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Abstract
For every integer ¢ and every positive integer k, let n = r(c, k) be the
least integer, provided that it exists, such that for every coloring

A:{1,2,...,n} = {0,1},

there exist three integers, z;, 1, 73, (not necessarily distinct) such that
A(zy) = A(z2) = A(zs)
and
) + x9 + ¢ = kzs.

If such an integer does not exist, then let r(c, k) = co. The main result
of this paper is that

_Jlel+1 ifciseven
r(e,2) = { o if ¢ is odd.

for every integer c. In addition, a lower bound is found for r(c, k) for
all integers c and positive integers k and linear upper and lower bounds
are found for r(c, 3) for all positive integers c.

Note: The major work for this paper occurred when the first author was an
undergraduate student at Clarion University of Pennsylvania, under the direction
of the second author.

Introduction

A function A : {1,2,...,n} — {0,1,...,¢t — 1} is called a coloring of the set
{1,2,...,n} with ¢ colors. If L is a system of equations in m variables, then we
say that a solution (z1, x, ..., Zm) to L is monochromatic if and only if
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Alz) = Az2) = -+ = B(zm).

In 1916, 1. Schur [16] proved that for every t > 2, there exists a least integer
n = S(t) such that for every coloring of the set {1,2,...,n} with ¢ colors, there
exists a monochromatic solution to

zy + Ty = 23,

The integers S(t) are called Schur numbers and are known for only a few small
values of t [17]. In 1933, R. Rado, who was a student of Schur, generalized the
work of Schur to arbitrary systems of linear equations. Rado was able to find
necessary and sufficient conditions to determine if an arbitrary system of linear
equations admits a monochromatic solution for every coloring of the natural
numbers with a finite number of colors [4, 10 - 12]. For a given system of linear
equations L, the least integer n, provided that it exists, such that for every
coloring of the set {1,2,...,n} with ¢ colors, there exists a monochromatic
solution to L, is referred to as the ¢-color generalized Schur number or the t-
color Rado number for the system L.

For a given system of linear equations L and a given natural number ¢, the
results of Rado may tell us that the ¢-color generalized Schur number for the
system L exists, but they do not tell us what this integer is. The problem of
determining the exact generalized Schur numbers for various system has
recently received renewed interest [1,2,5-9,13-15]. In [3], Burr and Loo
were able to determine the 2-color generalized Schur numbers for the equations

rnn+z2+c=1z3
and
T + 12 = k3

for every integer ¢ and for every positive integer k. In this paper, the
generalization of the above two equations is considered. We will need the
follows definitions.

Definition 1: For every integer ¢ and every positive integer k, let L(c, k)
represent the equation
L(c,k): zy +z2+c = kxs.

Definition 2: For every integer c and for every positive integer k, let
n =r(c, k) be the least integer, provided that it exists, such that for every
coloring of the set {1,2,...,n} with two colors, there exists a monochromatic
solution to the equation L(c, k). If no such integer exists, then let r(c, k) = oo.

Using the notation of Definitions 1 and 2, the following two theorems are the
above mentioned results of Burr and Loo.
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Theorem 1: For every integer c,

1) = dc+5 c>0
r(e1)= c—[g] +1 c<O.

Theorem 2: For every positive integer k,

5 k=1
1 k=2
(0,k) =19 k=3
h(k+1) k>4

In this paper the generalized Schur numbers for the equation
L(¢,2): o) +x0 + ¢ =23

are determined for every integer c. Also, linear upper and lower bounds are
found for the generalized Schur numbers for the equation

L(c,3): 21+ 23+ c=3x;3

for every integer ¢, and a conjecture is made as to the exact value of these
numbers. It is also shown that r(c, k) is infinite if c is odd and k is even, and a
lower bound for r(c, k) is given for every integer ¢ and every positive integer k.

Main Results

Before we determine the generalized Schur numbers for the equation L{c, 2),
we shall first prove the following three lemmas.

Lemma 1: Ifc is any odd integer and k is any even positive integer, then
r(c, k) = oo.

Proof of Lemma 1: Let an odd integer c and an even positive integer % be
given. We shall exhibit a coloring of the natural numbers with two colors that
avoids a monochromatic solution to L(c, k). Let A: N — {0,1} be defined by
Az = {0 if z is odd
(z) = { 1 if z is even.

If 2, and z, are natural numbers such that A(z1) = A(z,), then z; + 22 + ¢
will be an odd integer. Since kz; is even for every natural number z, there
does not exist a monochromatic solution to L(c, k). Therefore,

r(c, k) = o0
and the proof of Lemma 1 is complete. a

We shall now prove two lemmas that give lower bounds for the values of r{(c, k)
for all integers c and positive integers k.
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Lemma 2: For all positive integers c and k,

r(c,k) 2 [———Z[L‘i] +c].

Proof of Lemma 2: Let positive integers ¢ and k be given and let

k

We will exhibit a coloring of the set {1,2,...,n — 1} with two colors that’
avoids a monochromatic solution to L(c, k). Let

A:{1,2,...,n—-1} = {0,1}

0o 1gz<[HE] -1
A(x)={l {%E]Smsn—l.

be defined by

If 21, x, and z3 are integers such that A(z) = A(z) = A(z3) = 0, then
zyt+z+c 21+1+4+c¢

-(5)

2 kxa.

If 2, 7, and z3 are integers such that A(z,) = A(z;) = A(z3) = 1, then

2 2
)+ T2+ cC 2[ ZC]+[ :cl+c

()
SEER

=k(n-1)

2 k$3.
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Hence, there does not exist a monochromatic solution to L(c, k) and the proof
of Lemma 2 is complete. a

Lemma 3: For every negative integer c and every positive integer k,

r(c,k) > k[lc-l_—c

N

Proof of Lemma 3: Let a negative integer c and a positive integer k be given.

Let

We will exhibit a coloring of the set {1,2,...,n — 1} with two colors that
avoids a monochromatic solution to L(c, k). Let

A:{1,2,...,n-1} - {0,1}

A(m)={0 l<x<,-";C]—l
1

[ ;c]SxSn—l.

be defined by

a

If zy, z and x3 are integers such that A(z,) = A(z3) = A(z3) = 0, then

omve <[5 (5] )
o([55])
2(£52) +e

=k-1
Skxa.

A

If 21, z; and x5 are integers such that A(z1) = A(x,) = A(z3) = 1, then
Ty+z+c <(n-1)+(n-1)+c

(=]

+c
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< kz;.
Hence, there does not exist a monochromatic solution to L(c, k) and the proof
of Lemma 3 is complete.
We are now ready to determine the generalized Schur numbers for the equation
L(¢,2): oy +z2 + ¢ = 2zx3.
Theorem 3: For every integer c,

_Jled+1 ifciseven
r(e,2) = { 00 if c is odd.

Proof of Theorem 3: First we will consider the case where c is an odd integer.
From Lemma 1 it follows that

r(c,2) = 00
whenever c is an odd integer.

Next we shall consider the case where ¢ = 0. Since (1,1,1) is a solution to
L(0, 2), it follows immediately that

r(0,2) =1=|c|+ L

Next we shall consider the case where c is an even positive integer. Let an even
positive integer ¢ be given. From Lemma 2 it follows that

2[435 + e

r(c,2) 2 [ 5

] =c+1l=|c|+1
Next we shall show that
7(¢,2) < e} +1

by showing that for every coloring of the set {1,2,...,|c| + 1} with two colors
there exists a monochromatic solution to L(c, 2). Let a coloring

A:{1,2,...,lc]+1} — {0,1}
be given. Without loss of generality we may assume that
A1) =0.
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lfA(%) =0, then

2+c¢
(1,1, 5 )

is a monochromatic solution to L(c,2) and we are done. Hence, we may

assume that
2+4+c¢
=1.
2(%59)

(Lc+1,c+1)
is a monochromatic solution to L{c,2). If A(c +1) = 1, then

(2+C,2+C,C+l)

If A(c + 1) = 0, then

2 2

is a monochromatic solution to L(c,2). Hence, there exists a monochromatic
solution to L(c, 2) for both possible values of A(c + 1), and it follows that

r(¢,2) < |e| + 1.
Therefore,
r(c,2) =|c| +1

for every positive even integer c.

Finally, we shall consider the case where c is a negative even integer. Let a
negative even integer c be given. From Lemma 3 it follows that

2[3:€) - ¢
r(c,2) > l’[—z—z]———] =-c+1l=]|c|+1
Next we shall show that
r(c,2) <e| +1

by showing that for every coloring of the set {1,2, ..., |c| + 1} with two colors
there exists a monochromatic solution to L(c,2). Let a coloring

A:{1,2,...,]c|+1} - {0,1}
be given. Without loss of generality we may assume that
A(le] +1) =0.
IfA(z—';Iﬂ) = 0, then

2+
(1e+ 11et 1,22 1)
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is a monochromatic solution to L(c, 2) and we are done. Hence we may assume -
that
2+ |c|
Al —— ) =1.
(+5°)

(Llel +1,1)
is a monochromatic solution to L(c,2). If A(1) =1, then

2+k|2+k|1
2 }) 2 ?

If A(1) =0, then

is a monochromatic solution to L(c,2). Hence there exists a monochromatic
solution to L(c, 2) for both possible values of A(c + 1), and it follows that

r(c,2) <|c| + 1.
Therefore,
r(c,2) =|e| +1

for every negative even integer ¢ and the proof of Theorem 3 is complete. O

We shall now prove Theorem 4, which gives linear upper and lower bounds for
7(c, 3) for every positive integer c.
Theorem 4: For every positive integer c,
S5c+4
9

<r(c3)<ec
Proof of Theorem 4: Let a positive integer ¢ be given. Since (c,c,c) is a
solution to L(c, 3), it follows immediately that

r(c,3) < c.

Now, from Lemma 2 it follows that

2[2F<] + cl 5 (2(%) + c) _5c+4

r(c,s)z[ . - -

and the proof of Theorem 4 is complete. O

Results of Computer Experiments

The following table shows the results of computer experiments where the exact
values of 7(c, 3) were determined for the first twenty positive integers and the
first twenty negative integers. The lower bounds on r(c, 3) given in Lemma 2
and Lemma 3 are also shown.
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Lower bound Lower bound

¢ rlc3 from Lemma 2 ¢ r(c.3) fromLemma3
1 1 1 -1 8

2 2 2 -2 7 6
3 3 3 -3 9 6
4 4 3 -4 8 8
5 5 4 -5 9 9
6 6 4 -6 11 11
7 7 5 -7 11 11
8 8 6 -8 13 13
9 9 6 -9 14 14
10 7 6 - 10 16 16
11 8 7 -11 16 16
12 9 8 -12 18 18
13 8 8 -13 19 19
14 9 9 -14 21 21
15 9 9 - 15 21 21
16 10 10 - 16 23 23
17 11 11 - 17 24 24
18 11 11 -18 26 26
19 11 11 -19 26 26
20 12 12 —-20 28 28

It should be noted that the lower bound for r(c, 3) given in Lemma 2 is equal to
r(c,3) for c € {13,14,...,20}, and that the lower bound for r(c, 3) given in
Lemma 3 is equal to r(c, 3) forc € { — 4, —5,..., — 20}. This fact leads the
authors to the following conjecture.

Conjecture: For every integer ¢ > 13

2 lﬂ.l +c
T’(C, 3) = r 33 1 ’
and for every integerc < —~ 4 ) 3
3[35<] - ¢
(c,3) > 5 2]
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