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ABSTRACT

In this paper, we define the Pell and Pell-Lucas p—numbers
and derive the analytical formulas for these numbers. These
formulas are similar to Binet’s formula for the classical Pell
numbers.
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1. Introduction

In [2], the authors define the Fibonacci and Lucas p—numbers and
give the analytic formulas for these numbers. Afterwards, they show that
these formulas are similar to Binet’s formulas for the Fibonacci and Lucas
numbers. The purpose of this article is to define Pell and Pell—Lucas
p—numbers and derive the analytical formulas for these numbers.

Now, we define the recurrence relation for the Pell p— numbers. For
r=0,1,2,..., the recurrence relation is given as follows

Po(n)=2P,(n-1)+P,(n—p-1) (1)
for initial conditions

Pp(l)=a1, Pp(2)=a2,...,P,,(p+1)=a,,+1 . (2)
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where a3, ag, ..., Gp41 are integers, real, or complex numbers.
In particular, we can take these initial conditions as follows
Po(ny=2"1 n=12,...,p+1 (3)

For different values of p, the recurrence relation generates different numerical
sequences. For example, in the case p = 0, the recurrence relation is given

as follows
Py (n) =3Py (n—1)

for the given initial condition
R1)=1,
which generates the sequences 1,3,9,27,81....
If we take p = 1, we obtain
Pi(n)=2P (n-1)+Pi(n-2), (4)

for initial conditions P; (1) = 1, P;(2) = 2. This recurrence relation gen-
erates Pell numbers

Py (n) = {1,2,5,12,29,70,169, ...}

Taking initial conditions P; (1) = 2 and P; (2) = 6, we obtain Pell-Lucas
sequence
Q1 (n) = {2,6,14,34,82,198,478,...} .

It’s known that the characteristic equation for the classical Pell numbers

is given as follows
2 -22-1=0. (5)

This equation has two real roots;
1
x1=a1=1+\/§, $2=—E'=1-\/§.
1

Binet’s formula allows all Pell numbers P; (n) and Pell—Lucas numbers
Q1 (n) to be represented by the roots z; and z2 of equation (5);

Pi(n) = ﬁ-}%ﬂ

n
'1‘ ( 1)
23]

Q1 (n)
wheren=0, £1, £2, ....



2. Some Properties of the Pell p—sequences
2.1. Pell and Pell-Lucas Numbers

For positive and negative values of n, we show the Pell and Pell—Lucas
numbers in the following table.

nfO 1 2 3 4 5 6
P[0 1 2 5 12 29 70
P(-n) |0 1 -2 5 -12 29 -70
Qn)|2 2 6 14 3¢ 8 198
Qi(-n) |2 -2 6 -14 34 -82 198

From this table we see that for all the even and odd values of n, we
have the following correlations for the Pell and Pell-Lucas numbers

P (2k) = —P (=2k), P(2k+1)=Pi(=2k—1)
Q1(2k) = Qu1(-2k), Qi (2k+1)=-Q1(-2k-1).

2.2. Pell and Pell-Lucas p—Numbers

Let us consider Pell p—numbers that are given by (1) at initial condi-
tions 3. For a given set of Pell p—numbers

Pp(0), Po(~1), Pp(-2), ..., Po(-p), ..., By(-2p+1),...
we will use recurrence relations and initial conditions.
P,(p+1)=2P,(p)+ P, (0).

According to (3), P,(p+1) = 2 and P, (p) = 2771, thus P, (0) = 0.
Continuing in this way, we obtain

Po(-1)=Pp(-2)=...=PFPp(-p+1)=0.
Let us write the Pell p—number P, (1) in the form
Pp (1) =2P,(0) + P, (-p),
and we get P, (—p) = 1. Also we have

Bo(=p=1)=Pp(-p-2)=...=P,(-2p+1)=0.



The values of the Pell p—numbers for negative and positive values of
n are given in the following table.

n ... -5 -4 -3 -2 -1 012 3 4 5
P(n) ... 29 -12 5 -2 101 25 12 29
P(n) ... 1 -2 0 1 001 2 4 9 2
Py(n) ... O 0 1 0 o001 2 4 8 17
Pi(n) ... O 1 0 0O 001 2 4 8 16
The characteristic equation of the Pell p—numbers is
ZPtl — 227 - 1=0. (6)
We note that this equation has (p + 1) roots 1, 23, 3, ..., Tp+1. The

positive root of the equation is ap, and let ) = ap.
Now, we give the following theorem associated with the properties of
the characteristic equation of the Pell p—numbers.

Theorem 1 (2)For the given integer p > 0, the following relationship for
the roots of the characteristic equation zP*! —2zP — 1 =0 is valid;

:c1+xz+---+:vp+m,,+1 =2

Z1T2: - TpTp+l = (-1)?
T1Z2 + T1%3 + 2134 + « + + + T1Tp + T1Tp41 + T2T3 + T2T4
+-o 4+ ZT%p + T2Tpyr + 00+ Tp-1Tp + Tp-1Tp+1 + TpTpy1 = 0

T1T2T3T4 + L1X2T3Ts + *** + Tp-2Tp-1TpTp+1 = 0

T1T2%3 * * * Tp—2Tp-1Tp + 2123T4 * * * Tp-1TpTp+1
-+ ToTIT4 -+ Tp—1TpTps1 =0

Proof. The characteristic equation zP*! — 227 — 1 = 0 has p + 1 roots
T, T2, T3, --., Tp+1. Therefore, we write

P — 2P —1=(z—1) (z — 22) (T — 23) -+ (T — Tp) (T — Tps1) = 0.

For the even values of p, we obtain



2P 2P — 1= (2-z) (T~ 22) (T —T3) -+ (2 — 2p) (% — Tps1)

= 2Pl —(my+zp+ +Tp+Tpy) 2P
+ (122 + 2123 + T1Z4 + - -+ + 71T,
+ T1Tp41 + T2T3 + TaZy + -+ - + TaTp + ToTpp
+etTp1Zp + Tp—1Tp41 + $p$p+1)$p_l
— (212223 + T123%q + - -+ + T1TpTpy1 + T2T3T4
+ ZoT3T5 + + -+ + TaTpTpy1 + * + - + Tp_1TpTpy1) 2P 2
+ (217223T4 + T1T2T3T5 + - - + Tp—2Tp_1ZpTps1) P2
+ o+ (T172T3T4 Tp_oZTp_1Tp + T1T3T4 -+ Tp_1ZpTp+1
+ o+ ToZ3Ty - Tp_1TpTp41)T — T1T2TIT4 * + * TpTp1

= 0.
Thus
L1 +22+- + T+ 2o =2
T1T2 + 2123 + Z1T4 + - - - + T1Tp + T1Tp41 + TaTg + T2y
+or+ ToZp + ToTpyy + 0+ Zp—1Tp + Tp_1Tp41 + TpZpy1 =0
T1Z2Z3 + T1T3T4 + +*+ + T1TpTp41 + T2T3T4
+Z2T3T5 + -+ + ToaTpTpr1 + 0 + Tp1TpTp1 =0
T1T2Z3T4 + T1Z02T3%s + +++ + Tp-2Tp—1ZpTp1 =0
T1T2Z3 * ** Tp—2Tp—1Tp + T1T3T4 * * * Tp—1TpTp+1
+eF ToT3Tyc Tp1TpZpyr =0
T1T9T3%4 TpTp41 =1
For the odd values of p, we have
aPt - 227 — 1= (z-21)(z—22) (T~ 23) - (2 — 2p) (T — Zpp1)

= gpt+! "(-’171 +x2+°"+$p+xp+1).’rp
+(Z1T2 + T1Z3 + T1T4 + - + T1Tp + T1Tpy
+ Z2%3 + TaZg + -+ + T2Zp + T2Tpyy + -+
+ Zp_1ZTp + Tp-1Tp41 + z,,:z:,,+1)x”“1 — (212273
+ Z1T3%4 + - + T1TpTpy1 + T2T3T4 + T2T3T5
+ o+ ZZpTpsr + 0 F Tp_1TpTppr )TP T2
+ (2122T3T4 + T1T2T3T5 + - + Tp_2Tp_1TpTps1) TP3
+ - — (21Z2z3T4 - - Zp-2Tp—1Tp + L123T4 * - Tp—1TpTp41
S RERIE o DY 2% YR :vp_lzp:rp+1)x + T1T2T3T4 *  * TpTpy1



Then

x]_+x2+"'+$p+3p+l =2
T1To + T1T3 + 124 + -+ + T1Tp + T1Tp41 + 23 + T2T4
4o 4 ToTp + TaTpy1 + - 00 F Tp-1Tp + Tp-1Tpt1 + TpTpy1 =0

T1ZT2Z3 + T1Z3%4 + -+ + T1TpTpy1 + T2L3T4 + T2T3T5
+ o+ T2TpTpir + 0 F Tp-1TpTpi1 =

T1T2T3T4 + T1T2T3T5 + ++* + Tp—2Tp-1TpTps1 =0
T1T2ZL3 * * * Tp-2Tp~1Zp + T1T3T4  * * Tp—-1TpTp+1
4+ T2TITY 0 Tp-1TpTp+1 = 0
T1T2T3T4 " TpTpi1 = —1

Thus, the proof is clear. m

Let us consider the following expression for the roots of characteristic
equation (6)
(@1 + T2+ +Tp + Tps1)*

where k=1, 2, ..., p. From Therem 1, we can write
(z1+ 22+ +(L'p+$p+1)k =2k,
On the other hand, this expression can be factorized. If we use the
binomial, trinomial and multinomial formulas, for the given k this formula

will include the sum of all the kt* powers of the characteristic equation that
are taken with the coefficient 1, that is, z¥ + 2§ +z§ +z§ +- -+ 2k + 2k .

Now we give the following theorem.

Theorem 2 (2)The following identity is true for the roots of the charac-
teristic equation zP*! — 22 —1=0

(a:1+:c2+-~+a:p+:cp+1)k=m'f+z§+z§+w§+---+z§+m§+l = 2F

wherep=1, 2,3, ...andk=1, 2,3, ..., p

3. The Binet formulas for the Pell and Pell-Lucas p—~numbers

Let us consider Binet's formula for the classical Pell and Pell-Lucas
numbers. For a given p > 0, using Binet’s formula for the classical Pell and



Pell-Lucas numbers, we derive the following Binet’s formula that gives
Pell p—numbers.

Pp (n) = kl (.'211)‘n + k2 (fl)z)n +--- 4 kp.(..l (xp.,.l)" (7)

where 21,3, ..., Tp, Tp41 are roots of characteristic equation, and ky, ks, . . . s Kp+1
are constant coefficients that depend on the initial terms of the Pell p—numbers.

We will consider the Pell p—numbers given by the recurrence relation
Py(n)=2P,(n— 1)+ Pp(n—p—1)
with initial conditions
P,(0)=0, P,(n)=2"" Y, n=1,2,...p+1.
Since we calculate the numerical values of the coefficients k;, ko, . . ., kpt1,
consider solutions of the following system of the equations

Pp(O) =k +ko+...+kp1=0
P,(1)=kiz1 + kozo + ...+ kpr1Zp41 =1
Pp(2) = kwat + kozd + ... + kppya2, =2 (8)

Po(p) = kazl + koxd + ... + kpy2b, | =271

3.1. The Binet formula for the Pell and Pell-Lucas numbers

Taking p = 1, we have the characteristic equation z2 — 2z —1 = 0, and
the roots of this equation are z; = &y = 1 + v/2 and Ty = _ai =1-+2.
1
Thus, the formula (7) for the case p = 1, takes the following form

1

1 n
Py (n) =ki(a1)" + k2 (—a-)
with the system of algebraic equations
P, (0) = ki +ko

1
P1 (1) = kla1 + kg (—-—)
(251
where P; (0) = 0 and P, (1) = 1. The solutions of system are k; =

v2
4 ’

ke = —\—:—5. Therefore, we obtain the well-known Binet formula for the



classical Pell numbers. Taking k; = k2 = 1, we get Binet’s formula for the
classical Pell-Lucas numbers.

3.2. The Binet formulas for the Pell and Pell-Lucas
2—numbers

For the case p = 2, the characteristic equation, recurrence relation,
and initial conditions are given as follows.

22-222-1=0

Pg (n)
P, (0)

2P, (n-1)+ P (n-3)
0, R(1)=1, P,(2) =2

The roots of the characteristic equation are

k8 2
;= gt gpt 3 = 2205569431
k 4 2 V3(k 8
T = 'ﬁ"§E+§+“T(E‘§)
= —0.1027847152 + $0.6654569515
- _i__4_+2_,~_‘/_§ k_8
T8 = "1273% "3 "2 \6 3%k

= -0.1027847152 — i0.6654569515
where k = m .
Binet’s formula for the Pell 2—numbers is
Pa(n) = ky (z1)" + ko (z2)" + ka (z3)" .

The numerical values of k;, k2, k3 are solutions of the following system
Py(0) = ky+ka+ks
P(1) = kizy + kox2 + kazs
P(2) = ki(21)” +k2(22)’ + ks (23)
where P, (0) =0 and P, (1) =1, P»(2) = 2. Solving the system, we obtain

ky = 038216
k; = -0.19108 —10.088 541
k3 = -—0.19108 + ¢0.088 541

10



Therefore, the Binet’s formula for the Pell 2—numbers is

Py(n) = (038216)( ;;4-2)n

n
+(- 019108—10088541)( h-f+i+if(t-8))
+(~019108 +:0.088541) (— 5 - & + 3 i (5 - &))"

Taking k; = kg = k3 = 1, we obtain the Binet’s formula for the Pell-
Lucas 2—numbers

k8 2\" E 4 2 Bk 8\\
Q:fm) = (E+§E+§) +(“ﬁ—3—k+§+’7(a-§))

For n = 0, we obtain Q; (0) = 3. According to the following recurrence
relation

Q2(n) =2Q2(n— 1)+ Q2(n - 3)

and initial conditions Q2 (0) = 3, Q2 (1) = 2, Q2(2) = 4, the Pell-Lucas
2-—sequence is
3,2,4,11,24,52,115....

3.3. The Binet formulas for the Pell and Pell-Lucas
3—numbers

For the case p = 3, the characteristic equation, recurrence relation,
and initial conditions are given as follows

zi-22°—1=0

Py(n) = 2P3(n—1)+P3(n—4)
P;(0) 0, B(l)=1, P3(2)=2, P3(3) =

11



The numerical values of characteristic equation are

zy = 2.106919340

z, = —0.7166727493

z3 = 0.3048767045 + 0.7545291731
z4 = 0.3048767045 — i0.7545291731

Formula (7) for the Pell 3—numbers takes the following form
Ps(n) = ky (z1)"™ + k2 (z2)" + k3 (x3)" + ka (z)" -
The values of ki, ko, k3, k4 are solutions of the system

Ps(0) = ki+ke+ks+ks

P; (1) = kyz1 + kozo + ka3 + kazs
Ps(2) = ki(z1)?+ke (22)% + k3 (z3)? + ka (z4)*
Ps(3) = ki(z)+ka (z2)® + k3 (z3)* + ka (24)°

where
P;(0)=0, Ps(1)=1, P5 2)=2, P(3) =4

These solutions are

ky = 041192

ko = -0.11278

ks = —0.14957 —1i0.094428
ks = —0.14957 +i0.094428

Thus, we obtain Binet’s formula for the Pell 3—numbers in the following
numerical form
Ps(n) = (0.41192)(2.106919340)"
+(—0.11278) (—0.7166727493)™
+ (—0.149 57 — 0.09 4428) (0.3048767045 + 10.7545291731)"
4 (—0.149 57 + i0.09 4428) (0.3048767045 — 10.7545291731)" .

Taking k; = k2 = ks = ks = 1, we have Binet’s formula for the
Pell-Lucas 3—numbers
Qs(n) = (2.106919340)" + (-0.7166727493)"
+ (0.3048767045 + 40.7545291731)™
+ (0.3048767045 — i0.7545291731)" .

12



Using Binet’s formula, we obtain the initial terms of the Pell—Lucas 3—numbers.
Hence @3 (0) =4, Q3(1) =2, Q3(2) =4, Q3(3) =8, and the Pell-Lucas
3—sequence is

4,2,4,8,20,42,88,184....

3.4. The Binet formulas for the Pell and Pell-Lucas
4—numbers

For the case p = 4, the characteristic equation, recurrence relation,
and initial conditions are given as follows

28 -2z -1=0

P4(n) = 2P4(n—1)+P4(n—5)
Pi0) = 0, Py(1)=1, Py(2) =2, Py(3) =4, Ps(4) =8.

The numerical values of the characteristic equation are

z; = 2.055967397

T2 = 0.5541864024 4 i0.6945926546
zz3 = 0.5541864024 — i0.6945926546
z4 = —0.5821701008 + ¢0.5263901664
zs = -—0.5821701008 — 40.5263901664.

Binet’s formula for the Pell 4—numbers is
Py(n) = ki (21)" + k2 (z2)" + k3 (z3)" + ka (z4)" + ks (25)" .
The values of ki, k2, k3, k4 are solutions of the following system

Pi0) = ki+ko+ks+ks+ks

Py(1) = kizy + koo + k3za + kazq + kszs

P(2) = ki(z1)? + k2 (22)? + ks (z3)° + ka (24) + ks (5)°
Pi(3) = ki(21)’ +ka(22) + ks (2a)® + ka (2a)® + ks (z5)°
Pi(4) = ku(m1)" + ko (22)" + ko (23)* + ka (za)" + k5 (z5)°

where P4(0) = 0, P4(1) =1, P4(2) = 2, P4 (3) =4, Py(4) = 8. The
numerical values are

13



ki, = 0.43863

ko = -0.1327-—10.088136
ks = —0.13274-40.088136
ks = -0.086612 — ¢0.020893
ks = -0.086612 4 :0.020893

Binet’s formulas for the Pell and Pell-Lucas 4—numbers are

Pi(n) = (0.43863)(2.055967397)"
+(—0.1327 — i0.08 813 6) (0.5541864024 + 0.6945926546)"
+(=0.1327 + 0.08 813 6) (0.5541864024 — 10.6945926546)"
+(—0.08 6612 — 0.020893) (~0.5821701008 + 10.5263901664)"
+(—0.08 6612 + 10.020893) (—0.5821701008 — i0.5263901664)"

and

Qs(n) = (2.055967397)" + (0.5541864024 + i0.6945926546)"
+(0.5541864024 — i0.6945926546)"
+ (—0.5821701008 + 10.5263901664)"
+(—0.5821701008 — 0.5263001664)" .

The initial terms of the Pell—-Lucas 4—numbers are
Qa(0)=5, Qa(1) =2, Q4(2) =4, Q4(3)=8, Qa(4) =16.
Hence, the Pell-Lucas 4— sequence is
5,2,4,8,16,37,76,156,320...
and the recurrence relation is

Qi(n)=2Qs(n—1)+Qs(n—5).

3.5. The Binet formulas for the Pell and Pell-Lucas
p—numbers (a general case)

Theorem 3 For the integer p > 0, any Pell p—number P, (n) can be rep-
resented as follows

By (n) = k1 (z1)" + ko (z2)" + - -+ + Kpa (Zp41)" 9)

14



where T1,%3,...,Zp41 are the roots of the characteristic equation zPt! —
2zP - 1 = 0 and ky, ko,...,kp+1 are constant coefficients of the system in

(8).

Proof. From equation (7), we have
FBo(p+1) =k (z)" + ko (@2)P 4 ki (2p00)PTY

The roots, z1, %2, ...,Zp41, of the characteristic equation have the following
property.
zp =2z}~ + 2P

where k = 1,2,...,p+1 and n = 0,%1,+2,.... From this property, we
have

B+l = 20k (21)" + k2 (@)’ + - + kpy1 (Tps1)?]
+ [k @)+ k2 @2+ ks ()]

Therefore, P, (p+ 1) = 2P, (p) + P, (0). The basic recurrence relation is
true for P, (p + 1) . Moreover, we can easily prove that this formula is valid
for all positive values of n. Now, we prove that the formula is true for
negative values of n. Taking n = —1 in equation(7), we obtain

Pp(=1) =k (z1) 7 + ko (x2) T+ - 4 kpyy (2prr)

Since 2} - 227" =z} "P~!, for the case n = p, we obtain

ah —2207t = zit.
Therefore,
Bp(-1) = [ki(z1)” + ko () + -+ kp+1 (Zps1)"]
-2 [kl (xl)p—l + ko (zg)p_l + oot ki ($p+1)p_l]
and then

P,(~1) =P, (p) — 2P, (p— 1) = 0.

Similarly, it is easy to prove that formula (9) is valid for all negative values
ofn. m

Theorem 4 For a given integer p > 0, the Binet’s formula

Qp(n) = (z1)" + (z2)" +-- - + (Tp+1)" (10)

15



where T1,Z2, . .., Zp41 are the roots of the characteristic equation, gives the
Pell—Lucas p—sequences Qp (n) which can be ezpressed by the recurrence
relation

Qp(n)=2Qp(n“1)+Qp("_p_l)

with the following initial conditions

Qp(0)=p+1, Qp(n)=2" forn=1,2,3,...,p.

Proof. For the case n = 0, we rewrite the formula (10)
Qp(n) = (@1)° + (22)" + -+ + (@)’ =141+ +1=p+1
For the cases n = 1,2,3,...,p, we write
Q1) = z1+z2+-+2Zpn

QRp(2) (1) + (2)° + -+ + (Tp41)?
Q) = (21)*+ (22> + - + (Zps)’

Q@) = (z1)”+ ()" + -+ (Tps1)’.

From Theorem 2, the expressions we previously considered are respectively
equal to 2,22,23,...,27. This proves that formula (10) is true for the cases
n=123,...,p

The validity of formula (10) is proved similarly to Theorem 3.

We calculate the initial conditions of Pell—Lucas p—sequences by using
(10) and Theorem 2. We have forn =1,2,3,...,p

Qp(0) = p+1
Qp(n) = 2.

Therefore, the Pell—Lucas p—sequence is determined by the recurrence
relation

Q,,(n)=2Qp('n.—-1)+Qp(n—p—1).

REFERENCES

(1] Koshy, T., Fibonacci and Lucas Numbers with Applications, A Wiley-
Interscience Publication, 2001.

16



[2] Stakhov,A., Rozin, B., Theory of Binet's formulas for Fibonacci and
Lucas p—numbers, Chaos, Solutions&Fractals, 27:1162—1177, 2006.

[3] Vajda, S., Fibonacci and Lucas Numbers, and the Golden Section
Theory and Applications, Ellis Harwood Limited, 1989.

[4] Vorobiev, N.N., Fibonacci Numbers, Birkhauser Verlag, 1992.

17



