at least
one nonzero complemented element has infinitely many zerodivisors, see;
Ganesan (6] for the case of rings. We also show that if L has infinitely many
elements of finite order then the graph of L contains an infinite clique [3].
The undefined terms are from Harary (8] and Grétzer [7).

2. THE CHROMATIC NUMBER OF A MEET-SEMILATTICE WITH 0

We begin with an example of a graph for which the clique number and
the chromatic number are distinct. However, it cannot be a graph of a
meet-semilattice with 0. The clique number of the graph shown in figure 1
is 3 and its chromatic number is 4.

0

Figure 1
We consider the set S = {0,a,b,¢,d}. The graph determines which

meets are zero and which are nonzero. ThusaAb=0Ac=cAd =0 and
aAc#0,and #0,bAd #0. In order that S be a meet-semilattice,
all nonzero meets and in particular, a Ad € S. We have the following
possibilities.

(1) and=ae=aNAc=aAdAc=0.

(2) and=b=aNnd=aNarnd=aAb=0.

3y eAnd=c=aNd=aAdAd=cAd=0.

(4) and=d=bAd=bAaAnd=0.
Thus a contradiction in each case. Therefore a Ad ¢ S and so S cannot be
a meet-semilattice.
The purpose of this article is to prove the following.
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Theorem 1. If S is a meet-semilattice with 0, then x(S) = Clique(S).

The proof of this theorem will be accomplished by a series of lemmas,
and our methods loosely follow those used by Beck to prove Theorem 3.8 of
[3] which gives Theorem 1 for reduced rings. Note that if Clique(S) = oc
then x(S) > Clique(S) = oo and the result follows. Thus it suffices to
check the result when Clique(S) is finite.

Raney [9] introduced the concept of a semi-ideal in a partially ordered
set. A nonempty subset I of a partially ordered set P is called a semi-ideal,
ifforzel,ye P,y < ximplies y € I. It can be similarly defined for
a meet-semilattice. A proper semi-ideal I of a meet-semilattice S is called
a prime semi-ideal, if a Ab € I implies a € T or b € I. For =z € S, the
annihilator of x is the set ann(z) = {y € S| 2 Ay = 0}. It is clear that
ann(z) is a semi-ideal for each z € S.

Lemma 1. Let S be a meet-semilattice with 0. If z € S and ann(z) is
mazimal in the set {ann(a) | a € S,ann{a) # S}, then ann(z) is a prime
semi-ideal in S.

Proof. Assume aAb € ann(z), a ¢ ann{z). Then aAbAz =0and aAz # 0
so b € ann(a A z). Let t € ann(z), then t Az =0sotAaAz =0 which
implies t € ann(a A ). Therefore, ann(z) C ann(a A z). By maximality,
this implies either ann{z) = ann{aAz) or ann{aAz) = S. Since aAz # 0,
the second alternative is not the case. Therefore b € ann(z) and ann(z) is
prime.

Lemma 2. Let S be o meet-semilattice with 0. If I is a prime semi-ideal
inS andz € S but x ¢ I then ann(z) C I.

Proof. If y € ann(z) then x Ay = 0 € I which implies y € I since z ¢ I
and I is a prime semi-ideal. O

Lemma 3. Let S be a meet-semilattice with 0. If for some z,y € S, ann(x)
and ann(y) are distinct prime semi-ideals, then x Ay = 0.

Proof. Suppose 2z Ay # 0. Note that for t € S, t Ay € ann(z) if and only if
t € ann(zAy). Since ann(z) is prime and y ¢ ann(z), tAy € ann(z) implies
t € ann{z). Therefore ann(z) = ann(zAy). Similarly ann(zAy) = ann(y).
Thus, ann(z) # ann(y) implies 2 Ay = 0. O

Lemma 4. If S is a meet-semilattice with 0 and Clique(S) < oo then
cvery nonempty set of semi-ideals in S of the form ann(z), = # 0, contains
a mazimal element.

Proof. Suppose ann(z;) C ann{zz) C --- is a proper ascending chain.
Let a; € ann(z;) — ann(zj-,) for j > 1. Then y; = aj Azj_1 # 0 and
yj Azj =aj AzjAzj-y = 0. Then y; € ann(z;) —ann(zj_). Thus the y;
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are all distinct. Moreover, for j <k, y; Ayr = a; Azjo1 Aag Az =0
since a; € ann(z;) C ann(zk-1). Thus the y;s form an infinite clique and
the result follows. O

Lemma 5. If S is a meet-semilattice with 0 and Clique(S) < oo, then
every minimal prime semi-ideal P in S has the form ann(z) for some
zeS.

Proof. Let P be a minimal prime semi-ideal in S. Ifz ¢ P then ann(z) C P
by Lemma 2. By lemma 4 we can find ann(y) maximal in {ann(z) | ann(z) C
P, z ¢ P}. If ann(y) is prime then by minimal choice of P, ann(y) = P.
Thus it suffices to check ann(y) is prime.

Case 1. Assume a Ab € ann(y) and a ¢ P. Then aAbAy = 0 and
aANy#0sobe ann(aAy) C S. Containment is proper since a Ay # 0.
Sincea¢ Pand y ¢ P,aAy ¢ P. By Lemma 2, ann(a Ay) C P. Since
ann(y) C ann(a A y), by maximal choice of ann(y), ann(a A y) = ann(y).
Hence b € ann(y) and ann(y) is prime.

Case 2. Let aAb € ann(y) for a € P — ann(y). ThenaAbAy =0 and
aAy#0sobeann(aAy) CS. If ann(a Ay) C P then b € ann(y) as
incase 1. H0# c€ ann(aAy) — PthencAaAy=0,s0cAa € ann(y)
with ¢ ¢ P. By case 1 with a replaced by ¢ and b replaced by a, we have
a € ann(y) which contradicts the choice of a. Hence ann(a Ay) C P and
as above ann(y) is prime so P = ann(y). O

A semi-ideal I of a meet-semilattice S with 0 is called a maximal anni-
hilator semi-ideal, if I is a maximal element of {ann(z) | z # 0,z € S}.

Lemma 6. If S is a meet-semilattice with 0 and Clique(S) < oo, then the
set of distinct proper mazimal annihilator semi-ideals of S is finite.

Proof. Let A = {z; | ann(z;) are distinct and maximal, z; # 0}. By
Lemma 1, the semi-ideals ann(z;) are prime. If z;,z; € A with  # j then
z; Azj = 0 by Lemma 3. Since Clique(S) > |A| and Clique(S) < oo,
|A] < o0. O

Lemma 7. Let S be a meet-semilattice with 0 and assume Clique(S) < oo.
Then the semi-ideal {0} in S is a finite intersection of minimal prime

semi-ideals. The semi-ideals in the intersection are all the minimal prime
semi-ideals of S. :

Proof. By Lemma 6, we let {ann(z;) | 1 < i < n, z; # 0} be the finite
set of distinct maximal annihilator semi-ideals in S. By Lemma 1, this
is a set of prime semi-ideals. By Lemma 3, if ¢ # j then z; Axz; = 0. If
a € i, ann(z;) and a # 0 then aAx; = 0 for all i. Therefore z; € ann(a)
for every i. But ann(a) C ann(z;) for some i since every annihilator semi-
ideal belongs to a maximal annihilator semi-ideal by Lemma 4. Therefore
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z; € ann(z;) which is impossible since z; # 0. We denote ann(z;) by P;.
Thus {0} = L, P with P; prime semi-ideals. In this intersection we can
assume all the P; are distinct, no P; contains P; whenever ¢ # j, and no
P; contains ﬂj# P;. To show that P; are all minimal prime semi-ideals
it suffices to check that for any prime semi-ideal P, P, C P for some i.
Otherwise there exists y; € P, — P for every i. Let y = /\:1:1 y;. Since
y < y;, for each 7 implies y € P; for all ¢, hence y = 0. Then y € P and P
is prime implies, y; € P for some ¢, a contradiction. O

Theorem 2. Let S be a meet-semilattice with 0, and assume Clique(S) <
00. Then the number n of minimal prime semi-ideals in S is finite and

x(S) = Clique{S) =n + 1.

Proof. By Lemma 7 we can write {0} = P, n---N P, for all the minimal
prime semi-ideals P; of S. By Lemma 5, P; = ann(z;) for each i so {0} =
MNi=; ann(z;). By Lemma 3, {x; | 1 < i < n }uU {0} is a clique in S.
Therefore Clique(S) > n + 1. Define a coloring f on § by f(0) = 0 and
ifx £01let f(z) =min {i |z ¢ P; }. If 2,y are connected by an edge
thenz Ay =0 I fz) =k+1, thenz € P, 1 <i<kand z & Pry:.
It follows that y € Pyt since ¢ Ay =0 € Pyyq so f(y) # k+ 1 and thus
f(z) # f(y). Thus f is a coloring of S. Therefore x(S) < n + 1. Thus,
n+ 12> x(S) > Clique(S) 2 n+1 so x(S) = Clique(S) =n + 1. O

Let S be a meet-semilattice with 0. An element £ € § is called a
zerodivisor in case  # 0 and thereisay € S,y #0withz Ay =0. In
[2] (for commutative rings), and [5] (for commutative semigroups with 0) a
simple graph G, called the zerodivisor graph of S, is associated to S. The
vertices of G are the nonzero zerodivisors of S with an edge connecting
two distinct vertices z,y in case xy = 0. When G is non empty, both its
chromatic number and clique number are one less than the graph which
Beck [3] associated to S.

Corollary 1. If S is a meet-semilattice with 0 and with at least one zero-
divisor, G is the zerodivisor graph associated to S, and the clique number
of G < oo then x(G) = Clique(G) = n where n is the number of minimal
prime semi-ideals in S.

3. COMPLEMENTED DISTRIBUTIVE LATTICES

In this short section we give two results about the zerodivisors in dis-
tributive lattices which have analogs for commutative rings. We say that
an element x in a (semi)lattice L is finite in case the principal ideal gener-
ated by z, (2] = {y € L| y < x} is finite. The first result is a variant of a
result of Ganesan [G).
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Theorem 3. If L is an infinite distributive lattice with 0 and 1 and which
contains at least one nonzero complemented element other than 1, then L
contains infinitely many zero divisors.

Proof. Let x # 0, z # 1 be a complemented element in L. There exists
2 € L such that Az =0and zvz = 1. If (z] is infinite, then for
each y € (z] we have y A z =0 and the result follows. Otherwise assume
(z] = {z1,"** ,zn}. For some i, J; = {z € L | zAz = z; } is infinite.
But z; < =z 1mplles zAz; = x50 J; = {z | zAz; = z; }. We have
z= z/\(a:Vz )= (z/\a:)v(z/\:z: )= :v,v(z/\x') Therefore, if 2; # 22
then 2 Az’ # 2z Az'. In particular zAz # O for any z ¢ (z]. This implies
(zAz') Az = 0 for infinitely many z € L. Thus, L has infinitely many

zerodivisors. O
1
Example 1 I
[ J
[ ]
c
a b
0
Figure 2

The infinite distributive lattice in Figure 2 shows that the existence of
a nonzero complemented element is necessary in Theorem 3. This lattice
does not have a nonzero complemented element other than 1 and the only
nonzero zerodivisors are a and b.

The following (with a similar proof) is an analog of Lemma 3.1 of (3].
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Theorem 4. If a complemented distributive lattice has an infinite number
of finite elements, then L contains an infinite clique.

Proof. Let x1,%2,--- be finite elements in L. Then z, A 29,27 A 23, -
belong to the finite set (z1]. Hence for some a;, 21 Azo, = 21 Ao, =+ -.
Consider the elements 4,,Zq,, -+ and repeat the procedure. Continuing
in this way, construct a set {y1,¥2, -} C {21,292, } such that y; Ay; =
yi Ayx for j,k > 4. In this subset y = 1,52 = z,,, ete. Put z;; =y A y;.,
then z;; Azrr = 0if 1 < j < k < 7. Consider z12 A234 = 212 Az35 = 0. Since
234 # 235, at least one of z34 and z35 is different from 2)9, say 235 # 212.
Then {213, 235} is a clique with two elements. Note zg7, 268, 260 are different
and if say 269 ¢ {212, 235} then {212, 235, 260} is a clique with three elements.
Continuing in this way, we get an infinite clique. a

Example 2 This example shows that the assumption of distributivity is
necessary in Theorem 4. An integer a is divisible by an integer b, if a = bc
for some integer c. In this case write bla. Thus, a|0 for all integers a includ-
inga=0. Let A={a€Z|a>0, 2|a, 3 fa} and B=AU{0,1,3}. Then
B is a complemented lattice under divisibility order with smallest element
1 and largest element 0. Since any complemented distributive lattice is
uniquely complemented, this lattice is not distributive as the element 3 has
infinitely many complements. Every nonzero element is a finite element,
but B does not have an infinite clique.
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