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Abstract

Consider a lottery scheme consisting of randomly selecting a win-
ning t-set from a universal m-set, while a player participates in the
scheme by purchasing a playing set of any number of n—sets from the
universal set prior to the draw, and is awarded a prize if k or more
elements of the winning t-set occur in at least one of the player’s
n-—sets (1 < k < {n,t} < m). This is called a k-prize. The player
may wish to construct a playing set, called a lottery set, which guar-
antees the player a k—prize, no matter which winning ¢-set is chosen
from the universal set. The cardinality of a smallest lottery set is
called the lottery number, denoted by L(m,n,t;k), and the num-
ber of such non-isomorphic sets is called the lottery characterisation
number, denoted by 7(m, n, t; k). In this paper an exhaustive search
technique is employed to characterise minimal lottery sets of cardi-
nality not exceeding six, within the ranges 2 < k < 4,k <t <11,
k <7 <12 and max{n,t} < m < 20. In the process 32 new lottery
numbers are found, and bounds on a further 31 lottery numbers are
improved. We also provide a theorem that characterises when a min-
imal lottery set has cardinality two or three. Values for the lottery
characterisation number are also derived theoretically for minimal
lottery sets of cardinality not exceeding three, as well as a number
of growth and decomposition properties for larger lotteries.
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1 Introduction

Suppose the lottery scheme (m,n,t;k) consists of randomly selecting a
winning ¢-set w from the universal set U, = {1,2,...,m}, while a player
participates in the scheme by selecting a playing set P of any number of
n-sets from Uy, prior to the draw, and is awarded a prize, called a k-prize,
if at least k elements of w match those of at least one of the player’s n-sets
in P. Here we assume that 1 <k < {n,t} <m.

Let ®(A, s) denote the set of all (unordered) s—sets from a set A, so that
|®(A, 5)| = (). We consider the following problem.

Definition 1 (The lottery problem) Define alottery set for (m,n, t; k)
as a subset LU, n, t; k) C B(Um,n) with the property that, for any element
&1 € ®(Up, t), there ezists an element | € L(Um,n,t; k) such that (¢, k)N
O(l, k) # 0 (i.e., there is a k-intersection between ¢, and l). Then the
lottery problem is: what is the smallest possible cardinality of a lottery set
L(Um,n,t;k)? Denote the answer to this question by the lottery number
L(m,n,t;k). We refer to a lottery set of cardinality L(m,n,t;k) as an
L(m,n,t; k)-set for (m,n,t; k).

The above-mentioned combinatorial optimisation problem has been stud-
ied extensively (see, for example, the references listed in the bibliography
of [8]). However, with the exception of a few basic classes, lottery num-
bers are generally only known for small values of the parameters m, n, ¢
and k. See [1, 7, 11, 12] for listings of known, small lottery numbers and
[6, 7] for some new lottery numbers and improvements on the bounds of
yet undetermined lottery numbers.

Given an L(m,n, t;k)-set L= {T1,T3,...,Tr(mxa 5k} for {m,n,t;k), it is
possible to interchange the roles of elements in U, in order to induce a dif-
ferent L(m, n,t; k)-set for (m,n,t; k). Although these L(m,n,t; k)-sets are
different, they still have isomorphic structures in terms of n-set overlap-
pings. We denote the number of non-isomorphic n-set overlapping struc-
tures of an L(m,n, t; k)—set by the characterisation number n(m, n,t; k).

In this paper we seek to characterise all overlapping structures of cardinality
not exceeding 6 within the parameter ranges 2 < k £ 4, k <t £ 11,
k < n <12 and max{n,t} < m < 20. In §2 we give a characterisation,
as well as theoretically determined values for n(m,n,t; k) for all lotteries
whose minimal lottery set cardinalities do not exceed 3. In §3 some growth
properties of n(m,n,t; k) are established, and in §4 and §5 we develop an
exhaustive search procedure for characterising overlapping structures of
small L(m,n,t;k)-sets. This technique is employed to establish 32 new
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lottery numbers and to improve upon best known bounds for a further 31
lottery numbers, as listed in §7. In [6] the same procedure was extended
to the ranges of the parameters of designs listed in [1], where 192 of the
listed designs were shown to be optimal, 204 new lottery numbers were
determined, and a further 304 upper bounds were improved. Also, the
same procedure is employed in [4] to characterise solution sets to a novel,
incomplete version of the lottery problem.

2 Notation and characterisation theorems

We require an efficient coding scheme whereby the structure of a lottery
set, L = {T1,T3,...,T(mmn,i;k)} May be captured. This may be achieved
by defining the function

(L

(tLtL 1taty)a ’

ﬁ T, ift;=1
T ift;=0

i=1

where (tptr1---tat1)2 denotes the binary representation of an integer in
the range {0,...,2% ~ 1} and where 7 denotes the complement Uy, \ T:.
This function induces the 2% ~integer vector

F(L) _ (D) (L) (L)

X ( Z(000---00)2> £(000---01), * ’z(lll---ll)z) )
which represents all the information needed to describe the n—set overlap-
ping structure of any playing set (and hence any lottery set of minimum
cardinality) for (m,n,t;k). The entries of the vector X(£) add up to m
and may be interpreted as follows:

e there are z 00)2 elements of U,, in no n-set of C;

e there are ¢

(L)
gooo

o there are x{') ~o1), elements of Un, in only Ty;
gL) 10)2 elements of U, in only Ty;
(000

e there are z w11)g elements of Uy, in both T} and Ts, etc.

Sometimes it is more convenient to write the subscripts of the z(L) entries
in decimal form. In this paper we shall mostly use an abbreviated nota-
tion for the vector X(£), namely a vector in which only non-zero entries
are specified (i.e., if vector entry a:ff’) = a (subscript in decimal form)
is non—zero it will be denoted by 4% in the abbreviated vector notation).
[Square brackets] will be used to distinguish this abbreviated vector nota-
tion from the full vector notation (in round brackets). We illustrate the
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Uz

123456 7 8 9101112131415161718 1920 21 2223 24 25 26
T XX XX XIX]|X
T X|X|X]|X X|X|X
T XIXIXIXIXIX X
T, XIXIXIX]X]| XX
S ~ % v o ~
1 7 4 4 3 7

Figure 2.1: Tabular representation of the L(26,7,14;4)-set in Example 1.

above method of lottery set structure encoding and notation by means of
a simple example.

Example 1 The set X = (1,7,4,0,4,0,3,0,7,0,0,0,0,0,0,0) = [0*,17,
24,44, 63,87] is a lottery set with minimum cardinality 4 for (26,7,14;4).
An instance adhering to this lottery set structure may be found by fo-
cusing on the non-zero entries in the vector X@. :v“) =1, :1:(4) =17,

(4) =4, 54) = 4, 1(4) 3 and 1(4) 7. In binary form these are

4) (4) (4) (4) — (4) —
“’goom)z =1, Zgoo), = T Toor0)s = 4 (0100, = 4 T(o110) = 3 and
%12)00) = 7, which yield the structure of all corresponding L(26,7,14;4)-

sets, in terms of the number of elements from the universal set Uz in
each term of the inclusion—exclusion counting principle. The set L =
{{2,3,4,5,6,7,8}, {9,10,11,12,17,18,19}, {13,14,15,16,17,18,19}, {20,
21,22, 23, 24, 25,26} } emerges as an ezample of an L(26,7,14;4)-set of this
structure, which is represented in tabular form in Figure 2.1. |

We state, without proof, the following well-known lottery isomorphism
result that appears in several papers (see for example [14]).

Theorem 1 (Lottery Isomorphism)
(m,n,t; k) ~ {m,m —n,m—t;m+k—n—t), sothat

Lim,n,t;k) = Limm-nm—t;m+k—n-t)
and n(m,n,t;k) = n(mm-nm—t;m+k—n-t)
for all1 <k < {n,t} <m satisfying m+k >n+t. |

It is possible to characterise small lottery numbers, as we do in the following
theorem.
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Theorem 2 (Characterisation of Small Lottery Numbers)

For all1 <k < {n,t} <m,

(a) L(m,n,t;k)=1ifand onlyifn+t >m+k.

(b) L{(m,n,t;k) =2 if and only if 2k — 1 + max{m —2n,0} <t <m+ k-
n—1.

(¢) L(m,n,t;k) =3 if and only if

t < min{2k — 2 + max{m - 2n,0},m —n+ k — 1} (2.1)

and

tZ{ 3k — 24 max{m —3n,0} ifm>2n 2.2)

$k -1+ max{m—3n,0} if m<2n.

The result of Theorem 2(a) is known and a proof of this result may be
found in [14]. The results of Theorem 2(b) and 2(c) are novel. However,
the proof of Theorem 2(b) is similar to, but much simpler than that of
Theorem 2(c). Hence we omit the proof of Theorem 2(b).

Proof: (c) It follows, by (a) and (b) of this theorem, that L(m,n,t;k) #
1,2ifandonly ift <m—-n+k—1and ¢t < 2k — 2 + max{m - 2n,0}.
Therefore

L(m,n,t; k) > 2iff t < min{2k -2+ max{m—2n,0},m-n+k~-1}. (2.3)

We first prove the theorem for the case m > 2n. Suppose that (2.1) and
that the first inequality in (2.2) holds. Then it follows, by (2.3), that
L(m,n,t;k) > 2. We now show that L(m,n,t;k) < 3 by constructing
a playing set £(? = {Tl(z),T&),Téz)} of cardinality 3 for (m,n,t;k}, for
which xgg()m)z is a minimum. In such a case 28())0)2 = max{m — 3n,0} and
hence <I>(Ti(2),k) N ®(w, k) # O for at least one 7 € {1,2,3}, where w is an
arbitrary winning t-set for (m,n,t; k), since ¢ > max{m — 3n,0} + 3(k —
1). Therefore £(? is a lottery set for (m,n,t¢;k), and we conclude that
L{m,n,t;k) = 3.
Conversely, suppose L(m,n,t; k) = 3. Then (2.1) follows from (2.3). We
show that ¢ > 3k —2+max{m—3n, 0} by proving that, for any L(m, n,t; k)-
set,

max{m — 3n,0} < z{og), <t — 3k +2. (2.4)

The first inequality in (2.4) is obvious. To prove the second inequality
in (2.4), suppose, to the contrary, that :41:8())0)2 > t — 3k + 2 for some

L(m,n, t;k)-set £ = (T T, T} of (m,n,t;k). We first consider
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the case ‘”82)0), =t — 3k +3. Note that, from (2.1), we have m > 2n+¢ —
2%k+2 = 2n+(k—1)+t —3k+3, so that [T UTP VTS| > 2n+ (k-1).
This means each n-set in £3) has at least k — 1 elements that are utilised
only once, i.e., x(?():o),,fgio),,wfg%l), > k — 1. In this case, if the winning
t-set, w, consists of ¢ — 3k + 3 elements from Uy, \ (Tl(s) U Tés) U Ta(a)),
and k — 1 elements from each of Tl(s)\(Téa) U Tés) h Tés) \ (Tl(s) U Ts(a))
and T \ (T® U T), it follows that &(T, k) N &(w, k) = @ for all
i € {1,2,3}, contradicting the fact that £®) is a lottery set for (m,n,t; k).
For the case z(0n >t — 3k + 3, say "’E?x)m)g =t¢t—3k+3+y, it is easy

(000)2
to see that the “worst case” is when one n-set is disjoint and the other

two (say Ti and T3) each has k — 1 — y elements that are utilised once. In
this case, if the winning ¢-set, w, consists of ¢ — 3k + 3 + y elements from
Un\ (Tl(a) UTéa) UTés)), and k—1—y, k—1—y, k—1 elements from respec-
tively T\ (T uT®), T\ (TP U ) and T\ (TP U TY), and
y elements from T N T it follows that (TS, k) N &(w, k) = 0 for all
i € {1,2,3), contradicting the fact that £®) is a lottery set for (m,n,t; k).
This completes the proof for the case m > 2n.

For the case m < 2n we consider the complementary lottery problem
(m',n/,t;k") = (m,m —n,m — t;m + k — n — t) by virtue of Theorem
1. We then have m’ > 2n/, which is the first case, proved above. Therefore
L(m’,n',t’; k') = 3 if and only if

t' < min{2k’ — 2 + max{m' — 2n/,0},m' ~n' + k' -1} (2.5)
and
t' > 3k’ — 2+ max{m’ — 3n’,0}. (2.6)
We only have to show that (2.6) is equivalent to the second inequality in
(2.2). From (2.6) it follows that
m—t > 3(m+k—-n-t)—2+max{m - 3(m-n),0}
& 26 > 3k —2+2m - 3n+ max{3n — 2m,0}
& 2 > 3k-—2+max{2m - 3n,0},

which is equivalent to the second inequality in (2.2).' [ |

The characterisation number 7(m,n, t; k) may be determined analytically
for L(m,n,t; k) = 1,2,3. Note that if L(m, n, t; k) = 1, then 9(m,n,t; k) =
1. However, additional notation needs to be introduced before n(m, n, t; k)
may be determined if L(m,n,t; k) = 2,3. Let {;(m,n) denote the number
of distinct ways in which a set of m elements may be covered by £ distinct
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sets, each of cardinality n (excluding permutations/symmetries). It is clear
that (2(m,n) = 1if n < m < 2n and (2(m,n) = 0 otherwise. It seems a
hard problem to find a closed form formula for {¢(m,n) if £ > 3. Hence
we tabulate values for {3(m, n) in Table 2.1 within the ranges for m and n
necessary for our results.

Theorem 3 (Basic values for n(m,n,t;k))
(a) When L(m,n,t;k) =2,

t—2k+1 .
t—-2k+2-m+2n, fm>2n
n(m,n, t:k) = Z Gao(m —d,n) = { t—2k+2, if m < 2n.
(2.7)
(b) When L(m,n,t; k) =3,
t—3k+2
Z (3(m —i,n), if m>2n
n(m,n, 6 k) = 20 ak Zme3nt2 (2.8)
> Gm-im-n), if m<2n
i=0

Proof: (a) Each feasible value for :z:(z) in the X ®—vector of an L(m, n, t; k)-
set corresponds to a different overlappmg structure. Because max{m -

2n,0} < :z:((f) <t — 2k + 1, the result follows immediately.

(b) Each feasible value for :z:(()) in the construction of £ in the proof

of Theorem 2(c) corresponds to {3(m — :v((,a),n) different overlapping n—
set structures for £3). Note that ¢s(m,n) = 0 if m > 3n. We have

max{m —3n,0} < z(s) — 3k +2 if m 2 2n. Therefore the first equality
in (2.8) follows. For m < 2n, Theorem 1 may be used to obtain the second
equality in (2.8). |

An interesting result is that the characterisations of L(m,m —n,m-¢;m+
k—n—t)-sets are given by the mirror images of the X—vectors characterising
L(m,n,t; k)-sets for (m,n,t; k), as dictated by the following theorem.

Theorem 4 If an L(m,n,t; k)-set for (m,n,t; k) conforms to the overlap-
ping structure

RO = (9,2, B 0 ),
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m\n|3 4 5 6 7 8 9 10 11 12
411 0 0 0 O O O O O O
5/({3 1.0 0 0o O O O O O
6/3 41 0 0o 0 0 0 0 O
7!3 5 4 1 0 0 O O O O
8(1 6 6 4 1 0 0 0 O O
911 4 9 7 4 1 0 0 0 O

10/]0 3 8 11 7 4 1 0 0 O
110 1 7 12 12 7 4 1 0 O
1210 1 4 13 156 13 7 4 1 O
3|0 0 3 9 18 17 13 7 4 1
14(0 0 1 7 16 22 18 13 7 4
15/0 0 1 4 14 23 25 19 13 7
6({0 0 0 3 9 23 28 27 19 13
7]0 0 0 1 7 17 31 32 28 19
180 0 0 1 4 14 28 38 35 29
1910 0 0 0 3 9 24 38 43 37
2(0 0 0 0 1 7 17 37 46 47

Table 2.1: Values for {3(m,n) for4 <m <20 and 3 <n <12

for some 1 < k < {n,t} < m satisfying m + k > n + i, then the set
corresponding to the overlapping structure

X-.(L) = (Igﬁ)_p 1(22)_2: e ’sz)’z(()L))

is an L(m, m—n,m—t;m+k—n—t)-set for (m,m—n,m—t;m+k—n-t).

Proof: Consider a two-dimensional tabular representation similar to that
in Figure 2.1, but for an L(m,n,t; k)-set, L, for (m,n,t;k), consisting of
L(m,n,t; k) rows denoting the n-sets in £ and m columns denoting the
elements of U, in which the (i,7)-th cell contains a cross if j € Uy, is
an element of the i-th n-set of £. Then the complement of the tabular
representation (where crosses are replaced by empty spaces and vice versa)
represents the corresponding L(m,m — n,m — t;m + k — n — t)-set for
{m,m —n,m —t;m+ k —n — t). For any specific element of Uy,, a cross
in its column indicates that the element is present in some n-set of L.
These crosses correspond to 1-bits in the binary index of the X (L) -vector
capturing the overlapping n-set structure of £. Thus the corresponding
element in the vector X&) for the L(m,m — n,m —t;m + k — n — t)-set
may be obtained by taking the complement of each of the bits in the binary
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indices of that element. Therefore the X(X)—vector for the Lim,m—n,m—
t;m + k —n — t)-set is the X (D)-vector for £ in reverse order. ]

3 Properties of n(m,n,t; k)

An interesting saw-tooth growth pattern of the lottery characterisation
number 7(m,n,t; k) emerges when any three of its parameters are held
constant, while the other parameter is allowed to increase. The saw—tooth
jumps occur when the corresponding lottery number value changes as the
variable parameter increases. For example, when n, ¢t and k are fixed and
m is allowed to increase, the saw-tooth widths are always asymptotically
non-increasing, whilst there seems to be no rule as to whether the saw-
tooth heights increase or decrease, as may be seen in Figure 3.1 for the
special casen =t =6 and k= 1,2.

To prove these observations in a more general setting, we require the notion
of a jump sequence. Informally, such a sequence represents values of one of
the parameters m, n, ¢ or k at which saw-teeth separations occur in the
sequence {n(m,n,t;k)} (i.e., parameter values at which the corresponding
lottery number value changes). Formally, define the increasing sequence

max{n,t} = m(ln’t’k), mg""'k), m:(,""'k), ..., to which we refer as the m—jump

sequence, as those integers mf:f *) satisfying

Lim{ n,tik) > Lm{™*) n,t:k),  i=1,2,3,...
but for which
Lm{® —1,n,6;k) = L(m{™"*) n, t; k)

in cases where mﬁ""’k) and mf:l‘ *) are non-adjacent integers. An n—jump

sequence, a t—jump sequence and a k—jump sequence may be defined sim-
ilarly. Then it is possible to prove the following properties of these jump
sequences.

Theorem 5 (Properties of the jump sequences)

(a) The m—-jump sequence is infinite, for all1 < k < {n,t}.

(b) The density of the m—jump sequence is asymptotically increasing for
all 2 < k < {n,t}, in the sense that there exists an i"™**) € N such that
mgi‘f’k) = mgn"'k) +1 for all i > i™%%) After this point the m—jump
sequence 1is said to have maximum density.

(¢) The n—jump sequence is finite, for all1 < k <t < m.

(d) The t—jump sequence is finite, for all1 <k <n <m.

(e) The k—jump sequence is finite, for all1 < {n,t} < m.
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150 i T 8
—— n(m,6,6;1)
— L(m,6,6;1)

125 . 5
100 P 44
=) | 2
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< 75} {3
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& (]
60 | 3 12
) ’\'NN g |
0 10 5 20 325 30 367
m
(a) n(m, 6,6; 1) and L(m,6,6; 1)

40 —_— . r 6
|—o- n(m,6,6;2)
— L(m,6,6;2)

35

n(mv 6, 6; 2)
L(m,6,6;2)

m

(b) n(m, 6,6;2) and L(m, 6,6; 2)
Figure 3.1: The number of non-isomorphic L(m,6,6;k)-set structures,

n(m, 6,6;k), for (m,6,6;k) where (a) 6 < m < 35 and k = 1, and where
(b)6<m<30and k=2
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Note that, for k = 1 and n = £, the m—jump sequence is simply the sequence
of all positive multiples of n, since L(m,n,n;1) = | 2], (see [8]). On the
other hand, for n = ¢ = k, the m—jump sequence is the sequence of all
integers exceeding n — 1, since L(m,n,n;n) = (T), (again see [8]). These
two cases represent two extreme growth patterns of the characterisation
sequence in {n{m,n,t; k)}oo_max(n, With respect to increasing m: In the
former case the saw-teeth all have maximum width (namely n), the saw—
teeth are as blunt as possible (as will be shown), the m—jump sequence
never reaches maximum density, and the growth in saw—tooth height is
positive and constant. In the latter case the saw-teeth all have minimum
width (namely 1, in other words the maximum density is achieved by the
m~jump sequence right from the start), the saw—teeth have become so sharp
(infinitely sharp) that the individual teeth themselves have become indis-
tinguishable, and the growth in saw—tooth height is positive and binomial.

Proof of Theorem 5: (a) By contradiction. Suppose the m—jump se-
quence is finite for some values of 1 < k < {n,t}. Then there exists an

m(f"'t’k) € N such that

L(im,n,t; k) = L(m}"'t’k), n,t;k)eN forall m> m}"“’k).
But this contradicts the (easily established) lower bound
Lim,n,6:K) > [’—"n;’J +1
for large values of m.

(b) In 1964 Hanani, et al. [9] proved that

m(m —n+1)

L(m,n,n;2) > Y

for all m > n > 2, and additionally showed that this bound is asymptoti-
cally best possible, in the sense that

_1\2
lim L(m,n,n;Z)&L =1.
m—oo m(m—n+1)

For all 2 < k < {n,t} < m it therefore follows that

m(m—s+1)

L(m,n,t;k) > L(m, s, s; k) > L(m, s, 5;2) > ——5—=,
s(s —1)2
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where s = max{n,t} by Theorem 1(b), (e) and (f) in [6], and hence the
growth of the lottery sequence { L(m, n, t; k) }30_ .~ (n,e} 1S super—quadratic,
from which it follows that the density of the n—jump sequence is asymp-
totically increasing, and that maximum density is achieved at some finite
value of m.

(c)-(e) Since 1 <k < {n,t} < m and since m is fixed for any n—jump se-
quence, any t—jump sequence and any k-jump sequence, these (increasing)
sequences must be finite. n

The following growth properties of the characterisation number n(m, n, t; k)
may now be proved for inter—jump sequence values of the parameters m,
n, t and k.

Theorem 6 (Growth properties of n(m,n,t; k))
a) n(m,n,t;k) > n(m',n,t;k) for all m™ < m < m’ < m™*) and all
1 i+1
1<k £ {n,t} <m, when mg""'k) 511‘ %) are non-adjacent integers.
b) n(m,n,t;k) < n(m,n’,t;k) for all ™) < p <! < n{™®) gnd
i i+1
alll1 <k € {n < n',t} < m, when n{™ %) and ng,_"i"k) are non—adjacent
integers.
¢) n(m,n,t;k) < n(im,n,t';k) for all g™ < < g < MR gng
] i+1
all <k < {nt < t'} <m, when t{™™ and "™ are non-adjacent
integers.
d) n(m,n,t;k) > n(m,n,t;k’) for all Y < k< ko< k™™ gnd
i i+1
alll £k <K < {n,t} <m, when k™™ and k™™ are non-adjacent
(1 i+1
integers.

and m

Proof: (a) Suppose two adjacent elements mﬁ“'t'k) and mfilt *) of the m~

jump sequence are non-adjacent integers for some i € N and consider two
intermediate values m and m’ satisfying m,("’t"‘) <m<m < mg’l"k) .
Then clearly L(m,n,t; k) = L(m',n,t; k). Now consider the following con-
struction technique to obtain an L(m,n,t;k)-set for (m,n,t; k) from an
L(m/,n,t; k)-set for (m/,n,t; k). ‘

Construction Method 1. Consider a two-dimensional tab-
ular representation similar to that in Figure 2.1, but for an
L(M,n,t;k)-set L for (M,n,t;k), consisting of L(M,n,t;k)
rows denoting the n-sets in £ and M columns denoting the
elements of Uy, in which the (i, 7)-th cell contains a cross if
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7 € Up is an element of the i-th n—set of £, and is empty
otherwise. Remove any column from this representation, and
place a cross in any empty cell of each row that now contains
only n — 1 crosses as a result of the column deletion. The re-
sult is a tabular representation of a lottery set of cardinality
L{M,n,t;k) for (M —1,n,t;k).

By (possibly repeated) application of Construction Method 1, to any
L(m/,n,t; k)-set for {m’,n,t;k), an L(m,n,t;k)-set for (m,n,t;k) is ob-
tained. We conclude that n(m,n, t; k) > n(m’,n, t;k).

(b) The proof is similar to that in (a), except that the above construction
method should be replaced by the following alternative method to obtain
an L(m,n’,t; k)-set for {m,n’,t; k) from an L(m, n,t; k)-set for (m,n,t;k):

Construction Method 2. Consider a tabular representation
of an L(m, N, t;k)-set for (m,N,t;k), as described in Con-
struction Method 1. Place a cross in any empty cell of each
row. The result is a tabular representation of a lottery set for
{m,N + 1,t; k), using a similar argument as in Construction
Method 1.

(c) Suppose two adjacent elements tsm’"’k) and t,(:_"i"’k) of the t—jump se-
quence are non—adjacent integers for some ¢ € N and consider two interme-
diate values ¢ and ¢, satisfying £™™ < ¢ < ¢ < tg_':l'"'k)
Then L(m,n,t;k) = L(m,n,t';k). Let L = {&1,..., ¢ (mqnek)} be an
L(m,n,t;k)-set for (m,n,t; k) and let T’ € ®(U,,,t’) be an arbitrary win-
ning t'-set for (m,n,t’; k). There exists (by the definition of £), for any
T € ®(T",t), an i € {1,...,L(m,n,t;k)} such that (T, k) N &(4;, k) =
T” (say) # 0. But since T C T”, it follows that T" € &(T", k) N ®(¢;, k),
and hence £ is also an L(m, n,t’; k)-set for (m,n,t’; k). We conclude that
n(m,n,t';k) > n(m,n, t; k).

(d) The proof of this result is similar to that in (c). |

Note that n(m,n, t; k) exhibits exactly opposite growth properties to those
of L(m,n,t; k) with respect to the arguments m, n, ¢t and k, as may be seen
by comparing the growth properties in [10] and the above theorem.
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4 Characterisation procedure

One method of enumerating all L(m,n,t; k)-set structures for (m,n,t; k),
consists of constructing a rooted tree (referred to as the lottery tree) of -
evolving overlapping set structures, the nodes of which resemble overlap
specifications similar to that in Figure 4.1. Level i of the lottery tree
contains all possible (non-isomorphic) overlapping n-set structures of car-
dinality 7 and is constructed from the nodes on level i — 1 of the lottery tree
by adding an i-th n-set, T}, in all possible ways to each of the nodes. The
corresponding X ()—vector for each new node is then calculated and a so-
called isomorphism test is performed to determine whether the overlapping
structure has been generated before, in which case the node is removed
from the tree. The isomorphism test for each node is performed by per-
muting the n-sets in all possible ways, and by testing whether any of the
permuted sets has an X @) —vector that is lexicographically smaller than the
concerned X ®)-vector.

Suppose the lottery tree has £+ 1 levels in total. The first level of the tree
consists of the node X(1) = (m —n, n) only (the root), while the nodes X
on level £ of the tree represent potential lottery set structures of cardinality
£ for (m,n,t;k). An (£+ 1)-st level of nodes is added to the tree (in such a
manner that |Tp4 N Tj| <t for all j < ¢) in order to carry out a so—called

domination test (i.e., to test which of the nodes on level £ actually represent
" valid lottery sets). This domination test is achieved by testing whether all
nodes on level £ + 1 overlap in at least k positions with at least one n-
set of the existing £ n—set overlapping structure (represented by its parent
node X)) in the tree. If this were the case, then the n-set overlapping
structure represented by the parent node X® would constitute a lottery
set for (m,n,t;k) (and hence L(m,n,t;k) < £). However, if there exists at
least one node on level £+ 1 of the tree for which the corresponding final
t-set overlaps in fewer than k positions with all n—sets of the parent node
overlapping structure, the parent node does not represent a lottery set. If
no parent node represents a valid lottery set, the bound L(m,n,t;k) > £is
established.

We do not give the full implementation details here of the characterisation
procedure described above, but rather demonstrate the tree construction
by means of the simple schematic representation in Figure 4.1.

The number of nodes on level ¢ of the tree typically grows very rapidly as
1 increases, even when permutations of node structures are avoided. See
(8] for examples of the growth in the number of nodes per level and the
resulting execution time required to construct the lottery tree. However,
with the use of pruning rules, we are able to save considerable execution
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XM =(9,6)
T Yo T T T T
09| |G| (@),

X® =(1,3,5,0,2,3,1,0)

Figure 4.1: Part of the lottery tree construction to determine all
non-isomorphic L(15, 6, 6;3)-set overlapping structures for the lottery
(15,6, 6;3).

time. We describe the pruning rules used in the following section.

5 Pruning the characterisation search tree

Before we give the pruning rules, we prove the following theorem, in which
we use the notation n(m,n,t;k)|z,>0 to denote the number of non-
isomorphic lottery sets for (m,n,t; k) of cardinality L(m,n,t;k) with the
property that at least one of the elements of U,, are not utilised. Similarly,
the subscript zo = 0 denotes the corresponding number of non-isomorphic
lottery sets for (m,n,t; k) with the property that all the elements of Uy,
are utilised.

Lemma 1 Foralll <k < {n,t} < m, if L(m—1,n,t—1;k) = L(m,n,t;k),
then n(m,n,t; k)lzy>0 = n(m — 1,n,t — 1, k).

Proof: Suppose L(m — 1,n,t — 1;k) = L(m,n,t; k). We show that any
L(m,n, t;k)-set for {m,n,t;k) with the property that at least one element
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of Uy, is not utilised is also an L(m —1,n,t—1; k)-set for (m—1,n,t—-1;k),
and vice versa.

First, suppose that £() is an L(m,n,t;k)-set for (m,n,t;k) with the
property that at least one element of U,, is not utilised in £, With-
out loss of generality we may assume m is such an element. Since all
é: € B(Unm,t) with m € ¢, have a k-intersection with some n-set in £{1),
all ¢, € ®(Upn_1,t — 1) also have k-intersections with some n-set in £(1),
implying that £(1) is a lottery set for (m — 1,n,¢t — 1;k). From our as-
sumption that L(m — 1,n,t — 1;k) = L(m,n, t; k), this set is of minimum
cardinality. Thus £ is an L(m — 1,n,t — 1; k)-set for (m —1,n,t — 1;k).

Conversely, suppose £(2) is an L(m—1,n,t—1;k)-set for (m—1,n,t—1;k).
Then it is easy to see that all ¢; € (U, t) have k-intersections with some
n—set in £(?), implying that £(? is also a lottery set for (m, n,¢; k) in which
the element m is not utilised. Again, this set is of minimal cardinality,
because L(m — 1,n,t — 1;k) = L(m,n, t; k). [ |

It is now possible to prove the following useful theorem.

Theorem 7 (Eta decomposition)
Suppose L(m,n,t;k) = £ and L(m — 1,n,t — 1;k) = &. Then, for all
1<k<{nt}<m,

. — ”l(m,'"-, L k)l:co=0 ife >¢
n(m, m, k) = { n(m,n, t; k)|zo=0 + n(m — 1,n,t — 1;k) if & =¢.

Proof: Note that n(m, n,t; k) = n(m, n,t; k)|ze=0+n(m, n, t; k)|z,>0. Also,
Li proved in [10] that & = L(m—1,n,t—1;k) > L(m,n, t;k) = ¢, so that we
have two cases. Firstly, if £ > ¢, then all elements of U,,, must be utilised
in a lottery set for (m,n,t; k), because if not, then we have a lottery set
for (m — 1, n,t — 1; k) of cardinality £ (as explained in the proof of Lemma
1), contradicting our assumption that £ > £. Secondly, if £ = ¢, the result
follows directly from Lemma 1. |

Note that Theorem 7 may be applied recursively, so that we only have to
search for solutions where all elements are utilised (i.e., zo = 0). This
saves considerable execution time when performing the tree characterisa-
tion procedure. We now give the pruning rules for the tree search that were
implemented in our approach.
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(1) If :r:l(,e) > 0, then the structure corresponding to the vector X may
be omitted from the tree.

(2) If min{”’g)oo.--o),' k—1}+---+ min{:cggmml)z, k-1}+ :z:((f) > t, then
the structure corresponding to the vector X® is not a lottery set,
and may hence be omitted from the tree.

3) If a:((,e_l) > n + 1, then all possible structures corresponding to the
vector X~1) may be omitted from the tree.

(4) I min{z{io0” ) k—1}+-- +min{z§f,;,1?,,)2 =1} +28Y > ntt,

then all possible structures corresponding to the vector X1 are
not lottery sets, and may hence be omitted from the tree.

Rules (1) and (2) are implemented just after level £ of the tree, before the
domination test. Rule (1) follows from Theorem 7. Note that in the case
where L{m —1,n,t—1; k) = ¢, the lottery sets for (m—1,n,t—1; k) need to
be added to the solution set. In rule (2) we add up the number of elements
(not exceeding k — 1 per set) that are in at most one n-set of the structure
corresponding to X (9. If there are ¢ or more such elements, there exists a
t-set having no k-intersection with any of the n—sets in the structure X ®,
and hence the structure does not represent a lottery set. Rules (3) and
(4) are are implemented just after level £ — 1 and are based on the same
idea as in rules (1) and (2) respectively, in an obvious manner. The test
for isomorphism was found computationally much more intensive than the
domination test. It was therefore better to perform the domination test
before the isomorphism test on level £+ 1 of the tree.

6 The L(m,n,t; k)—set characterisations

Tables listing bounds for L(m,n,t; k), values for n(m,n,t; k), as well as
their corresponding set characterisations may be found online in (3, 7).
These tables are rather bulky and are therefore omitted here.

7 New lottery numbers and bounds

According to [12] the lottery number for (18,6,6;3) falls in the range
6 < L(18,6,6;3) < 7. The tree for (18,6,6;3) is too deep (large) to tra-
verse in a realistic time-span, so that it is not feasible to determine the
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value of L(18, 6, 6; 3) using the tree characterisation procedure described in
§4-5. However, it is possible to prove that L(18,6,6;3) # 6 via a construc-
tion method described below, from which the following result may then be
deduced.

Theorem 8 L(18,6,6;3) =7.

Consider the following method for constructing lottery sets of the same
cardinality for (m — 1,n,n;k) from any lottery set for (m,n,n; k).

Construction. Consider a tabular representation (such as in
Figure 2.1) of a lottery set for (m,n,n; k). Remove any column
from this representation, and add an arbitrary element to the
original n-sets that now have only n — 1 elements as a result of
the deletion. The result is a tabular representation of a lottery
set for (m — 1,n,n;k).

In order to prove Theorem 8, we require the following intermediate result.

Lemma 2 If there exist lottery sets for (18,6, 6;3) of cardinality 6, all such
sets must contain ezactly one disjoint 6-set.

Proof: Suppose there exist lottery sets of cardinality 6 for (18, 6, 6;3).
Then such lottery sets may have at most one disjoint 6-set, otherwise
some of their 6-sets will be forced to coincide exactly. Now suppose one
such lottery set contains no disjoint 6-set. Then, keeping in mind that all
L(17, 6, 6; 3)-sets contain one disjoint 6-set (see [3]), it is not difficult to see
that it is only possible to construct lottery sets for (17, 6, 6; 3} via the above
construction method if at least one element of Ug is not utilised in the
L(18,6,6;3)-set (i.e., if the tabular representation of the L(18,6, 6; 3)-set
contains at least one empty column). However, if the tabular representation
of the L(18,6,6;3)-set contains at least one empty column, then it must
be true that L(17,6,5;3) < 6. But 7 < L(17,6,5;3) < 11 [11], which is a
contradiction. ]

We are now in a position to prove Theorem 8.

Proof of Theorem 8: By contradiction. Suppose that L(18,6,6;3) = 6.
Then it follows, by Lemma 2, that any L(18, 6, 6;3)-set must contain ex-
actly one disjoint 6-set from Ug. If, in the construction technique outlined
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Previous New Time

L{im,n,t;k) | L(m,n,t;k) | L(m,n,tik) | n(m,n,t; k) (sec)

L(14,6,7;4) 5:6° 6° 1 45665
L(14,7,6;4) 6:7 70 >1 101044
L(14,8, 5; 4) 5:7 7% >1 32088
L(15,7,7;4) 4:5 59 26 281
L(15,9, 5; 4) 6:7 7° >1 117195
L(16,5, 10; 4) 5:6 69 4 7058
L(16,6,8;4) 4:7 79 >1 182798
L(16,7,7;4) 4:64 6° 4 1326165
L(16,10,5; 4) 4:5 5@ 1 136
L(17,4,9;3) 6:7 70 >1 9
L(17,5,7;3) 6:7 70 >1 1551
L(17,6,9;4) 4:6 6° 102 379521
L(17,8,7;4) 4:5 5¢ 67 1994
L(17,10, 5; 4) 6:7¢ 70 >1 1737999
L(17,11,5;4) 4:5 50 11 171
L(18,4,10; 3) 5:6 69 4 8
L(18,5,11;4) 5:7 70 >1 3237
L(18,6,6;3) 6:7 7° >1 -
L(18,6,9;4) 5:6 6° 1 257 473
L(18,7,8;4) 4:6 62 >1 824
L(18,8,7;4) 4:6 50 1 2926
L(19,4, 10; 3) 6:7 7° >1 6
L(19,5,8;3) 5:7 70 >1 459
L{19,6, 10; 4) 5:6 6° 21 348 970
L(19,7,6;3) 4:5 59 2 778
L(19,7,9;4) 4:5 50 20 1067
L(19,8,5;3) 5:6 6® >1 2985
L(19,9,7;4) 4:6 59 154 13409
L(19,12,5;4) 4:5 5@ 2 1191
L(20,6, 10; 4) 5:74 70 - 170928
L(20,7,9;4) 4:6 6° >1 944
L(20,9,7;4) 4:6 529 3 18 479

Table 7.1: 32 New lottery numbers found via the characterisation technique
described in §4-5. The second column contains previously best known
bounds on lottery numbers, taken from [1], [11] and [12] using the nota-
tion lower bound : upper bound (both inclusive). The corresponding n-set
overlapping structures are available at [3] or [7]. Bounds and new lottery
numbers in columns 2 and 3 are motivated as follows: ®No lottery sets
of smaller cardinality found by the characterisation procedure. °One lot-
tery set of cardinality 5 found by the characterisation procedure, namely
[659%174262282).  <Since L(m + 1,m,t;k) > L(m,n,t;k) [10). “Upper
bound due to Belic {2]. By Theorem 8. /Lottery sets of cardinality 5
found by the characterisation procedure, for example [629%2145177261281).
9Lottery sets of cardinality 5 found by the characterisation procedure, for
example [669%14'175262282).
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Previous | Current Time

L(m,n,t; k) Best Best (sec)

I(12,5,7;4) 6:8 73:8 856
L(12,7,5;4) 6:8 7¢:8 -
L(13,7,5;4) 6:10 7¢:10 -
L(14,4,7;3) 6:8 70:8 32
L(14,5,8;4) 6:10 7%:10 6200
L(15,5,9;4) 5:8 76:8 4759
L(15,6,7;4) 6:10 7°:10 77517
L(15,8, 5;4) 6:11 7°€:11 -
L(16,5,9;4) 6:10 7°:10 2924
(16,9, 5;4) 6:9 7¢€:9 -
L(17,5,10;4) | 6:9 70:9 3381
L(17,6,8;4) 6:10 7¢:10 -
L(17,7,5;3) 5:7 6%:7 222
L(17,7,T;4) 5:9f 6°:9 -
L(18,5,7;3) 6:9 7%:9 358
L(18,6,8;4) 6:14 7b:14 -
1(18,7,5;3) 5:8 7°:8 | 1115644
L(18, 10, 5;4) 6:9 7¢:9 -
L(18,11,5;4) | 4:7 6%:7 905
L(19,6,6;3) 6:9 7¢:9 -
L(19,6,9;4) 5:10 7¢:10 -
L(19,7,5;3) 6:10 7¢:10 -
L(19,7,8;4) 4:8/ 6°:8 -
L(19,8,7;4) 4:8/ 6%:8 3603
L{19, 10, 5;4) 6:14 7¢:14 -
L(19, 11, 5;4) 5:8f 6°:8 -
L(20,6,9;4) 6:13 7%:13 -
L(20,7,6;3) 4:7 6°:7 825
L(20,8,5;3) 5:7 6°:7 -
L(20,8,7;4) 4:10 6°:10 -
L(20, 12, 5;4) 5:7 6°:7 5357

Table 7.2: 31 Improved bounds found via the characterisation technique
described in §4-5. The second column contains previously best known
bounds on lottery numbers, taken directly from [12] using the notation
lower bound : upper bound (both inclusive). The bound improvements
or new lottery numbers obtained are listed in the third column, while the
last column shows the execution time (in seconds) required to implement
the tree characterisation. Bounds and new lottery numbers in columns 2
and 3 are motivated as follows: ®No lottery sets of smaller cardinality found
by the characterisation procedure. ®Since L(m + 1,n+1,t + 1;k+1) >
L{m,n, t;k) [10]. °Since L(m+1,n,¢;k) > L(m,n,t;k) [10]. “By Theorem
1. By Theorem 9. /Upper bound due to Belic [2].
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above, a column involving the disjoint 6-set is deleted, the resulting lot-
tery set for (17,6,6;3) will have no disjoint 6-set, which contradicts the
characterisation of minimal lottery sets for {17, 6, 6;3). We conclude that
6 < L(18,6,6;3) < 7, which yields the desired result. |

Apart from the new lottery number in Theorem 8, a further 31 new lottery
numbers and improvements on previously best known bounds for a further
31 lottery numbers, as listed in [1] and [11], are given in Tables 7.1 and 7.2.
These results were all established using the tree characterisation method
described in §4-5, and were implemented on an AMD 1.8GHz processor
with 256Mb of memory.

Finally, the following theorem illustrates a technique that may be used
to improve lower bounds on lottery numbers, utilising the value of  for
smaller lotteries.

Theorem 9 L(19,6,9;4) > 6.

Proof: By contradiction. Suppose there is at least one lottery set £ of
cardinality 6 for (19, 6,9;4). As described in [5), it is possible to construct a
lottery set of the same cardinality for (18, 6,9;4) by deleting any column of
the tabular representation of £, and by adding crosses in any empty cell of
each row that contains only n —1 crosses as a result of the column deletion.
First note that £ cannot have an empty column, because then we have a
lottery set for (18,6,8;4) of cardinality 6, contradicting L(18,6,8;4) > 7
(see Table 7.2).

We consider two cases, namely when there exists a column with two crosses
and when there does not. If there is a column with 2 crosses, we delete
such a column. Then there are at least 8 (= 19 — 6 — 6 + 1) columns that
have no other crosses in the rows corresponding to the deletion. Of these,
choose two columns where the frequencies of the elements do not differ by
1. Since there are at least 8 columns to choose from, it is always possible to
make such a choice. For one construction put one cross in each of the two
chosen columns and for another construction put both the crosses in any
one column (of the two). The two constructions are then non—isomorphic:
suppose the frequencies of the elements in each column after the deletion
are {f1, f2, fa,..., fm—1}. If one adds two crosses in the two different ways
described above, only two frequencies are affected, say f; and f,. For two
constructions to be isomorphic, both must have the same set of frequencies
for the elements. Thus one would need {f1+2, fo} = {f1 +1, fa+1}, which
can only be true if fo — f; = 1. However, we chose f; and f; not to differ
by 1.
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Secondly, if there is no column with two crosses, then there must be at least
10 columns with only one cross each. We then may delete such a column
and put the deleted cross either in a column with frequency 1 or any other
frequency, which again will give two non-isomorphic constructions.

We have constructed two isomorphically different lottery set for (18,6, 9;4)
of cardinality 6. But this contradicts the facts that 7(18,6,9;4) = 1 and
L(18,6,9;4) = 6, hence the result follows. [ |

8 Unresolved cases

Lotteries for which L(m,n,t; k)-set characterisations could not be achieved
(due to computational complexity), are listed in Tables 8.1 and 8.2.

I(16,8,6,4) =6 | L(17,9,4;3) =6 | L(i7,9,6; 4)= I(18,7,8,4) =6
L(18,9,4;3) =6 | L(19,8,5;3) =6 | L(19,10,4;3) =6 | L(19,10,6;4) =6
L(20,7,9;4) =6 | L(20,10,6;4) =6

Table 8.1: Lotteries {m,n,t; k) for which it is known that L(m,n,t; k) = 6,
but for which L(m,n, t; k)-set characterisations could not be achieved.

6< L(17,7,5,3) <7 | 6<L7,7,1,4)<9 | 6< L(18,7,7,4) < 12
6< L(18,9,6;4) <7 | 6<L(18,11,54) <7 | 6< L(19,7,8;4) <8
6< L(19,8,7;4) <7t | 6 < L(19,11,5;4) <8 | 6< L(20,7,6;3) <7
6 < L(20,7,8;4) < 1 6 < L(20,8,5;3) < 7 6<L(20874)510
6<L(201043)<8 6 < L(20,11,5;4) < 12 | 6 < L(20,12,5;4) < 7

Table 8.2: Lotteries {m,n,t;k) for which L(m,n,t;k) is unknown, with
lower bound 6, and for which L({m, n,t; k)-set characterisations could not
be achieved, or bounds could not be improved. Upper bound due to Li
and Van Rees [13].

9 Conclusion

In this paper we considered lotteries for which lottery numbers (i) are either
known not to exceed 6, or (ii) for which the lower bounds are known not to
exceed 6. We characterised the overlapping structures of minimal lottery
sets (with cardinality at least 3) for 501 of these lotteries, which are listed
in [3]. In the process 32 new lottery numbers were established, and a
further 31 lower bounds were improved. We also provided a theorem that
characterises when a minimal lottery set has cardinality two or three.
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There are 10 lotteries for which lottery numbers within the ranges 2 <
k<4, k<t<1l, k £n <12 and max{n,t} < m < 20 are known
to be 6 (see Table 8.1), but for which the tree characterisation procedure
could not be implemented within a reasonable amount of time, due to
the computational complexity of the procedure. It is, however, anticipated
that these characterisations will be possible with the introduction of further
pruning rules, whereby the size of the characterisation tree can be reduced
further. Finally, there are 7 lotteries within the ranges 2< k <4,k <t <
11, k € n < 12 and max{n,t} < m < 20 for which lottery numbers are
either 6 or 7 (see Table 8.2); these lottery numbers can be established if
new pruning rules were to facilitate traversal of the characterisation tree for
all lotteries up to a depth of level 6 (excluding the domination test level)
— these cases therefore present an attractive opportunity for further work.

Some of the new lottery numbers and bounds listed in Tables 7.1 and 7.2
were also found independently by Li and Van Rees [13] more or less at
the same time that the results in this paper were obtained, but though
theoretical analyses. The characterisations determined in this paper also
provided useful ideas for finding new general upper bound constructions
(see [13]). An opportunity for future work might be to combine theoretical
results with computer searches.
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