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Abstract

This paper studies families of self-orthogonal codes over Z4;. We show
that the simplex codes (of Type a and Type 8) are self-orthogonal. We
answer the question of Zs-linearity for some codes obtained from pro-
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1 Introduction

There has been considerable interest and research into codes over finite
rings in recent years. In particular, codes over Z4 have been widely studied
[2, 3, 9, 10, 11, 21, 26]. Self-orthogonal and self-dual codes have received
much attention. An excellent survey of self-dual codes is given by Rains
and Sloane [25]. In this paper we consider several families of self-orthogonal
codes over Z4 and investigate their properties.

We give a simple characterization of self-orthogonal codes over Z4 and
we show that Zs-simplex codes of Type o and Type 3, namely S§ and
SP are self-orthogonal. We also construct families of self-orthogonal and
self-dual codes over Z4 via the projective planes of odd order. Section 2
contains some preliminaries and notation. The relationship between quater-
nary codes and projective planes is investigated in Section 3, while Section 4
considers projective planes and quantum codes. Finally, Section 5 presents
some self-orthogonal codes constructed from twistulant matrices.

2 Preliminaries and Notation

A linear code C of length n over Z, is an additive subgroup of Zj. An ele-
ment of C is called a codeword and a generator matriz is a matrix whose rows
generate C. The Hamming weight wy(z) of a vector z = (1,%2,...,Zx) in
Z} is the number of components z; # 0. The Lee weight wi () of a vector
zis Y1, min{|z;|, |4 — z:|}. The Euclidean weight wg(z) of a vector  is
S, min{z?, (4—z;)?}. The Euclidean weight is useful in connection with
lattice constructions. The Hamming, Lee and Euclidean distances dy(x,y),
dr(z,y) and dg(z,y) between two vectors z and y are wy (z—y), wr(z —y)
and wg(z — y), respectively. The minimum Hamming, Lee and Euclidean
weights, dy,dr and dg, of C are the smallest Hamming, Lee and Euclidean
weights respectively amongst all non-zero codewords of C.

The Gray map ¢ : Z7 — Z2" is the coordinate-wise extension of the
function from Z4 to Zg defined by 0 — (0,0),1 — (1,0),2 — (1,1),3 —
(0,1). The image ¢(C), of a linear code C over Z4 of length n by the Gray
map, is a (in general non-linear) binary code of length 2n.

The dual code C* of C is defined as {z € Z} | z - y =0,V y € C}, where
z-y is the standard inner product of x and y. C is self-orthogonal if C C ct
and C is self-dual if C = C*.
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If C is a binary code, it is said to be Type II, or doubly-even, if all of the
Hamming weights are divisible by four, and is said to be Type I otherwise.

Two codes are said to be equivalent if one can be obtained from the
other by permuting the coordinates and (if necessary) changing the signs of
certain coordinates. Codes differing by only a permutation of coordinates
are called permutation-equivalent.

Any linear code C over Z, is permutation-equivalent to a code with
generator matrix G of the form

_ Iko A B, +2B,
() ¢= ( 0 2I 2C ) ’

where A, B;,B; and C are matrices with entries 0 or 1 and I is the
identity matrix of order k. One can associate two binary linear codes
with C, the residue code C(Y) = {cmod 2|c € C} and the torsion code
C@ = {ceZ;|2ceC}.If k; =0 then C(V) = €, For details and fur-
ther references see [25, 26]. The following theorem gives the relationships
between these codes when they are self-orthogonal.

Theorem 1 [25]

1. Let C be a linear self-orthogonal code over Zs then its residue code C(V)
is a self-orthogonal doubly-even binary code and (V) C ) C c(V*,
If C is self-dual then C(? = ct,

2. IfC4 andCp are binary codes with C4 C Cp then there is a code C over
Zy with CN) = C4 and C'D = Cp. If in addition C4 is self-orthogonal
and doubly-even and Cp C Cy then there is a self-orthogonal code C
over Zy with CY) = C, and C'® = Cp. Furthermore if Cg = C% then
C is self-dual.

A vector v is a 2-linear combination of the vectors v,,vs,...,vi if v =
Avit. o+ Aeve with A\; € Zo for 1 €7 < k. A subset S = {vi,va,..., vk}
of C is called a 2-basis for C if

1. foreachi =1,2,...,k-1, 2v; is a 2—linear combination of viy1,..., Vi
and 2vi = 0, and

2. C is the 2-linear span of S and S is 2-linearly independent [3].
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The number of elements in a 2-basis for C is called the 2-dimension of C.
It is easy to verify that the rows of the matrix

Iy, A Bi+2B,
@) B=| 2L, 24 2B :
0 2L, 2C

form a 2-basis for the code C generated by G given in (1).

A linear code C over Z, (over Z2) of length n, 2-dimension k, minimum
distances dy,dr and dg is called an [n,k,dy,dL,dE] ([n, k, dg]) or simply
an [n, k] code. C is called Zy-linear if ¢(C) is a binary linear code. A binary
code is said to be Z4-linear if it is equivalent to ¢(C) for some linear code C
over Z4. Necessary and sufficient conditions for Z-linearity (Z»-linearity)
are given by the following theorem.

Theorem 2 Hammons et al. [21]

1. A binary linear code D of even length is Z4-linear if and only if its
coordinates can be permuted so that

(3) u,ve D= (u+to(u)x(v+o(v)) €D,

where o is the (symplectic) swap map that interchanges the left and
right halves of a vector, and x denotes the componentwise (or Hadamard)
product of two vectors.

2. For each a € Zg4, let @ be the reduction of a (mod 2) and let C be a
linear code over Z4. Then C is Zy-linear if and only if ¢ = (¢, ..., ¢,)
and c’ = (c},...,c,) € C implies 26 & = (266, ...,26:&') € C.

We now consider the above theorem, and explain the conditions and how
they are connected. Recall that ¢ is the Gray map taking coordinates in Z4
to twice the number of coordinates in Zy. Thus, Condition 1 tells us when
D = ¢(C), given some pairing of the coordinates of D, while Condition 2
is the reverse of this. Both these conditions reduce to the fact that the
set of vectors, under the Gray correspondence, are required to be closed
under the two kinds of addition: in Z4 and in Zs. We can use the Gray
map to keep track of which coordinates we are using: e.g. if ¢,c’ € C (the
quaternary code), then ¢+ ¢’ denotes addition using Z,, while ¢(c) + ¢(c’)
denotes addition in the binary code.
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We can then say that the two conditions are merely two equivalent
forms of the statement that the difference between the additions, ¢(c +
c’) — (¢(c) + ¢(c’)), is in D, or using the map ¢!, in C. Indeed, one can
check that additions in C and in D give the same result on a particular
position except when the coordinates of ¢ and of ¢’ are both units in that
position (i.e. 1 or 3). In this case the difference in the Z; and Z, additions
will be the element 2 of Z4, or the element ¢(2) = 11. Now the mapping
u — u -+ o(u) gives the vector of 11’s corresponding to the units of u, and
the equivalent mapping in the Z, vector is ¢ — 2c. The Hadamard product
is needed because it gives the positions where both elements are units: if
a 0 or 2 appears then multiplying by a further 2 gives 0. Finally, we note
that for any vector c over Z,, the vector 2¢ = 2¢, and also 2&*& = 2cx ¢/,
and so the modulo 2 reductions of ¢ and ¢’ are not strictly necessary in
Condition 2, although we have included it because it was in [21].

Quaternary simplex codes of type « and 8 have been studied in [3]. A
type o simplex code S§ is a linear code over Z4 with parameters

[22’:’ 2k, 22k—1’ 22k’ 3. 22k-l] ,
and an inductive generator matrix given by

(4) ' a=[00---0'11-.-1|22~--2|33...3]
* Gg-l | Gg—l I G‘]:_l | Gg—l

with G§ =[01 2 3]. A type 3 simplex code Sf is a punctured version of Sg
with parameters [261(2% — 1), 2k, 22(+=1) 2%-1(2k — 1) k(3. 2k~2 _1)],
and an inductive generator matrix given by

, 1111‘0’2
5 B _
(5) G2 [0123 1 1]’

and for k > 2

6 o 11---1|00---0|22--.2],
© [ I A

where G§_, is the generator matrix of Sg_,. For details the reader is
referred to [3].

The following lemma gives a simple characterization of the self-orthogonality
of codes over Z,.
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Lemma 1 A linear code C over Z4 is self-orthogonal if and only if given
any generator matriz G of C

1. the number of units in each row of G is a multiple of 4 i.e., w1 +w3 =0
(mod 4), and

2. all pairs of G are orthogonal.

Proof. The proof is simple and so is omitted. O

Remark 1 The above lemma also holds when the generator matriz of the
code C is in 2-basis form. One can give the characterization in terms of the
Euclidean weights.

The following theorem follows by induction on k and Lemma 1.

Theorem 3 The simplez codes Sg (k > 2) and Sf (k > 2) are self-
orthogonal.

2.1 Quasi-Twisted Codes

The class of quasi-twisted (QT) codes was first introduced in [22] as a
generalization of quasi-cyclic (QC) codes (17, 18]. A Zj4 code is called
quasi-twisted if the same negacyclic! shift of a codeword in p groups of
size m always results in another codeword. Many QT codes can be con-
structed from m x m twistulant matrices (with a suitable permutation of
coordinates). In this case, the generator matrix, G, can be represented as

) G = [By, B, ..., By}
where the B; are m x m twistulant matrices of the form
[ bo bl bz s bm—2 bm—l 1
Mm-1  bo by - bpez  bm-
(8) B = | Mhm-2 Mbm_1 b0 bm-g -+ b3
| 7 nbe  mbs - Mbm-1 bo

and n = 1 or 3. If n = 1, the code is QC. It has been shown that QT
self-dual codes over Z,4 exist only if n = 3 [19]. Thus in this paper we only
consider this value of 7.

1A  negacyclic shift of an m-tuple (zo0,%1,...,Zm-1) is the m-tuple
(nZm—1,%0,...,Tm-2) where 1 is a unit in Zs,ie.,p=1o0r3.
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3 Projective Planes and Quaternary Codes

There have been various constructions of self-dual and self-orthogonal bi-
nary codes from projective planes of even order g [25]. These codes were
useful in proving the non-existence of a projective plane of order 10. Re-
cently codes over finite rings have been constructed from projective planes
[11]. In [15], Glynn constructed binary codes from a projective plane of odd
order. Dougherty has generalized this construction to construct self-dual
codes over a finite field [8]. In this section, we shall associate a code over Z4
with any projective plane of odd order. We also consider the Z,-linearity
of the codes obtained from the projective planes of even order.
Let 7 be a finite projective plane of order ¢. It is a symmetric

2— (q2 +q+1,q+1, 1) design. Thus, every pair of points is on a unique
line and every line contains ¢ + 1 points. Let P and £ denote the sets
of points and lines, respectively, of . Then |P| = |£] = ¢° + ¢ + 1 and
[PUL]=2(¢*+q+1).

3.1 Codes over Z, from planes of even order

We first investigate the relationships between planes of even order and
quaternary codes. If the order of the plane is ¢ = 2 (mod 4), then the
line/point? incidence matrix of 7 generates a binary code C, with parame-
ters

[q2 +q+1, gq:ié—"ﬁ,q + 1] , which can be extended to a Type II binary

self-dual code C; if a column of all 1's is adjoined to the incidence matrix.
For the other even values of g, when g =0 (mod 4), the corresponding ex-
tended code C:, is not necessarily self-dual, but it is certainly self-orthogonal

[1].

Example 1 For q = 2 this Type II code C, is the [8,4,4] extended Ham-
ming code which is Z4-linear under the Gray map [21]. The corresponding
code over Zy4 is a [4,4,2,4,4] Type o constant Lee weight code generated by

the matriz
1 111

-[1i11]

The seven lines of the plane correspond to codewords of the Z4-code with a 2
or 3 in the fourth position (ezcept for the word 2222), (see Figure 1). Label

2The rows correspond to the lines, and the columns to the points.
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Figure 1: Representation of PG(2,2) over Z, with points and lines marked

the points A,A’,B,B',C,C',D,D', where D = O and so D' = O’ = cc.
The correspondence for the seven lines is then

0202 « {B,B',0,00}
0123 « {B,C,C' 00}
1032 «~ {A,C",0,0}
2103 < {A,A,B,oo}
3333 o {A,B',C' 00}
1313 & {A,B',C, 0}
3012 o {A',C,0,00}.

In addition to ¢ = 2 there are also unique (desarguesian) planes of
orders ¢ = 4 and ¢ = 8, and the corresponding extended codes Cs and
Cs have parameters [22,10, 6] and (74, 28, 10], respectively. The dimensions
of the codes are known for various kinds of planes. In particular, any
desarguesian plane of even order g = 2" will give a self-orthogonal extended
code [¢% + ¢ +2,3" + 1,9+ 2]. Note that the minimal words of weight ¢ + 2
will correspond to lines if they contain the extended point co. Otherwise,
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they must be hyperovals of the plane. 3

Motivated by the above example for ¢ = 2, we define a code over Z,
from a projective plane 7 with the help of pairings of points in P as follows.
We construct a generator matrix of a code C(w, P, Z,) with coordinates cor-
responding to pairs of points (P, P') in the plane and lines (!) corresponding
to rows. The point O is paired with the point at infinity so that oo = O/,
and the extended vector corresponding to the lines has a 1 at the coordinate
denoted oo. The value on (P, P’) is given by

0 if PandP' ¢!
1 if Pel,P' ¢l
2 if Pel,Pel’
3 if P¢glLLP el

Note that each point P2 is paired with a unique point P’ and the code
C(m, P, Z4) has length 39—"';—"'21.
At this point the following question arises.

Question 1 Which planes of order g have a partition into pairs of points
such that C?q is Zy-linear, or equivalently, the code C(m, P, Zy4) is Za-linear?

Remark 2 We assume now that with the given pairing the inverse of the
Gray map ¢ acting on (fq is a linear quaternary code C(w,P,Z4). Thus
#(C(m, P,Zy)) is equal to C,. The intention is to use Theorem 2 above to
show that this can only happen when q = 2. From the discussion after
Theorem 2, the question is the same as asking whether there can ezist a
certain pairing such that the extended code is closed under the two types of
additions in Z4 and Z,.

Note that the pairs are ordered, but equivalent codes are obtained by
changing the ordering in any of the pairs, and so geometrically they are
basically unordered pairs of points, forming a partition of the plane union
with infinity.

Here we provide some answers to Question 1, but first present some
preliminaries.

Definition 1 Given a linel € L of 7 let

9(!):={P,P'|P€land P' ¢ [}U{P,P'|P¢land P’ €l}.

3A hyperoval of a projective plane of even order g is a set of ¢ + 2 points, no three
collinear.
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Note that {O,00} C v(l) <= 0 ¢ I, because every line contains co.

Example 2 In the case ¢ = 2, the seven lines (as codewords) have the
correspondence vy with the sets of points as follows:

BB'O o 0202 & 0

BCC' — 0123 « {B,B’,0,}
AC'O & 1032 < {AA,C,C'}
AAB « 2103 « {B,B’,0,x}
A'B'C’ & 3333 ~ {AA, BB C,C, 0}
AB'C & 1313 & {AA,B,B,C,C',0,00}
ACO & 3012 o~ {AA,C,C'}.

It is clear that the elements of y(I) correspond to the odd entries in the
corresponding codeword over Z4. The above sets also correspond to vectors
(or words) in Z;’*"” in the natural way.

Using the conditions of Theorem 2 for distinct pairs of generators C(w, P, Z4,
coming from two lines in £, we obtain the following result.

Lemma 2 For any two distinct lines | and m of 7, the binary characteristic
vector of l¥m := y(l)Ny(m) is a codeword of (fq, or equivalently, the function
with value 2 on each pair in this set of points is a codeword of C(m, P, Z,).

Now let ! be a fixed line not passing through O, and X be any point of I.
We consider the sum S(l, X) (in C:,, or modulo 2), of l xm, where m varies
over the ¢ lines of m passing through X, but not !. Then in S(, X) we
have {0, 0o} repeated g — 1 times, which is odd and so is equal to 1 mod 2.
Further, every pair in +(l) that is not (0, 00) occurs precisely once in the
sum.

Similarly, we consider any line ! through O, and look at the sum T'({) of
{*m, where m is varied over all ¢ lines through O, but not {. Then the sum
modulo 2 is y(l). Hence the same result holds in the case of lines through
O. This result can be obtained in a more direct way using Condition 1 of
Theorem 2 when u = v (because (u + o(u)) * (u + o(u)) = (u + o(u)).

Since we are assuming that Conditions 1 and 2 hold, and noting that
C, is closed under addition, we have shown the following.

Lemma 3 For all lines | € L the word corresponding to () is a word in
é,.
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Since C:, is self-orthogonal each codeword intersects any line (union oo)
in an even number of points. Thus it follows that for any line [ not through
O, the lines not through O intersect v* := (l)\ {0, 00} in an odd number of
points, while the lines through O intersect it in an even number of points.
Similarly, for any line I on O, the set of points () has the property that
any line intersects it in an even number of points. These conditions are
quite strong and lead to severe restrictions on the types of pairings of the
points of the plane that are possible.

Lemma 4 Suppose now that | is a line of m not through O. Then !l can
contain at most one pair (P, P').

This is because if it did contain such a pair, then P ¢ «(!), and each of the
g — 1 lines through P, but not ! or the line P.O, intersects v*(I) in an odd
number of points, i.e. at least one further point. But there are now at most
q — 1 points of y*({) not on /, and so there can be no further pairs on I,
and also each line through P, or P’, contains precisely one of these points
of v*(1).

Next, consider a line [ of 7 containing O, and further, suppose that it
contains a point of a pair of P, but not both points of the pair. If that
point is P, we consider the ¢ — 1 lines through P, but not the line PP’ or
l. Since P is in y(l) we see that each of these ¢ — 1 lines contains a further
point of ({), but since the number of these further points is bounded by
g — 1, there are no pairs of P completely contained in [, and I\ {O} C ().
Thus we obtain the following lemma.

Lemma 5 Any line through O is partitioned by pairs or contains no pairs.

Note that for any line [ on O containing no pairs, v(I) + ! is a word of
weight g+2 containing oo of (fq, implying that the set of points {P’ | P € 1}
is another line through O.

From Lemmas 4 and 5 we have the following.

Lemma 6 There are two types of pairings P of the plane m that are pos-
sible:

1. all pairs lie on lines through O, or

2. all pairs lie on lines through O, except for two special lines a, b through
O, for which the pairs have one point on a, and one point on b.
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Denote these pairings as Type T1 or Type T2, respectively. Considering a
Type T1 pairing, we have the following.

Lemma 7 For each line | not through O, v(l) = U H(l) U {oo}, where
H(l) is a hyperoval containing O, but disjoint from l.

Proof. [U {oo} C 4(l), but both [ U {oo} and «(l) are words of o
Thus (1) \ ({ U {c0}) is a word of C; of minimal weight g + 2, which must
be a hyperoval since it doesn't contain oo. a

Remark 3 For any line l containing O for a Type T1 pairing, y(l) is the
all-zero (or empty) codeword. If we dualize the Type T1 pairing to pairs of
lines, we can use a construction of Glynn [16] to get a symmetric Hadamard
matriz. In this case there are examples with any translation plane of even
order which has a dual hyperoval that contains the translation line. There
are connections also to Kantor’s work, see [5, 24].

Notwithstanding the above connections, we can now show that in only
the case ¢ = 2 can we get a Type T1 pairing that produces a Z4 code that
is also Z, linear. Returning to the condition that for any two lines [ and m
of m, I * m is a word of C:,, we first choose I to be any line not through O.
Then choose m to be any line external to H(l), but not . This is possible
if ¢ > 2. Then we see that [ * m only contains 4 points: X :=1Nnm, X', O,
and O' = co. This cannot be a word of éq, unless ¢ = 2. Similarly, in the
case of a Type T2 pairing of points of the plane, we can show that the Z,
code is Z; linear only in the case of ¢ = 2. We provide only a brief outline
of the proof since it is almost identical to the Type T1 case.

First we show that for all lines [ not through O, v(l) is the sum modulo
2 of the line I, a hyperoval containing O, and the point co. There are ¢
lines for which the hyperoval is a chord of its corresponding line, and g% — g
lines for which the hyperoval is external to its line. Now choose a hyperoval
for which its line is external. If ¢ > 2 there is another line m external to
the hyperoval, and so ! x m has weight 4 in the Z; code which is less than
g + 2, a contradiction.

It is not known if Type T2 pairings can occur in projective planes of even
orders more than 2. However, both types of pairings occur in a projective
plane of order 2, so that the corresponding Z4 code is Z» linear.

The main point of the above work is given in Theorem 4.
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Theorem 4 The only case in which the extended self-orthogonal binary
code C, is Zy-linear is when g = 2.

3.2 Codes over Z, from planes of odd order

Now we construct a code over Z4 from a projective plane 7 of odd order q.
Recall that P and £ denote the sets of points and lines, respectively, of 7
and |[PUL| = 2(¢® + ¢+ 1). Let § be the map taking any point P to the
set of lines not through P and let & be the dual mapping taking a line to
a set of points not on that line. § extends to the linear coboundary map
that takes any set of points S to the set of lines intersecting S in opposite
parity to |S|, and & similarly extends to the inverse map from sets of lines
to sets of points. Note that |S| = |6S| (mod 2). There is a one-to one
correspondence between the boolean algebra of all subsets of PUL and the
vector space 11?3“"*"*" [15]. For any two subsets E and F of P U L, the
symmetric difference EAF corresponds to addition E + F in Fg("’“‘q*",
and the size of any subset F of P U L corresponds to the weight of a vector
F.

With this correspondence in hand we can define the associated binary
codes C4 and Cg. Let C4 be the set of all even sets of points of P to-
gether with the sets of lines that intersect these points an odd number of
times. It was shown in [15] that C4 is a binary linear doubly-even self-
orthogonal code with parameters [2(¢® + ¢ + 1), ¢? + ¢,2¢ + 2] . Also C} is
a code with parameters [2(¢® + ¢+ 1),¢% + ¢+ 2,9+ 2]. Another binary
code Cp was defined as a union of C4 with one of its cosets C4U(C4+P+L).
It was shown that Cg is a binary linear self-dual code with parameters
[2(¢> + ¢+ 1),¢% + ¢+ 1,2g]. Thus, a main property of these codes is the
following.

Proposition 1 15/ C4 C Cg C C%.
In view of this and Condition 2 of Theorem 1, we get the following.

Theorem 5 Let 7 be a projective plane of odd order q. Then there ezxists
a self-orthogonal linear code C.(q) over Zs with reduction code C4, torsion
code Cp, length 2(q® + q + 1), 2-dimension 2¢®> + 2q + 1, and minimum
Hamming weight 2q.

The remainder of this section considers further properties of the code
Cx(q). A generator matrix of the code Cp is G(CB) = [Ij244+1 | D], where
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D is the complement of the incidence matrix of the projective plane with
ith row d; for 1 <4 < g2 +g+1, and I ;2444 is the identity matrix of order
g*>+q+1. Then by Theorem 5, the generator matrix of the code Cx(g) over
Zis

-

1 0 “.e 0 1 dl + dq"'+q+l
q+ 1 1 ... 0]1 d2 + dq’+q+l
9 : T :
q + 1 q + 1 ... 111 dq2+q + dq’+q+l
0 0 ... 0|2 2dpien

This code is self-orthogonal by construction.

Example 8 For g = 14, Cp is a [6,3,2] code with generator matriz Gp =
[I3|D) where D is generated by the cyclic shifts of the vector (100). The
weight distribution is A(0) = 1, A(2) = 3,A(4) = 3, and A(6) = 1. The
code C4 is a [6,2,4] optimal code with weight distribution A(0) = 1, and
A(4) = 3. The code Cr(1) is a [6,5,2,4,4] Type o code with generator matriz

101101
211011
00200 2

The Hamming, Lee and Euclidean Weight distributions of this code are

il Ar@) || i | AL@) || i | A=)

ol 1 ol 1T [o| 1

2| 3 |4 11 [[4] 8

4l 11 6| 8 [[8]| 1

5| 8 |8 11 [[12] 8

6 9 12 1 16 3
24 1

Example 4 For g = 3, Cp is a [26, 13, 6] code with generator matriz Gp =
[I13| D) where D is generated by the cyclic shifts of the vector (0010111110111).
The weight distribution is A(0) = 1, A(6) = 52, A(8) = 390, A(10) =
1313, A(12) = 2340, A(14) = 2340,

4Technically, there is no projective plane of order ¢ = 1, because every line should
have at least 3 points, but ¢ = 1 denotes here the degenerate plane that is the triangle
of 3 points.
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A(16) = 1313, A(18) = 390, A(20) = 52, and A(26) = 1. The doubly-
even subcode C4 of Cp is a (26,12, 8] optimal code with weight distribution
A(0) = 1, A(8) = 390, A(12) = 2340, A(16) = 1313, and A(20) = 52.

Cx(3) is a [26,25,6, 8] code with generator matriz

The Hamming and Lee weight distributions are given by
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[ 160600000000 | 1 | 0111600011001 ]
010000000000 | 1 | 1100100010101
001000000000 | 1 | 1001010010011
0001060000000 | 1 | 1011101010000
000010000000 | 1 | 0010110110001
000001000000 | 1 | 1110011000001
000000100000 | 1 | 1000001111001
000000010000 | 1 { 1011000100101
000000001000 | 1 | 1010100001011
000000000100 | 1 { 1010010011100
000000000010 | 1 | 0010001010111
000000000001 | 1 ( 1110000110010

| 0000006000000 | 2 0202222202220_




i | An(d) i | ALd)
0 1 0 1

6| 52 8| 312

8| 702 12| 3172
10| 4433 14| 29952

12| 75660 16 | 94718
13| 29952 18 | 868608
14 | 459420 20 | 1403753
15 | 868608 22 | 4722432
16 | 1085929 || 24 | 5477628
17 | 4642560 || 26 | 8353280
18 | 2009358 || 28 | 5477628
19 | 8087040 | 30 | 4722432
20 | 4868812 || 32 | 1403753
21 [ 4722432 || 34 | 868608
22 | 4485000 || 36 94718
23 | 1134848 || 38| 29952
24 | 948480 40| 3172
25 | 109824 4| 312

26 | 21321 52 1

We can modify the above construction to get an equivalent code over Z4
via a projective plane of odd order in a more natural way. Instead of (9),
we take the generator matrix as

1 0 oo 0 3 d] + 3dq2+q+l
q+ 1 1 ... 013 d2 + 3dq2+q+1
(10) : R :
q + 1 q + 1 cen 1 3 dq2+q + 3dq2+q+1
| 0 0 e 0 2 2dq2+q+l

Thus we have the following.

Proposition 2 The code generated by (10) is a self-orthogonal code over
Z4 for any odd q. Further it can be made into a self-dual code, which we
denote by C;, , of length n = 2(q2 + g+ 1) by deleting the last row and adding
the two Tows 22...2|2|0...0 and 00...0/0[2...2.

144



Proof. A combination of the first g2 + ¢ rows in (10) is dependent
on the last three rows and since the last two rows are independent to the
top rows, we delete the last row to yield a self-dual code over Z4 of length
n=2(¢>+q+1).

O

Remark 4 Forq=1, C,’, is the unique self-dual code of length 6 over Z,

[25].

If g =3 (mod 4) then the above code can be defined naturally in
geometrical language from a projective plane 7 of odd order g as follows.
Let P be a general point of 7 and P denote its boundary. Then Cr(q) is the
set of all codewords ) p, ap(P +6P) such that )., ap =0 (mod 4).
This can be made into a self-dual code by adding > p,. 2P and ), . 2L.
The construction of the code C.(g) can also be generalized in the following
way.

Lemma 8 Let G = [A|B] be the generator matriz of a self-orthogonal code
over Z4 where the partition of G is compatible with a matriz X such that
XXt = I. Then the code generated by G' = [A|BX] will also be a self-
orthogonal code over Zy,.

Proof. It is straightforward to check that the matrix G’ satisfies the

required property.
O

Remark 5 In Lemma 8, if we substitute G = (10---01)(10---03), where
the parenthesis denotes that all the cyclic shifts are taken, and X = D is the
complement of the incidence matriz of the projective plane, then we obtain
Cx(q). Note that

¢ ) 2J-1 ifg=3 (mod4)
DD'{ I ifg=1 (mod4) "

Similar results have been investigated recently in [12]. The next result
shows that the code Cr(g) is not Z,-linear i.e, its image under the Gray
map is a non-linear binary code.
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Theorem 6 The Gray image of Cx(q) isa (4((12 +g+1), 920 +2¢+1 ‘9q 4 2)
binary non-linear code.

Proof. The result follows from Theorem 2. Let u and v be the
first two rows of (9). If Z denotes reduction modulo 2 of z, and * denotes
component-wise multiplication, then 2@V is a vector of weight g+ 1. Since
there is no vector of weight g+ 1 in Cp this vector does not belong to Cx(g).

]

4 Projective Planes and Quantum Codes

Any binary self-orthogonal code gives rise to a “binary” (a special class of
“additive”) quantum code via the CSS construction [7]. Thus the binary
self-orthogonal codes from projective planes of odd order given in Section
3 will also provide classes of quantum codes. In this section, we list the
parameters of such quantum codes. The necessary theorem is the following.
See also [6).

Theorem 7 Let C be an [n,k,d] binary self-orthogonal code with dual Ct
having parameters [n,n — k,d*]. Let {wj:1< j < 2""2*} be o system of
representatives of the cosets C1/C. Then the 2"~%* mutually orthogonal
states
= c+ w;),
I'w]) ﬁ;l + J)
span a “binary” quantum code with parameters [[n,n — 2k]] of length n and

dimension 2"~2¢ and minimum weight d’, where

d' = min {wt(c) | c € C1/C} > d*.
(Ifk=0 thend =d=d"*.)

Applying the above theorem to code C4 will yield a [[2(q2 +g+1),2,9+ 2]]
quantum code. This code encodes 2 qubits into 2(g% + g + 1) qubits. If we
apply the above theorem to the code Cp we obtain a quantum code with
parameters [[2(¢ + ¢ +1),0, 2q]].

Ifg=1 (mod 4), the binary self-dual code Cg can be extended to a
unique doubly-even self-dual code Cp with parameters
[2(¢®* + g +2),¢° + g+ 2,9+ 3] [15).
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Applying the above theorem to Cp yields a binary (self-dual) quantum
code with parameters [[2(¢> + ¢+ 2),0,q + 3]]. If we compare it with the
existing Tables [6], one finds that for ¢ = 1 we get an optimal quantum
code.

If g =3 (mod 4), the binary self-dual code Cp can be extended to a
doubly-even self-dual code Cg with parameters [2(¢? + g + 4),¢% + g + 4, 4]
(15]. Applying the above theorem to Cg yields a binary (self-dual) quantum
code with parameters [[2(¢? + g + 4),0,4]].

5 Self-Orthogonal Quasi-Twisted Codes

In this section, we present the results of a search for best self-orthogonal
quasi-twisted codes. Because the Gray map connects the Lee weights of a Z,4
code with the Hamming weights of a Z code, we consider here only best Lee
weight codes. This search employed a stochastic optimization algorithm,
tabu search [13, 14, 20]. This method has been shown to produce optimal or
near-optimal solutions to difficult optimization problems with a reasonable
amount of computational effort. For an extensive survey of optimization
methods in coding theory, with an emphasis on stochastic procedures, see
[23].

Tabu search is based on local search, which means that starting from an
arbitrary initial solution, a series of solutions is obtained so that every new
solution only differs slightly from the previous one. A potential new solution
is called a neighbor of the old solution, and all neighbors of a given solution
constitute the neighborhood of that solution. To evaluate the quality of
solutions, a cost function is needed. Tabu search always proceeds to a best
possible solution in the neighborhood of the current solution.

To ensure that the search does not loop on a subset of solutions, recent
solutions are stored in a tabu list, and these are then not allowed for a
certain period of time.

The search criterion used here was the minimum weight, and the cost
function was chosen so as to maximize this weight, with the added condition
that the resulting code be self-orthogonal. It was found that it is best to
first find a code with a specified even minimum distance, then check for
orthogonality.

Table 1 presents the minimum weights of the best codes obtained. Note
that it was shown in {19] that self-dual QT codes exist only for lengths a
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multiple of 8 (m a multiple of 4). The first rows of the twistulant matrices
of the QT codes listed in Table 1 are compiled in Tables 2 - 5. Since this
is the first compiled table of Z; codes (self-orthogonal or otherwise), it is
not possible to compare these codes with previous results. However, using
the Gray map, it is possible to compare these codes with the best binary
linear codes [4] with even minimum distance. Of the 111 entries in Table
1, 54 or almost half attain the best known distance for the corresponding
binary code. Hence it can be said that the class of self-orthogonal QT codes
contains many good codes.

Acknowledgement. The authors would like to thank William M. Kantor
for his useful communication [24].
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Table 1: Maximum Minimum Lee Distances for Best Self-Orthogonal

(pm,m) QC Codes over Z,
P

m|({2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
2|- 4 8 8 12 14 16 16 20 22 24 26 28 32 32 34 36
3|- - 8 14 16 18 22 24 28 30 34 38 40 44 48 50 52
414 8 12 16 22 24 28 32 36 40 44 48 54 56 60 64 70
51— — 16 20 24 30 34 40 44 48 54 58 64 68 74 T8 84
6|~ 12 16 22 28 34 40 44 50 56 60 66 72 80 8 90 96
7]1- — 18 24 32 38 44 48 56 62 68 76 82 88 94 102 110
8 (8 14 22 26 34 40 46 54 62 68 78 8 92 100 104 114 122
Table 2: First Rows of the Best Quaternary Self-Orthogonal QT Codes m = 2,3

code | m | d bi(z)

©2) | 2| 4 |1,1,13

82 [ 2] 8 [1,21213

(102) | 2 | 8 | 12,2,13,2,12

(12,2) | 2 | 12| 1,13,12,12, 1, 11

(14,2) | 2 | 14 | 12,13,1,1,12,2, 11

(16,2) | 2 | 16 | 1,13,1,1,12,2,12,12

(182) | 2 |16 | 11,1,1,1,22,13,2, 22,12

(202) | 2 [ 20 ] 1,1,1,12,2,12,13,12, 11, 11

(22,2) | 2 | 22| 1,11,18,12,12,12,1,2,2,1, 11

(242) | 2 | 24 | 11,12,1,1,1,1,12,13,22,2,2,13

(262) | 2 [ 26 | 12,1,1,1,1,11,12, 12,12, 11, 13,2, 13

(282) | 2 | 28 | 11,1,1,12,13,13,1, 22,12, 12, 12,12, 2, 11

(30,2) | 2 | 30 | 12,12,12,1,1,1,1,183,13,12,2,13,2,2, 11

(32,2) | 2 | 32 [ 11,1,1,1,1,1, 13,11, 13, 22, 12, 2, 2, 2, 12, 12

(34,2) | 2 | 3¢ | 1,1,1,1,1,12,183, 11, 12, 11, 2, 12, 11, 12, 12, 2, 13

(36,2) | 2 |36 }1212,1,1,1,1,1,1,2 12,11, 11, 2, 13, 13, 11, 12, 22

(123) | 3| 8 | 1,122 21,12

15,3) | 3 | 14 | 1,122, 11, 12, 113

(18,3) | 3 | 16 | 122, 123, 123, 113, 111, 122

(21,3) | 3 | 18 | 1,112, 123, 13, 122, 12, 111

(24,3) | 3 | 22 | 1,1, 113, 123, 112, 11, 112, 113

(27,3) | 3 | 24 | 12,111,1, 1, 123, 112, 123, 11, 13

(30,3) | 3 | 28 | 1,1, 113, 11, 113, 122, 12, 11, 122, 12

(33,3) | 3 | 30 | 12,12, 12,1, 11,122, 11, 11, 113, 113, 111

36,3) | 3 | 34 | 1,111,123, 113, 1, 12, 122, 13, 12, 13, 11, 122

(39,3) | 3 | 38 | 1,123, 1, 11, 21, 123, 13, 12, 113, 111, 122, 2, 122

(42,3) | 3 | 40 | 1,21,123,12, 1,12, 22, 21, 112, 2, 111, 11, 112, 118

(45,3) | 3 | a4 | 122,12, 21, 1,1, 112, 11, 122, 11, 112, 113, 123, 2, 13, 113

(48,3) | 3 | 48 | 112,123, 112, 12, 1, 11, 21, 13, 111, 11, 21, 122, 12, 22, 113, 2

(51,3) | 3 | 50 | 11,12, 1,12, 21, 112, 113, 12, 122, 13, 1, 122, 111, 113, 11, 21, 123

(54,3) | 3 | 52 | 112, 1, 112, 111, 123, 113, 21, 21, 123, 12, 113, 12, 13, 11, 113, 122, 122, 122
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(4]}

Table 3: First Rows of the Best Quaternary Self-Orthogonal QT Codes m = 4,5

code | m | d bi(z)

@4 | 4] a|1133

(12,4) 4 8 1132, 123, 1213

(16,4) 4 12 | 112, 113, 102, 11

(20,4) | 4 | 16 | 123,122,183, 11,12

(24,4) 4 22 | 1132, 131, 122, 112, 1222, 1122

(28,4) 4 24 | 102, 111, 1, 12, 11, 1232, 1223

(32,4) 4 28 | 1223, 113, 121, 11, 133, 102, 1113, 1123

(36,4) 4 32 | 132, 11, 111, 133, 211, 122, 112, 202, 1222

(40,4) 4 36 | 122, 1113, 1, 1222, 211, 121, 111, 132, 113, 221

(44,4) 4 40 | 133, 212, 11, 1, 101, 112, 121, 123, 1112, 122, 221

(48,4) 4 44 | 211, 121, 1123, 122, 132, 113, 1222, 212, 131, 131, 123, 1

(52,4) 4 48 | 212, 12, 1232, 13, 131, 1212, 11, 221, 1132, 133, 1222, 1112, 22

(56,4) 4 54 | 113, 133, 1, 102, 131, 221, 1112, 1132, 122, 1213, 11, 21, 1222, 211

(60,4) 4 56 | 133, 102, 131, 1213, 1, 22, 1222, 21, 113, 132, 213, 1122, 211, 112, 1223

(64,4) 4 60 | 1113, 132, 1, 122, 111, 21, 133, 1222, 1112, 123, 102, 1, 12, 213, 1123, 1132

(68,4) 4 64 | 1113, 111; 12, 111, 2, 133, 1, 102, 123, 1223, 222, 1222, 121, 1132, 112, 132, 1223

(72,4) 4 70 | 1132, 1, 1222, 11, 1213, 221, 133, 122, 1112, 213, 212, 12, 1223, 1122, 1123, 211, 131, 112
(20,5) 5 16 | 1121, 2133, 11122, 1011

@255 | 5 | 20 | 11,133, 111, 1202, 11212

(30,5) 5 24 | 1113, 133, 131, 122, 1112, 11222

(35,5) | 5 | 30 | 1021, 2221, 1321, 131, 1123, 11233, 1331

(40,5) 5 34 | 2212, 1323, 11112, 1223, 1122, 1232, 133, 12123

(45,5) 5 40 | 11312, 12223, 133, 1331, 1031, 1032, 1133, 11212, 2111

(50,5) 5 44 | 132, 11322, 1022, 1132, 1031, 1, 213, 1033, 2111, 11223

(55,5) 5 48 | 11113, 11112, 2021, 1202, 1132, 131, 1033, 122, 1322, 1031, 1102

(60,5) 5 54 | 11313, 11, 12, 2221, 101, 2021, 1211, 12122, 1221, 131, 111, 1123

(65,5) 5 58 | 2211, 1323, 211, 1132, 2122, 11322, 1311, 1123, 12223, 11223, 1202, 1212, 1332

(70,5) 5 64 | 1122, 1031, 111, 2132, 2112, 12223, 12222, 122, 21, 1111, 113, 12, 12313, 12123

(75,5) 5 68 | 2131, 132, 11, 1132, 2123, 201, 11223, 1011, 1033, 123, 11222, 12, 1131, 12122, 12213
(80,5) 5 74 | 11122, 1022, 12122, 1132, 1122, 12223, 11112, 12222, 12132, 1032, 1323, 11232, 2211, 1333, 11313, 12313
(85,5) 5 78 | 113, 201, 11223, 1031, 122, 1022, 1331, 21, 12222, 1302, 133, 11112, 11132, 11212, 1321, 2213, 2221
(80,5) 5 84 1211, 11313, 2221, 1132, 1221, 1323, 1, 2112, 11123, 12213, 1121, 211, 101, 12, 221, 131, 2212, 11112
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Table 4: First Rows of the Best Quaternary Self-Orthogonal QT Codes m = 6,7

code m d bi(z)
(186) | 6 | 12 [ 21, 111, 11321
(246) | 6 | 16 | 21, 21313, 22213, 12
(30,6) 6 22 10323, 1333, 1, 102, 112122
(36,6) 6 28 1203, 121223, 112, 10321, 1, 13311
(42,6) 6 34 1131, 13333, 12333, 13022, 1323, 10112, 13302
(48,6) 6 40 20212, 12113, 1011, 1113, 21212, 1031, 13321, 1303
(54,6) 6 44 11212, 1301, 101, 2221, 20211, 11222, 11033, 1031, 11312
(60,6) 6 50 22113, 12, 13022, 2111, 10131, 21213, 121313, 13202, 10122, 1301
(66,6) 6 56 10213, 12022, 1223, 10121, 21133, 1031, 22211, 13111, 11013, 12211, 2013
(72,6) 6 60 111222, 11111, 1323, 12, 112322, 10121, 12322, 122232, 13, 112313, 22122, 13022
(78,6) 6 66 21113, 112223, 1, 201, 1101, 11322, 112323, 11031, 213, 21211, 1122, 121222, 13132
(84,6) 6 T2 2, 1, 13, 112, 10213, 122232, 112233, 22111, 12012, 112133, 1131, 1213, 2103, 12121
(96,6) 6 86 2122, 2101, 2011, 10123, 10213, 112132, 21311, 12312, 21312, 121213, 1212, 113132, 122, 21221, 12313, 11131
(102,6) 6 90 213, 21313, 1, 10311, 12223, 122123, 21222, 21333, 22211, 10223, 1303, 13022, 10103, 1133, 11111, 2113, 133
(108,6) 6 96 12231, 11112, 2121, 133, 1, 113223, 21321, 12, 11131, 10211, 1332, 22113, 1002, 111332, 111313, 12312, 1303, 13221
(28,7) 7 18 12, 1123132, 13111, 103311
(35,7) 7 24 12122, 20111, 1, 1113111, 21033
(42,7) 7 32 1213, 2102, 113313, 111113, 210222, 10112
(49,7) 7 38 131132, 113032, 101312, 1231231, 1122122, 213133, 21212
(56,7) 7 44 211, 1212122, 113012, 210213, 1301, 1213212, 1132, 20123
(63,7) 7 48 102, 102212, 123231, 221123, 221222, 112213, 212113, 1123212, 123111
(70,7) 7 56 21112, 1, 113122, 1113131, 1011, 11212, 21012, 121131, 133211, 10121
(77,7) 7 62 21031, 10133, 20221, 12023, 22102, 1213, 101233, 1303, 133132, 11131, 102202
(84,7) 7 68 101021, 11, 122213, 202021, 1132312, 1131221, 130221, 11022, 1131321, 113132, 102133, 1022
(91,7) 7 76 10023, 213233, 13, 122202, 213211, 12022, 13122, 212231, 12103, 123212, 131133, 1123132, 202111
(98,7) 7 82 12132, 121312, 122313, 110131, 1113231, 1131221, 111213, 132212, 2132, 1132322, 112032, 1301, 121133, 1122211
{105,7) 7 88 13232, 211121, 131231, 13023, 1222312, 123222, 132113, 101201, 21103, 202112, 1112122, 110222, 222123, 12031, 103231
(112,7) 7 94 113, 1113, 10122, 123022, 112233, 111211, 13221, 21303, 102233, 10331 2, 1132132, 202222, 1111211, 12, 131133, 21
(119,7) 7 102 | 101333, 11223, 123, 13132, 112232, 10111, 120121, 1112222, 12211, 1213122, 13112, 1132131, 131323, 101322, 1111312, 132, 123233
321, 231311
(126,7) 7 110 103322, 11112, 111233, 2013, 101102, 1222, 1212221, 21132, 111012, 13022, 1323, 113133, 102012, 11231, 1232, 110122, 12201, 10133

12201, 20211
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Table 5: First Rows of the Best Quaternary Self-Orthogonal QT Codes m = 8

code m d bi(x)

(16,8) 8 8 111, 1323123

(24,8) 8 14 12103, 11031, 213113

(32,8) 8 22 1121211, 1310231, 103021, 100213

(40,8) 8 26 12, 1, 2211212, 1313221, 11321312

(48,8) 8 34 221, 13333, 1201313, 1022311, 1323112, 210113

(56,8) 8 40 10231, 120132, 120301, 1102022, 110211, 1223222, 2021121

(64,8) 8 46 133, 1221023, 1111032, 202132, 213, 1311102, 1110122, 1223323

(72,8) 8 54 112, 101123, 110221, 1113122, 1111332, 1230232, 1311021, 13212, 1132323

(80,8) 8 62 121012, 1, 21312, 1033122, 221311, 11111212, 1133323, 11221221, 1012132, 1232331

(88,8) 8 68 1011, 11013, 1211023, 122031, 1131332, 1122231, 110233, 122022, 1103112, 121102, 12122212

(96,8) 8 78 132223, 1210223, 1012332, 130302, 10223, 12233, 103111, 1012333, 1023133, 201212, 1103232, 1312231

(104,8) 8 86 131111, 1212202, 102002, 212, 1302112, 123211, 132201, 1013322, 132032, 100231, 111311, 10112, 2021331

(112,8) 8 92 1020131, 12, 1122012, 2111213, 1133322, 2221332, 112302, 1222331, 1103121, 2211123, 202213, 132322, 1111333, 13212

(120,8) 8 100 | 10223, 11122131, 1221013, 11221312, 112102, 1113313, 2111, 1321112, 123332, 1321211, 12, 102303, 121333, 1101302, 210123

(128,8) 8 104 | 1233, 1213, 102002, 222221, 201232, 132301, 11322321, 1333321, 2123231, 1032312, 113212, 1330231, 2132221, 1332332
1112031, 1333322

(136,8) 8 114 | 1113102, 1012113, 1111311, 1101121, 2122211, 1203113, 1033131, 2111, 132032, 1212313, 1031323, 2113022, 211102, 130311
1223102, 1231031, 131231

(144,8) 8 122 | 2212131, 101232, 123, 110233, 12222221, 103012, 12203, 2102322, 103013, 1311232, 12222321, 1112023, 11232122, 1230221

11312311, 2131022, 113321, 1021132




