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Abstract

A complete paired comparison digraph D is a directed graph in
which zy is an arc for all vertices z,y in D, and to each arc we
assign a real number 0 < a < 1 called a weight such that if zy has
weight a then yz has weight 1 — a. We say that two vertices z,y
dominate a third z if the weights on zz and yz sum to at least 1. If
z and y dominate all other vertices in a complete paired comparison
digraph, then we say they are a dominant pair. We construct the
domination graph of a complete paired comparison digraph D on
the same vertices as D with an edge between z and y if z and y
form a dominant pair in D. In this paper we characterize connected
domination graphs of complete paired comparison digraphs. We also
characterize the domination graphs of complete paired comparison
digraphs with no arc weight of .5.

Introduction.

A tournament is an oriented complete graph. Let V(D) and A(D) denote
the vertex and arc set of a digraph D respectively. If zy € A(D), we say
that z beats y and write  — y. Vertices z and y dominate a tournament
T if for all vertices z # z,y, either £ — z or y — 2. The domination graph
of a tournament T, denoted dom(T'), is the graph on the vertices V(T)
with [z,3] € E(dom(T)) if and only if z and y dominate T. Domination
graphs of tournaments were introduced by Merz et al. [7] in conjunction
with competition graphs, and have been characterized in a series of papers
(see [4], [7], [8]). This work was extended to what is called k—domination
in a paper by McKenna et al.[6].

Recently, K. Factor [3] and J. Factor (2] considered domination when
either ties are allowed in the tournament or when the digraph is a proper
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subgraph of a tournament. Bergstrand and J. Friedler [1] have also consid-
ered this situation. Garth Isaak [5] suggested looking at domination graphs
of complete paired comparison digraphs.

A complete paired comparison digraph, D, is a complete symmetric di-
rected graph so that for each arc zy we associate a real number between 0
and 1, denoted wxzy, such that wyz =1 — wzy,. We also refer to a complete
paired comparison digraph as a PCD, rather than the awkward CPCD.

We can think of a PCD as a model in which each vertex competes with
all others, where if z,y € V(D), wz, denotes the probability that z will
beat y. Based on this we define a concept of domination in PCDs. If D is a
PCD, and z,y,z € V(D) we say that z and y dominate z if wz, +wy, > 1.
This is analogous to the situation in a tournament in which we require
that either z or y beat 2. Continuing the analogy to tournaments, we can
go further still and ask the question as to which pairs of vertices {z,y}
dominate D. We say that vertices z and y form a dominant paeir in a
complete paired comparison digraph D if for all z € V(D) — {z,y} we have
Wz, + Wy, > 1. Since a tournament can be considered a PCD with arc
weights 0 or 1, observe that a dominant pair in a tournament is also a
dominant pair in the tournament when considered as a PCD.

If D is a PCD, then we define the domination graph of D, denoted
dom(D), on the same vertices of D with [z,y] an edge of dom(D) if and
only if {z,y} is a dominant pair. In this paper we examine dominant pairs
in PCDs by studying the structure of domination graphs. Surprisingly,
there is a distinction between domination graphs of PCDs in which some
competitors are equally matched (i.e., the arcs between them have weight
.5) and domination graphs of PCDs having no equally matched competitors.
We characterize domination graphs of PCDs in which wy, # .5 for all
z,y € V(D). We also characterize domination graphs of PCDs in which
the domination graphs are connected graphs.

1 Preliminary Results.

In this section we give some preliminary results that will be used throughout
the paper. A key to this study is the following lemma.

Lemma 1.1 Let D be a complete paired comparison digraph. For any 2
vertez disjoint edges in dom(D), say [r, s] and [u,v], we have that in D

Wry = Wys = Wy = Wyr.
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Proof. Since {r,s} and {u,v} are dominant pairs in D, we know that
Wyr + Wyr 2 1, Wry + Wey 2 1, Wy + Wry > 1, and wy, + wy, > 1. Also,
by the definition of 8 PCD, wyy + wyr = 1, Wy + Wey = 1, way +wys =1,
and wy, + wy, = 1. Thus,

wru=1_wur5wur=1_wruSwav=l“wvagwus=l_w3u < Wry,

and so
Wry = Wys = Way = Wyr.

a
Let n be an odd integer, and S a set of "T“ integers between 1 and
n —1 such that if z,y € S, then z+y # 0 (mod n). We define a rotational
tournament, T(S) with vertices {1,...,n} withi — jifand onlyif j—i = s
(mod n) for some s € S. We call S the symbol of T(S). We are especially
concerned with the rotational tournament of order n denoted U, whose
symbol is the set of odd numbers between 1,...,n — 2. From U, we can
define an associated complete paired comparison digraph. Choose 0 <p<
1. We define the PCD U, , on vertex set {1,2,...,n} by wi; = p if and
only if j — 7 is odd modulo n, and w;; = 1 — p otherwise. Let C, denote
the undirected n—cycle.

Lemma 1.2 [f n is odd, and C, is an induced subgraph of the domina-
tion graph of some complete paired comparison digraph D, then the vertices
which induce the cycle in dom(D) induce U, p, in D, for some 7,0<p<1.

Proof. We assume V(C,) = {1,2,...,n} and E(C,) = {[l,i+1]:1<i<
n —1}U{[n, 1]}. Suppose that n > 5. Consider the arc 15,2<5<n~-2.
Assume that j — 1 is odd. Let wy; = p. Apply Lemma 1.1 to edges [n, 1]
and [7,7 + 1] to see that wi; = wjn = Wy(j41) = Wi+ = p. Apply
Lemma 1.1 to edges [1,2] and [j + 1, + 2] to see that W(i+2)1 = Wi(j41) =
1 — w11 = 1 —p. Thus, Wi(j+2) = P, and wy(j41) = 1 — p. This implies
that all arc weights w;; are p when j —11is odd and 1— p when 7 —1 is even,
2 < j < n. By an identical argument with ¢ in place of 1,ifw;; =qforj—i
odd, then all arc weights w;; are ¢ when j — i is odd and 1 — g when 7 -1
iseven. Thus, p=wja=1—1wy =1-gq. So, P+ q = 1. Consequently, in
D, w;; = p if and only if j — i is odd modulo n, and w;i; =1 — p otherwise.
Thus, V(C,) induces Uy, , in D.

To complete the proof, suppose that n = 3. Then, since {1,3}, {1,2}
and {2, 3} form dominant pairs, wya + w3y > 1, w3 + w3 >1, and wy; +
ws; 2 1. This means that wys + (1 — wea) > 1, wo3 + (1-ws)>1,and
wa; + (1 ~wy2) > 1. Thus,

wyz 2 wo3 > w31 2 Wiz,

and so the result follows. m|
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Lemma 1.3 Let D be a complete paired comparison digraph with at least 4
vertices. Then, dom(D) = Ky, if and only if wzy = .5 for allx # y € V(D).

Proof. Suppose dom(D) = K, and pick z # y € V(D). Asn > 4,
there are vertex disjoint edges [z, z'] and [y,%'] in dom(D). By Lemma 1.1,
Wgy = Wyz' = Wxty = Wyz. Now, apply Lemma 1.1 to edges [z,3] and [z'y]
to see that wyz = wzg/ = wary = wyry. Therefore, wry = wyry = wyy. But
Wyz = 1 — Wzy, SO Wyy = Wyz = .5, as desired. The converse is immediate.

a

Note, it was shown in Lemma 1.2 that if D is a PCD with 3 vertices
z,9, z so that wzy = wy; = w;z > .5, then dom(D) = K3.

Theorem 1.4 Let D be a complete paired comparison digraph, and S C
V(D). Let D' be the PCD induced on S, then the subgraph of dom(D)
induced on S s a subgreph of dom(D’).

Proof. Let {z,y} be a dominant pair in D, with z,y € S. Then, for all
v € V(D) — {z,y}, wzv + wyy 2 1. In particular, this is true of all v € S.

Thus, {z,y} is a dominant pair in D’. This proves our result. a

If Dis a PCD, v € V(D), and S C V(D), then we define the set Of (v)
by
O (v) = {z € S : wyz > .5}.

If S = V(D), then OF ) (v) will be abbreviated as O* (v).

Lemma 1.5 Let D be a complete paired comparison digraph, v € V(D),
and S C V(D). Then, O%(v) forms an independent set in dom(D).

Proof. Let z,y € O (v). Then, wzy < .5, and wyy < .5, 50 Wzy+wyy < 1.
That is, {z,y} does not form a dominant pair. O

The next proposition indicates why a characterization of domination
graphs of PCDs is difficult. Consider the situation for tournaments. There
are strict requirements on a graph G so that there exists a tournament T
for which dom(T') contains G as an induced subgraph. This is not so in the
context of PCDs since any graph will do, as seen in the next proposition.

Proposition 1.6 Let G be a graph, then there exists a complete paired
comparison digraph D for which dom(D) contains G as an induced sub-
graph.

Proof. Let G be a graph on n vertices, and construct a PCD D in the

following way. Start with V(D) = V(G). For each z,y € V(G), let wzy =
.5. Now, for each pair {i,j} of nonadjacent distinct vertices in G, add a
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vertex v;; (same as vj;;) to V(D), and set wy,;; = wy,,; = 1. Also, for each
z € V(G) with [i,2] € E(G) or [j, 2] € E(G), set Wy,; = 1. Set all other
weights to .5. We now show the construction gives the desired result.

Consider two vertices r,y € V(G). Suppose that [z,y] € E(G). If
[z, y] & dom(D), then there is a z € V(D) so that w,, + wy, < 1. Because
arc weights are 0, .5, or 1, this implies that at least one of wx, or wy, is 0.
Suppose wz; = 0; then by construction z = vy for some vertex k. But,
since [z,y] € E(G), the construction yields wy, = 1. So, we, + wy: = 1, a
contradiction. Hence [z, y] € E(dom(D)).

On the other hand, if [r,y] ¢ E(G), then using z = v, we see that
Wrz + Wy, = 0+ 0 = 0 so that {z,y} is not a dominating pair in D. That
is, [x,y] & E(dom(D)). So, G is an induced subgraph of dom(D). a

2 Complete Paired Comparison Digraphs
With No Arc Weight .5.

As Proposition 1.6 shows, characterizing the domination graphs of PCDs
is not an easy task. However, the problems seem to arise from equally
matched competitors. So, in this section, we will assume that wg, # .5 for
every arc zy in our PCD. This is not such a bad assumption for it seems to
be rare that two competitors are truly evenly matched. This assumption
also gives a strong relation between tournaments and PCDs, as we shall
see.

Let D be a PCD with no arc weight equal to .5. With D we associate a
digraph T defined on the same vertices of D, where z — y in T if Wzy > 5.
So for all z,y € V(T'), we have exactly oneof z — yory — z, i.e. T is a
tournament.

Lemma 2.1 Let D be a complete paired comparison digraph with no weight
equal to .5, and T the associated tournament. Then dom(D) is a subgraph
of dom(T). Purthermore, if D has only two weights, a > .5, and 1 —a, then
dom(D) =dom(T).

Proof. Let {z,y} be a dominant pair in D. Then for each v € V(D) —
{z,y}, Wy + wyy > 1. So, since wyy # .5 and wy, # .5, either wy, > .5 or
wyy > .5. This implies that either z — v or y — v in T. Thus, {z,y} is a
dominant pair in 7. So, dom(D) is a subgraph of dom(T).

Now, suppose that D has only two weights, a > .5 and 1 —a. Let {z,y}
be a dominant pair in T. That is, for any other vertex v, z — v or y—u,
i.e., wyy > .5 0r wyy > .5. As a > .5, this implies that w;, =a > 1—a or
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wyy =a > 1~ @, SO Wzy + Wyy = a+ (1 —a) = 1. This means that {z,y}
is a dominant pair in D. Consequently, dom(D) = dom(T). O

We point out that if the PCD D has more than two weights, we may
have proper containment in the previous lemma.

Theorems 2.2 and 2.4 below are taken from [7]. These results, together
with the previous lemma, are used in characterizing the domination graphs
of PCDs with no arc weight .5. We now give a few constructions to obtain
the main result of the section.

Recall that a tree is a connected acyclic graph. If T is a tree, and T
has the property that the removal of all pendent vertices results in a path,
then T is called a caterpillar. Each caterpillar has a path of maximum
length called a spine. If G is a connected graph such that V(G) can be
partitioned into sets C and P such that C induces a cycle of length at least
3, and each vertex in P has degree 1, then we call G a spiked cycle. If the
cycle in G is an odd cycle, then we call G a spiked odd cycle. Note, in the
characterizations in this paper, we allow for the set of pendent vertices in
a spiked cycle to be empty. That is, a spiked cycle could be just a cycle.

O\j’% A

Figure 1: An example of a spiked cycle and a caterpillar

Theorem 2.2 [7] Let T be a tournament on n vertices. Then dom(T) is
either a spiked odd cycle with or without isolated vertices, or a forest of
caterpillars.

Theorem 2.3 Let D be a complete paired comparison digraph in which no
arc has weight egqual to .5. Then dom{D) is a spiked odd cycle with or
without isolated vertices, or a forest of caterpillars.

Proof. Note that any subgraph of a spiked odd cycle is a either a spiked
odd cycle, or a forest of caterpillars. So, the result follows from Lemma 2.1
and Theorem 2.2. a
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Theorem 2.4 [7] Any graph G consisting of a spiked odd cycle with pos-
sibly some isolated vertices is the domination graph of some tournament.

Lemma 2.5 If G i3 a caterpillar, then there exists a complete paired com-
parison digraph D in which no arc has weight .5 and dom(D) = G.

Proof. Let C be a caterpillar with a spine vy, vs,...,v,. Construct the
spiked odd cycle C’ by adding to C the edge [vm,v)] if m is odd, or the
edge [vm, v2] if m is even. From Theorem 2.4 we know that there exists a
tournament with C’ as its domination graph. In particular, the proof of
Theorem 2.4 shows that the tournament T formed in the following way has
C’ as its domination graph. Define T on the same vertices as C’, and orient
the arcs on T so that Uy, or Up,—), whichever of m or m — 1 is odd, is the
subtournament on vy,..., vy, OF v3,...,Um respectively. Furthermore, if y
is pendent to the cycle in C’ and [y,z] € E(C’), then let z — y in T, and
for all zin V(C’) — {y},let y = 2if z > z and let 2 — y if z — 2. It does
not matter which direction the arcs between the pendant vertices have.

We now construct our PCD D from T. First, let V(D) = V(T'). Choose
S<a<l,andifz — yin T, then set wry = a, and wy; = 1 — a. Finally,
let a < b <1 and change wy,,_,v,, = b, and w,_,,._, =1 = b. Then for all
z,y € V(D) = {vm} we know from Lemma 2.1 that [z,y] € E(dom(D)) if
and only if [z, y] € E(dom(T)) since all the arcs except vpm—1v., have weight
aorl-—a, and wy,_,v, > a Furthermore, {vm,vm—1} is a dominating
pair, since it is one in T, and all arcs in A(D) — {m¥m—1,Ym—1vm} have
weight either a or 1 —a. However, if z # vm—; then, {z,v,,} does not form
a dominant pair since wzy,,_, + Wy, v.._, < 1. Since v,, is the end of the
spine, it has no pendent vertices in C, and so dom(D) = C. 0

Before we characterize the domination graphs of PCDs with no arc
weight .5 we will first do it for the case in which the domination graph is
a connected graph. Theorem 2.6 below is taken from [8]. Comparing this
result to Theorem 2.7 below, we see that in PCDs, although the domination
graph is a subgraph of the domination graph of some tournament, our
characterization is less restrictive.

Theorem 2.6 [8] A connected graph is the domination graph of a tourna-
ment if and only if it is a spiked odd cycle, a star, or a caterpillar with a
triple end.

Theorem 2.7 IfG is a connected graph, then G = dom(D) for some com-
plete paired comparison digraph D with no arc having weight .5 if and only
if G is a spiked odd cycle or a caterpillar.

Proof. Let G be a spiked odd cycle. From Theorem 2.6, there exists a
tournament T with dom(7T") = G. Let D be any ped with exactly two arc
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weights, a # .5 and 1 - g, such that T is the tournament associated with D.
By Lemma 2.1, dom(D) = dom(T) = G. So, for any spiked odd cycle there
exists a PCD with no arc weight .5 whose domination graph is that spiked
odd cycle. From Lemma 2.5 we know that for any caterpillar, there exists a
PCD with no arc weight .5 whose domination graph is that caterpillar. Also,
Theorem 2.3 insures that these are the only possible connected domination
graphs. Thus, the result follows. a

Theorem 2.8 If G is a collection of isolated vertices, then there exists a
complete paired comparison digraph D, with no arc having weight .5, such
that dom(D) = G if and only if G is not 2K, or 3K].

Proof. First note that if a PCD has only two vertices, then they vacuously
dominate all other vertices in the PCD. Thus 2K cannot be the domination
graph of a PCD. Now suppose there exists a PCD D with dom(D) = 3K;.
Let V(D) = {1,2,3}. Then, wi2 + w32 < 1, w21 + w31 < 1, wyz + waz < 1.
So,

w12 + woy + we3 + w3z + wiz + w3y < 3.

But this contradicts the fact that
wy2 + woy + wo3 + w3z + w3 + w3y = 3.

Thus, no such PCD exists.

Now, assume that G consists of 7 or more isolated vertices. It is straight-
forward to verify that the rotational tournament of order 7 with symbol
S = {1,2,4} (the so-called quadratic residue tournament of order 7) has
a domination graph consisting of 7 isolated vertices. Consequently, any
tournament of order n > 7 that contains such a subtournament of order 7,
all of whose vertices dominate the remaining n — 7 vertices, has a domina-
tion graph consisting of n isolated vertices. So, pick a tournament T with
dom(T) = G, and let D be a PCD with no arc weight .5 whose associated
tournament is T'. Since dom(D) is a subgraph of dom(T") and dom(T') has
no edges, dom(D) =dom(T) =G.

We now consider the case where G is 4K;. Let V(G) = {1,2,3,v}.
Construct a PCD D on the vertices of G in the following way. Let {1, 2,3}
induce Us 7 in D and let wy; = .6 for each i € {1,2,3}. Then, no pair
of vertices {i,j} from {1,2,3} can be dominant, since for each such pair
Wiy + Wjy = .8. Also, Wy(i—1) + Wii-1) = 6+3=09foreachi=1,2,3s0
v is not part of any dominant pair. These are all possible combinations, so
dom(D) = 4K,.

Now, assume that G = 5K;. Let D be a PCD with V(D) = {1, 2, 3,4, 5}
and arc weights assigned as follows using addition modulo 5. For each
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i € V(D) set wy(41) = .6 and wy(;43) = .7 We now examine all possible
pairs of vertices. Pick i € V(D). Since the pair {1 + 2} is equivalent to
the pair {i,i+ 3} and the pair {i,i+ 1} is equivalent to the pair {4,i+ 4}
we only need to look at the pairs {1,7+ 1} and {i,i+ 2}. Then,

Wii4+2) + Wiit1)(i+2) =3+ .6=.9

and
Wigi+a) + Wis2)(i+a) = 4+ .3 =.7.

Therefore no two vertices form a dominant pair, and so dom(D) = 5K;.

Now suppose G = 6K, and let V(G) = {1,2,3,4,5, v}. Construct a
PCD D on the vertices of G in the following way using addition modulo 5.
Let {1,2,3,4,5} induce Us 7 in D and set w,; = .6 for eachi € {1,2,3,4,5}.
So, if 4,5 € {1,2,3,4,5} then wi, + wjy = .4 + .4 50 no pair of vertices not
containing v is dominant. Now, ifi =1, 2,3,4, or 5, then Wy(i—1) FWii—1) =
.6+ .3. So, {v,1} is not a dominant pair, as desired. Thus, dom(D) = 6K,.

a

Lemma 2.9 If G is a forest of caterpillars with at least one nonirivial
component, then there exists a complete paired comparison digraph D with
no arc weight of .5 for which dom(D) = G.

Proof. Let A;, Ay,..., Ax be the nontrivial caterpillars of G, and denote
by vi,1,vi,2,. .., % m,, the spine of caterpillar A;. Form the spiked odd cycle
G’ by adding to G the edges [vi,m;, V(i+1),1) for each i = 1,...,k — 1, and
adding the edge [vk,m,,v1,1] if 15, m; is odd, and the edge [vk,m,,v1,2)
if Zf=l m; is even. Now, let G” be the graph which consists of G’ and
the isolated vertices of G. Note from Theorem 2.4, we know that there
exists a tournament T such that dom(T) = G”. In particular, in [7], the
authors show that the following tournament T satisfies dom(T) = G. Let
V(T) = V(G). Orient the arcs on the subtournament defined by the vertices
on the cycle of G’ to be the rotational tournament Uy, where [ is the number
of vertices in the cycle of G’. Now, if y is pendant to the cycle in G’ at
some vertex z, then in T let £ — y, and for all z in the cycle in G’ if z — 2
inT thenlet z - yinT,andifz > zin T thenlety —» zin T. Ifvis
isolated in G, then let u — v in T for all uw € V(G"). Orient arcs between
isolated vertices arbitrarily.

We now construct our PCD D in the following way. Let V(D) = V(T).
Let 5<a<1,andifz — yin T, then set wzy = @, and wy; = 1 —a.
Now, choose a < b < 1 and for all i = 1,...,k set Wy, m; 1vi,m; = b and
Woim;vi,m;—1 = 1 —b. Then, for all u,v € V(D) - {v;m,}, fu,v} is a
dominant pair in T if and only if {u,v} is a dominant pair in D, from
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Lemma 2.1, since for all arcs incident with « or v, they either have weight
a,1—aorb> a. Also, {vim;—1,Vim,} is a dominant pair in D if and only if
it is a dominant pairin T, for all i = 1,..., k. This follows from Lemma 2.1
and the fact that for all arcs incident to v;m; and v;m;—1, other than
Vimi—1Yi,m; aNd Vi m, % m,~1 the weights are either a or 1 — g, for all i =
1,...,k. Furthermore, foralli = 1,...,k, if z; # vi m,—1 then, {zi, vim,—1}
does not form a dominant pair in D since wz;,v;m,—1 + Wo,m;vi,m—1 < 1-
Since v;m, is the end of a spine for all ¢ = 1,...,k, it is incident only to
¥im;—1 in G. Thus, dom(D) =G.

a

Theorem 2.10 A graph G is the domination graph of a complete paired
comparison digraph with no arc having weight .5 if and only if G is a sptked
odd cycle with or without isolated vertices, or a forest of caterpillars other
than 2K, or 3K;.

Proof. From Theorem 2.3, we know that if G is the domination graph
of a PCD with no arc having weight .5, then G must be a spiked odd
cycle, with or without isolated vertices, or a forest of caterpillars. Given a
graph G composed of a spiked odd cycle, with or without isolated vertices,
Lemma 2.1 and Theorem 2.4 give the existence of a PCD with no arc
weight of .5 which has G as its domination graph. From Lemma 2.9 and
Theorem 2.8, for any forest of caterpillars other than 2K and 3K, we can
find a PCD with no arc weight of .5 which has that forest of caterpillars as
its domination graph. Thus, the result follows. O

3 Connected Domination Graphs of
Complete Paired Comparison Digraphs.

Recall that by Proposition 1.6 any graph we wish can be an induced sub-
graph of a domination graph of a PCD. So, in attempting to characterize
domination graphs of PCDs, a first step is to see which connected graphs
can be the domination graphs of PCDs. This characterization together with
Theorem 1.4 is a major step towards characterizing the domination graphs
of PCDs.

In the next theorem, we refer to the graph NC7. This is the smallest
tree which is not a caterpillar and is shown in Figure 2. One should note
that a tree is a caterpillar if and only if NC7 is not a subgraph.

Theorem 3.1 If G is a connected graph, and G is the domination graph
of a complete paired comparison digraph D, then NCT is not an induced
subgraph of G.
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Figure 2: NC7

Proof. Suppose, to the contrary, that NC7 is an induced subgraph of G,
and G is the domination graph of some PCD D. Let {1,2,...,7} denote the
set of vertices which induce NC?7, as in Figure 2. By applying Lemma 1.1
to the pairs of dominant pairs given in the following table, we force the
situation in Figure 3, where each arc has weight 0 < z <1 in D.

step pairs
1 |{1,2},{6,7}
2 [{2,3},{6,7
3 1{1,2},{3,6}
4 1{3,4},{6,7]
5 | {4,5},{6,7}
6 |[{4,5},{3,6}
7 _11{1,2},{8,4}
8 1{1,2},{4,5}

Now, applying Lemma 1.1 to the pairs {2,3} and {4,5}, we get that
T=1wy =ws3=1—wyy =1—=z Soz=.5 This implies that wi; = .5
for each i, j except perhaps for {i,5} = {1,2},{4,5},{6,7}. As {2,3}is a
dominant pair, wp; > .5. Similarly, wys > .5 (as {3,4} is a dominant pair),
and wez > .5 (as {3, 6} is a dominant pair). This implies that {4, 2}, {4, 6},
and {2,6} are dominant pairs in D[{1,2,...,7}]. If G has only 7 vertices,
then G # dom(D), a contradiction.

Suppose that G has more than 7 vertices. Let v € V(G) - {1,2,..., 7}.
Since G is connected there exists a shortest path P from {1,2,...,7} to v,
where P is given by uy,...,um =vin G, and u,; € {1,2,...,7}. We next
show that wy, > .5 and wg, > .5.

Consider the case in which u; # 3. We show that wy, > .5, we, >.5
and wa, > .5 by induction on m > 2. Suppose that m = 2 (so ug = ). If
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Figure 3: The arcs with weight =

u; = 6, use Lemma 1.1 on edges [2, 3] and [u1,u2] = [6,v] to deduce that
wsy, = .5 and wa, = .5. Since {3,6} is a dominating pair and w3, = .5,
wey > .5, as desired. If u; = 2, proceed similarly using edges (3, 6] and
[2,9]. If u; # 2,3,6, use Lemma 1.1 on edges [u1,%] and [2,3] to deduce
way = w3, = .5, then use Lemma 1.1 on edges [u1,v] and [3, 6] to deduce
that wey = .5, as desired.

Now, suppose that m > 2 and that wey; > .5, Weu; 2> .5 and w3y, > .5
fori=2,...,k—1, where k < m. Use Lemma 1.1 on [2, 3] and [ug-1,uk) to
deduce way, = W3y,_, = .5. Again, use Lemma 1.1 on [3,6] and [uk—1,uk)
to deduce wey, = W3u,_, = .5 and w3y, = Weu,_, = -5, as desired. This
completes the case in which u; # 3.

Now, consider the case in which u; = 3. We show that ws, = wey =
w1y = w7y = .5 by induction on m > 2. Suppose m = 2 (so uz = v). Use
Lemma 1.1 on edges [1,2] and [3,v] and then on the edges [6,7] and [3,v]
to deduce that wo, = wy, = Wy = wry = .5, as required. Now suppose
that woy, = Wiy, = Wy, = Wy, = S for i =2,...,k — 1, where k < m.
Use Lemma 1.1 on edges [1,2) and [uk_1,ux] and then on edges [6,7] and
[uk—1,ux] to deduce that way, = wiy, = .5 (since wyy,_, = .5) and that
Weu, = Wru, = .5 (since wey,_, = .5). By induction, wa, = wey = w1y =
wrpy = .5, as desired.

In particular, way +wey > 1, for all v € V(G) — {2, 6}. Recall that {2,6}

is a dominant pair in D[{1,2,...,7}]. Thus, {2,6} is a dominant pair, but
this means that dom(D) # G, a contradiction. O

This result, together with the fact that a tree is a caterpillar if and only
if it has no NC7 as a subgraph, gives us the following corollary.
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Corollary 3.2 If a tree is the domination graph of a complete paired com-
parison digraph, then it is a caterpillar.

Lemma 3.3 Let D be a complete paired comparison digraph. Suppose that
G is a subgraph of dom(D) such that for every x € V(G), do(z) > 2.
Also, suppose that wgy = .5 in D for all x # y in V(G). Let P denote a
shortest path between V(G) and a vertez v in V(dom(D)) — V(G) given by
U1, U2,. .., Um = v, where u; € V(G) and m > 2. Then, for m > 3 and for
allz € V(G), wy;z = .5 foralli=2,...,m, and for m = 2, wy,; = .5 for
allz € V(G) — {u1} and wy,y, > .5.

Proof. Suppose m =2 (sov = up). Pickz € V(G)—{u,}. By assumption
there is a vertex y € V(G) — {u1} so that [z,3] € E(G). Use Lemma 1.1
on edges [z,y] and [u;,ug] to deduce wyz = Wru, = Wy,y = Wyy. Since
Wzy, = .5, Wyz = .5. S0, wyz = .5 for all z € V(G) — {u1}. As dg(u;) > 2,
u; is adjacent to some z € V(G). So, {uy, 2} is a dominant pair and
Wiy = .5, 50 Wy,y 2> .5.

Assume m > 3. Note, [u1,us] is a shortest path from ug to V(G). So
the case m = 2 above yields wy,z = .5 for all z € V(G) — {v;}. Since
dg(u1) 2 2, we can choose y € V(G) such that [u;,y] € E(G). Applying
Lemma 1.1 to the edges [u1,y] and [u2, uz] we deduce wyyy, = Wyyu; =
Wy = Wyu, = .5, since y € V(G)—{u1}. Thus, wy,, = .5 for all z € V(G).
Inductively assume that wy,, = 5forall z€ V(G) and fori=2,...,k-1,
where 3 < k < m. Apply Lemma 1.1 to edges [z, y] and [uk—1, uk) to deduce
Wypz = Wrupo, = Wyy_,y = Wyy,. SINCE Wy, _,, = .5 by the induction
hypothesis, wy,r = .5. That is, as z was arbitrary, wy, . = .5 for all
z € V(G). So, by induction, for all z € V(G) and for all 7, 2 < i < m,
Wz = .5. (m}

Note that we can strengthen Lemma 3.3 slightly by weakening the hy-
pothesis by replacing the phrase “for every z € V(G), dg(z) > 2" with “for
every € V(G) and for every y € V(G) — z, there is an edge of G incident
with y but not incident with z, and dom(D) has no isolates.”

Theorem 3.4 If G is a connected graph and G contains an even cycle,
Cak, as an induced subgraph, then G is not the domination graph of any
complete paired comparison digraph.

Proof. Suppose, to the contrary, that some PCD D has G as its domination
graph. Let S = {v;,v2,...,v2¢} be the set of vertices which induce the even
cycle, and let the cycle be given by [v1,v2], [v2, ), .. ., [v2k—1, vok], [vok, v1]-
We first do the case for V(G) = S. If £ = 2 then two applications of
Lemma 1.1 yields wy,,; = .5 for all i # j in {1,2,3,4}. As V(G) = S,
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dom(D) = K4 # C; = G, a contradiction. So, assume that k¥ > 3. Fix a
vertex v;j. We claim that

Wojue = Woguj_y = Wyj_qvemy = Wog_yu; When é —j (mod 2k) is even. (1)
Use induction on i. For i —j = 2 (mod 2k), apply Lemma 1.1 to edges
[vj-1,7;] and [v+1,vj+2) to deduce Wyju;,0 = Wyjigv;my = Wyj_yv540 =
Wy;,,v; (arithmetic mod 2k), as desired. Now, suppose that (1) holds for
i—j even where 2 < i —j < j — 2 (mod 2k). Apply Lemma 1.1 to edges
[vj_l, vj] and [‘Ui, ‘U,‘+1] to obtain
Wi = Wagwi_y = Wyj_yueqr = Woiyyv;(aTithmetic mod 2k), 2)
then apply Lemma 1.1 to edges [vj—1,v;] and [vi11,vi42] to obtain
Wy;_yvi41 = Wy v; = Wyjugp = Wyigavig (arithmetic mod 2k). (3)
Thus, as wy,,,v; appears in both (2) and (3),
Wyvipz = Wuigavj—r = Wuiogvipn = Woigav;e
So, (1) holds by induction.
Statement (1) implies that
Wyjv540 = Wojusee = - = Waju;_, (arithmetic mod 2k). 4)
But, a similar statement is true for v;.2, i.e.
Woypavjps = Wojpavsee = *°° = Wyj,,v; (arithmetic mod 2k). (5)
Apply Lemma 1.1 to edges [vj,vj4+1] and [v;42,vj+3] to deduce
Wysuipe = Wosraujpn = Wojnvies = Wujeav;- (6)
Apply Lemma 1.1 to edges [vj+1, vj+2] and [v;+3,v;+4] to deduce
Wyjpvipas = Woigavipa = Wujpoviee = Wojpavia - M
Since wy;,,v;,; appears in both (6) and (7), Wy;v;42 = Wujyav;4e- Lhis
implies that all values in (4) and (5) are equal. In particular, wy;y;,, =
Wy;pav; = 5. Thus, wy,, = .5 if r — s (or s — r) is even. Further, if
r — s is odd, then by (1), wy,v, = Wy,_,v, = .5 since r — 1 — s is even.
Similarly, if s — r is odd, then w,, ,, = .5. In conclusion, wzy = .5 for all

z,y € S. So, if V(G) = S, then all pairs of vertices are dominant in D, and
dom(D) = K2 # Cax = G, a contradiction.
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So, assume that S is properly contained in V(G). Let z € V(G) - S.
Since G is connected, there exists a shortest path P from S to 2, given by
U1, U2,...,Um = z in G, where u; € S. By Lemma 3.3, wy, = .5 for all
¢t € S —{u1}, and wy,: > .5. Now, choose s,t € S such that [s, t] € E(G).
Since w;; +wiy 2 .5+ .5 =1 for all z € V(D), {s,t} must be a dominant
pair in D. Thus, G # dom(D), a contradiction. a

Lemma 3.5 Let D be a complete paired comparison digraph. If dom(D)
1s connected, contains a 3—cycle C, and contains a vertex v of distance at
least 2 from C, then C is contained in a larger cligue in dom(D). Further,
if P is a path from u to C, then some vertex of V(P) — V(C) is contained
in this clique.

Proof. Let C be a 3—cycle in dom(D) given by [1,2], [2,3] and [3, 1], and
suppose there is a vertex v not on C of distance at least 2 from C. Say, P is
a path from C to v given by uy,u,...,um =v, wherem > 3, u; € V(C),
and u; g V(C) for all i = 2,...,m. Use Lemma 1.1 with each edge of C
and [u2, u3] to deduce that wz, = .5 for each z € {1,2,3} and y € {u2,us}.
Then, use Lemma 1.1 with [u),u5] and [, b] where a,b € {1,2,3} — {u;}
to deduce that way, = wy,, = .5. Also, note that we, = wy, = .5. For
if wap > .5, then wpe + wy,a < 1, but [b,u1] € E(dom(D)). Thus, Wy =
5 for all z,y € {1,2,3,u2}. We show wy,, > .5 and w;, > .5 for all
z € V(dom(D)) — {ug,4} and i = 1,2,3. This will imply that {u,:} is a
dominant pair, so that us is adjacent to each vertex of C in dom(D).

Choose z € V(D) - {1,2,3,u2}. From Lemma 3.3, w;; > .5 for each
i=1,2,3. If [z, ug] € E(dom(D)), then from Lemma 3.3 w;; = .5 for each
1=1,2,3. Also, since {u), u2} is a dominant pair and wy,z = .5, wy,z > .5.
If fu1, ] € E(dom(D)), then apply Lemma 1.1 to [z, u;] and [uz, us] to see
that wu,z = Wy,u,. Also, from Lemma 3.3 we know that Wyyuy, = .5
and so wy,z = .5. If [z, w)), [z, us] & E(dom(D)), then since dom(D) is
connected, there exists a € V(D), a # u;,u3 so that [z,a] € E(dom(D)).
Applying Lemma 1.1 to [u,u2] and [z, a] we see that Wyyz = Wgy,. BY

Lemma 3.3, wzu, = .5, 50 wy,z = .5. Therefore, for any z € V(D),
Wu,pz + Wiz 2 .5+.5 =1 as desired. So, {1,2, 3,u3} induces K4 in dom(D).
O

The chorded 4— cycle is the only simple graph on 4 vertices with 5 edges
(shown in Figure 4), and is sometimes referred to as a “kite.” The bowtie
is the graph on 5 vertices shown in Figure 5.

Theorem 3.6 If D is a complete paired comparison digraph and dom(D)
is connected and contains a 3—cycle C, then either dom(D) is a spiked
3—cycle or there is a clique of order at least 4 in dom(D) that contains C.
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Figure 4: The chorded 4—cycle.
1 4

O
3

Figure 5: The Bowtie

Proof. Let C be given by [1,2], [2,3] and [3,1]. If dom(D) is not a spiked
odd cycle, then in dom(D), either C is contained in a chorded 4—cycle, a
bowtie, or there is a vertex » not on C but of distance at least 2 [rom C.
Lemma 3.5 treats the latter case.

Suppose that C is contained in a bowtie and no vertex v is of distance at
least 2 from C. Let B = {1,2, 3,4, 5} be the set of vertices which induce the
bowtie as shown in Figure 5. By applying Lemma 1.2 to {1, 2,3} we know
that wy2 = wo3 = wa;. By applying Lemma 1.1 to [1,2] and (3, 4], then to
(1,2] and [3,5], and then to [1,2] and [4, 5], we see that w3) = w14 = waz =
wo3, W31 = Wis = Ws2 = w3, and wgz = wes = ws) = wys. But then,
wWos = Wag = wo3 = wsa. Thus, wes = wsz = .5. So, applying Lemma 1.2
to {3,4,5} and Lemma 1.1 to [2,3] and [4,5] gives us that wgzy = .5 for
all z,y € B. If V(D) = B, then dom(D) = Ks. So, assume there exists
another vertex v € V(D). Then, since no vertex has distance 2 or more
from C, v is adjacent to some vertex in B, and so by Lemma 3.3, wzy > .5
for all z € B. Thus, for each z,y € B, wgy +wyy 2 .5+.5= 1. Since v was
arbitrary we deduce that {z,y} is a dominant pair for all z,y € B. Thus,
B induces a K5 in dom(D), and C is contained in this Ks.

Now, assume that C is contained in a chorded 4—cycle C’, and no
vertex is of distance at least 2 from C. By applying Lemma 1.1 to the two
vertex disjoint pairs of edges in the 4—cycle we deduce that w;y, = .5 for
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all z,y € C'. So, if V(D) = C’, dom(D) = K4. So, assume there exists
another vertex v € V(D). Then, by Lemma 3.3, w,, > .5 for all z € C".
Thus, wzy + wyy > 5+ .5 =1 for all z,y € C’. Since v was arbitrarily
chosen, we deduce that {z,y} is a dominant pair for all pairs of vertices
z,y € C', and so, the vertices of C’ induce K4 in dom(D). Thus, C is
contained in a larger clique. ' O

Theorem 3.7 Let G be a connected graph with an induced cycle C of odd
ordern = 2k+1 > 5. If G =dom(D) for some complete paired comparison
digraph D, then G is a spiked odd cycle.

Proof. Suppose, to the contrary, that there exists a PCD D with dom(D) =
G, and G is not a spiked odd cycle. Then either G contains a vertex v adja-
cent to no vertex of C or it does not. If it does not, then either G = C (and
we are done) or G contains a vertex z not on C which is on a cycle which
shares at least one vertex with C. Let C’ be the smallest such cycle. If C’
is a 3—cycle, then we use Lemma 3.5 to obtain a contradiction as follows.

Since C has at least 5 vertices, and shares at most two of them with
C’, there must be a vertex u on C of distance at least 2 from C’. Take C’
to be the 3—cycle, u the vertex, and the path from C’ to u contained in C
to be the path in Lemma 3.5. This implies that C’ must be contained in
a larger clique, and this clique contains a vertex of V(C) — V(C’). Thus,
there must be an edge between every vertex in C’ and some vertex of C
which is not in C’. Since V(C) N V(C’) # 0, some of these edges form
chords in C contradicting it being an induced cycle.

Theorem 3.4 implies that C” is not an even cycle. So, suppose C’ is an
odd cycle of size 5 or greater. If z is the only vertex in C’ not in C, then
there must be at least three vertices in C which are not on C’. If there were
only one, then this vertex together with z and the two vertices adjacent to
z on C would form a 4—cycle contradicting the minimality of C’. If there
were only two, then C would be an even cycle, contradicting the fact that
C is an odd cycle. Thus, C’ is an odd cycle of order at least 5 such that
there is a vertex on C not adjacent to C’. Taking C’ as C and this vertex
as v we continue the proof.

We now treat the case where G contains a vertex v adjacent to no vertex
of C. Let S be the set of vertices which induces C in G. From Lemma 1.2
we know that in D, S induces a Uy, ,, for some 0 < p < 1. We will prove
that p = .5. We assume S = {vy,...,v,}, where wyw; = p if and only
if 7 — ¢ is odd modulo n and wyw; = 1 —~ p otherwise. Without loss of
generality, assume that p > .5. Suppose p > .5. Since G is connected, there
is a shortest path P from C to v, given by uj,ug,...,um =vin G, m >3
with 4, € S. Without loss of generality we may assume that u; = v;.
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Apply Lemma 1.1 to edges [u;,u2) and [vr,vr41] 2 S 7 <n—1) to
deduce that wy,y, = Wy,y,,,. Since {v; : i is even, 2 < i < 2k} C OF (w1),
we see that {v; : iisodd, 3 < i < 2k+ 1} C Of(uz). That is, for all 4,
2<i<2+1,

[ if ¢ is odd,
Wygu; = { 1—p ifiiseven. ®

Since {v2k+1,v1} is @ dominant pair, and since wy,, ,,u, = 1 —p, we deduce
that wy,y, > p. Apply Lemma 1.1 to edges [u2,us] and [vr, vr41] (2 <
r < n, arithmetic modulo n) to deduce that wyzu, = Wuyv,,,- By (8) this
implies that for all 4,2 <i <2k 41,

_Jr if 1 is even,
Wuzus = { 1—p ifiisodd, )

and (when i = n) wy,,, = p. Thus, {v1,v2,v4,...,v2c} C O3 (uz). By
Lemma 1.5, O¥ (us) is an independent set in G that contains edge [v1, 2],
a contradiction. Thus, p = .5.

As n > 5, there exist vertices z,y € S so that z and y are not adjacent in
C. By Lemma 3.3, wzy +wyy = .5+ .5 = 1, for all such vertices v. Also, by
the above argument, wzy+wyw = .5+.5 =1 for all w € S—{x,y}. To show
that {z,y} is a dominant pair in D it remains to show that wz, + wy; 21
for all vertices z adjacent to a vertex of C. Let z be a vertex not on C,
but adjacent to, say, v; on C. If v; # z,y, then by Lemma 3.3 (where
m=2us=2T#u #Y), Wez +wy, =.5+.5=1. If v; = z, then by
Lemma 3.3 (where m = 2,u2 = z,u1 = 2,y # u1) Wz + Wy, = 5+ .5 =
1. So, {z,y} is a dominant pair in D. But, then [z,y] € E(dom(D)),
contradicting the choice of =z and y. Consequently, there is no such vertex
v, i.e. G is a spiked odd cycle. |

A connected graph G of order m + n is called a spiked clique if V(G)
can be written as V) U V,, where |V;| = n, |Va| = m, G[V1] is complete of
order at least 4, and each vertex in V2 has degree 1. A spiked clique with
n =4 and m =5 is shown in Figure 6.

Theorem 3.8 If G is a connected graph which contains a mazimal clique
K of order m > 4 and G =dom(D) for some complete paired comparison
digraph D, then G is a spiked clique.

Proof. Suppose, to the contrary, that there exists a PCD D with dom(D) =
G, and G is not a spiked clique. By Lemma 1.3, wsy, = .5 for each
z,y € V(K). Since G is not a spiked clique, either G contains a vertex
v which is not adjacent to any vertex in K or it does not. If it does not,
then there must be some cycle C containing at most 2 vertices of K in G.
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Figure 6: An example of a spiked clique.

First, suppose this cycle has order 3. If C and K share exactly 1 vertex
then C together with any pair of vertices of K form a bowtie. If C and
K share exactly 2 vertices, then C together with any vertex of K forms a
chorded 4—cycle. From the proof of Theorem 3.6 we see that any bowtie
or chorded 4—cycle must be contained in a clique. However, since the pair
or single vertex which forms the bowtie or chorded 4—cycle were choscn
arbitrarily, each vertex of C is adjacent to every vertex in K, a contradiction
to K being maximal.

Now, the cycle cannot be of even length since this contradicts Theo-
rem 3.4. If the cycle is odd of order at least 5, then Theorem 3.7 assures
us that G is a spiked odd cycle, contradicting the existence of K in G. So,
assume that there exists v € V(G) with v not adjacent to any vertex of
K. Then, since G is connected, there exists a shortest path P from K to
v given by uj,u,...,um = v where m > 3 and u; € V(K). We now show
that {uz,z} is a dominant pair for every z € K to draw a contradiction.

Pick z € V(K). First note, by Lemma 3.3, that wzy+wy,, = 5+.5=1
for all y € V(K) — {z}. Now select z € V(G) — V(K). By Lemma 3.3,
wr; > .5. We show wy,. > .5. If [2,u3] € E(G), then since w,,, = .5,
Lemma 3.3 and the fact that {u;,u2} is a dominant pair implies that wy,, >
5. If [uy, 2] € E(G), then apply Lemma 1.1 to [z,u] and [ug, u3) to see
that wy,; = wy,u,. Lemma 3.3 yields wy,u, = .5, s0 wy,,, = .5 as desired.
Now, if z is not adjacent to u; or up in G, then since G is connected,
there exists a € V(G) such that [z,a] is in G. By applying Lemma 1.1
to the edges [u1,u3] and [z, a] we see that wy,, = w,,,. By Lemma 3.3,
Wzy, = .5 and so wy,, = .5 as desired. Thus, for each z € V(G) — V(K)
Wge + Wy, = .54 .5 = 1. Thus, {z,us} is a dominant pair, a contradiction.

(]

The previous two theorems show us that if D is a PCD such that dom(D)
is connected and contains an induced cycle or clique, then dom(D) is a
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spiked odd cycle or a spiked clique. This together with the following lemma
and some results from the previous section will yield a classification of
connected domination graphs of PCDs in Theorem 3.10.

Lemma 3.9 If G is a spiked clique, then there exists a complete paired
comparison digraph D for which dom(D) = G.

Proof. Take the vertex set of D to be V(G). Let S denote the set of
vertices in V(G) that induces the clique in G. If [z,y] € E(G) withz € §
and y € V(G) — S, define wzy = b, where .5 < b <1 (so, wyz =1 —b). For
all other pairs of distinct vertices u and v in V(G) define wyy = .5. Pick
z # y in V(G). We check that wz, +wy, > 1 for all z € V(G) — {z,y} if
and only if [z,y] € E(G). Suppose that [z,y] € E(G). If z,y € S, then for
all ze V(G) - {z,y},

Wer + _J b+.5 ,ifz€ S and zis adjacent to z or y,
=z TWyz =\ 54 .5 , otherwise.

If exactly one of z,y isin S, say z € S (and y ¢ S), then for all z €
V(G) - {=z,y},

[ b+.5 |if[z,z] € B(G),2 ¢S,
Wzz + Wyz = { 5+.5 , otherwise.

Since b > .5, wy, + wy; > 1 for all z € V(G) — {z,y}, as desired.

On the other hand, suppose that [z,y] € E(G). Since G is a spiked
clique, at least one of z,y is not in S, say y € S. Now, choose z € S such
that [y,2z] € E(G). Then wy, = 1 - b, and since z € S, wz, < .5. So,
Wez +wy; < .5+ (1—b) < .5+.5=1. Thus, {z,y} is not a dominant pair,
as desired.

a

Together, Lemma 3.9, and Theorems 2.7, 3.1, 3.4, 3.6, 3.7 and 3.8,
give us the following theorem classifying which connected graphs are the
domination graphs of complete paired comparison digraphs. In comparison
to the analogous result for tournaments, Theorem 2.6, we see that there are
several new connected graphs which are the domination graphs of complete
paired comparison digraphs, namely caterpillars without triple ends and
spiked cliques.

Theorem 3.10 Let G be a connected graph. Then there exists a complete

paired comparison digraph D such that dom(D) = G if and only if G is a
spiked odd cycle, a caterpillar, or a spiked clique.
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