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Abstract

Let C be a plane convex body, and let {(ab) be the Euclidean
length of a longest chord of C parallel to the segment ab in C. By
the relative length of ab in a convex body C, we mean the ratio of
the Euclidean length of ab to '-(‘7}‘32. We say that a side ab of a convex
n-gon is relatively short if the relative length of ab is not greater
than the relative length of a side of the regular n-gon. In this article,
we provide a significant sufficient condition for a convex hexagon to
have a relatively short side.
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We need some definitions from (1]. Let ab be the closed segment with
endpoints a and b in the Euclidean plane R?, and |ab| be the Euclidean
length of ab. Let C C R? be a convex body. A chord pg of C is called
an affine diameter of C if there is no longer parallel chord in C. Let
l(ab) denote the Euclidean length of an affine diameter of C parallel to the
segment ab in C. The ratio of |ab| to 1!(ab), namely ;‘%'5, is called the

C- distance between a and b, or C-length of ab, denoted by distc (e, b).
If there is no doubt about C, we may just say relative distance between
a and b, or relative length of ab. Let A, denote the relative length of a
side of the regular n-gon. By simple computation, we obtain A3 = Ay = 2,
As =5 —1and A\g = 1. A side ab of a convex n-gon C is called relatively
short if distc (a,b) < A, and it is called relatively long if distc (a,b) > An.

Karol Doliwka and Marek Lassak proved that for n < 5 every convex
n-gon has a relatively long side and a relatively short side (see [1]). In
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answering the conjectures suggested by [1], the articles [2] and [3] proved
independently by different methods that every convex hexagon has a side
of relative length at most 8 — 4/3.

In [1} the authors provided a hexagon which has no relatively short side.
(4] proved that every convex hexagon has a relatively long side and claimed
without proof a significant sufficient condition for a convex hexagon to have
a relatively short side. In this article, we give the proof. By a pair of main
parallel sides of a convex hexagon H, we refer to two parallel sides S; and
Sz of H such that each component of H\ (S1 U S2) is the union of two
consecutive sides of H. For example, in a regular hexagon, any pair of
parallel sides is a pair of main parallel sides. In this note we prove the
following result:

Theorem. Every convez hezagon with at least one pair of main parallel
sides has a relatively short side.

Let H denote a convex hexagon with vertices a;, a2, a3, a4, as and ag in
cyclic order. Since Ag = 1, we should prove that for every convex hexagon
H with at least one pair of main parallel sides there exists a side zy of H
with disty (z,y) < 1, namely |zy| < 5(—’;-21 For two segments vs and vt
emanating from the same point v, we say vs follows vt, or equivalently, vt
precedes vs, if the rotation from vs to vt around v with rotation angle less
than 7 is clockwise. Let P be a parallelogram such that one or two pairs
of main parallel sides of H lie on the boundary (two pairs of parallel sides)
of P.

We define S* as the set of sides of H such that a side zy of H is a
member of S* if and only if there is a side uv of P such that zy C uv and
2lzy| 2 |uv|.

For simplicity, if two segments pq and rs are parallel, we write pq || 7s.

First, we prove the following two lemmas.

Lemma 1. Every conver hexagon H with at least two pairs of main parallel
sides has a relatively short side.
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Figure 1: H has at least two pairs of main parallel sides.

Proof. Let P be a parallelogram such that two pairs of main parallel sides
of H lie on the boundary of P, as shown in Figure 1. Let b3, as, b2, as
denote the vertices of P in cyclic order.
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Case 1: |S*| > 3. Then there exist two elements of S*, say azay and
asas, and a point f such that either f € asag with asf || aqas, or f € azaq
with agf || asas. Thus, a3f or asf is an affine diameter of H parallel to
a4as, and l(asas) > 2|asas]. Hence asas is relatively short.

Case 2: |S*| = 2. If §* = {asa4,asag}, then obviously asas is
relatively short. Similarly, if $* = {a2a3,asa6}, S* = {a1a6,a2a3} or
S§* = {a)86,a30a4}, H has a relatively short side.

Next, we assume S* = {a;a¢,asa¢}. The argument for S* = {aza3,aszaq}
is similar.

Let ¢; € bpag be the point such that ase; | azaq. If ¢ € asas, then
azay is relatively short; otherwise ¢; € beas. Consider the point ¢z € agh;
with a4cy || acas. If ¢ € aga;, then asas is relatively short; otherwise
c2 € a1b;. Consider the point c3 € ajas with ages || ajaz and the point
¢4 € asag With agey || asas. Let z denote the point of intersection of azc;
and a4C2.
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Figure 2: (a) z lies between agcs and azcy; (b) asz precedes aszeq; (c) a3z
follows aacs.

If a3z lies between ascs and agcy (see Figure 2 (a)), then I(aza3) >
2|azas3), l(azas) > 2]azas|, and both aza3 and aza4 are relatively short. If
a3z precedes azcy or lies on azcy (see Figure 2 (b)), then l(aga3) > 2|azas|,
and azag is a relatively short side. If agz follows ascs or lies on ascs (see
Figure 2 (c)), then l(a3as) > 2|agay|, and agay is relatively short.

Case 3: |S*| = 1. Without loss of generality, we may assume that
S§* = {aja6}.

Subcase 3.1 |a1b)| < |agaq|- Let ¢; € azaq be the point such that
aicy || agaz. Then clearly asag is relatively short.

Subcase 3.2 |a1b;| > |azay|. Since S* = {ajag}, we have |azas| <
% |aszb;| and Jasag| < %|a3b1|. Let ¢; € asby, c2 € a1y, c3 € a1ag and ¢4 €
asag U a1ag be the points such that aze; || azas, aqce || azas, ascs || aiaz,
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and agcy || agas respectively.

If ¢4 € asag, then an argument, similar to the one used in Case 2,
yields that asas or asa, is a relatively short side of H. If ¢4 € a;as,
then l(asas) > |azas| + |asas| and l(aza3) > |azas| + |asag|. Therefore
|a2a3| > |asas| implies l(asag) > 2|asas| and that asag is relatively short;
|a2as| < |asas| implies l(azas) > 2|azas| and that agas is relatively short.

Case 4: |S*| = 0. Let ¢; € asbs be the point such that aze; || azas,
¢z € a1b; be the point such that asco || azas. Now consider the point
c3 € ajag U baag with ases || aiaz, and the point ¢4 € asag U byag with
ascy || eqas.

If a3c3 follows azcq, then H has a relatively short side asas or agay, the
argument is similar to that in Case 2. If ascs precedes ascs, as shown in
Figure 3, then let di € azb; be the point such that asd; || asaq, do € asbe
be the point such that a;ds || a2as. Now consider the point d3 € azazUbzas
with agds || a1a2, and the point dy € a3aq U byas with agdy || asas. Clearly
asdy follows agds. By an argument similar to that in Case 2, we know that
H has a relatively short side ajag or asas. a

Figure 3: asc3 precedes ascy, agdy follows agds.

Lemma 2. Every conver hezagon H with only one pair of main parallel
sides has a relatively short side.

Proof. Let P be a parallelogram such that the only pair of main parallel
sides and one of the remaining sides of H lies on the boundary of P, as
shown in Figure 4. Here we have two cases: (a) all the vertices of H lie on
the boundary of P; (b) one vertex of H lies in the interior of P and all the
other vertices lie on the boundary of P.

First, consider (b). If [a1as| < 3 |asas| or |azas| < i lasbi], then ajas
or agag is relatively short. Otherwise, there is a point ¢ such that either
¢ € azaz with agc || ajaz, or ¢ € ajae with asc || ajap. Thus, l(a1a) >
2|a;az|, and aqa2 is relatively short.

Now consider (a). Let by, by, b2, as denote the vertices of P in cyclic
order.

Case 1: |S*| =3. Then S* = {a1a6,asa6,a3a4}. Consider ¢, € asag
with ase; || asas or co € azayq with agez || asas. It is easy to see that
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Figure 4: H has only one pair of main parallel sides.

l(asas) > 2|agas| and that aas is relatively short.

Case 2: |S*| = 2. If §* = {asas,a3a4} or S* = {a;a¢,a3a4}, clearly
H has a relatively short side. Now consider the only remaining case $* =
{alas, asas}.

Let ¢; € baag be the point such that azc; || azaq. If ¢; € asag, then azay
is relatively short; otherwise c; € byas. Consider the point c; € aghy Uagh;
with aqce || azas. If c; € agai, then aqaj is relatively short; otherwise
2 € a1b; U azb;. Consider the point ¢z € ajag U baag with ascs || ajas,
and the point ¢4 € asag U biag with ascq || agas. Assume that ¢4 € byag.
Consider the point d; € azaq with agd; || asas, and we obtain that a4as is
relatively short. Now assume ¢4 € asas. If c3 € byag, then asay is relatively
short; if c3 € aya6, then ages follows ascy, by an argument similar to that
in Case 2 of Lemma 1, we obtain that aza3 or azay is relatively short.

Case 3: [S*|=1.

Subcase 3.1: S§* = {azaq}. Let ¢; € bpb; be the point such that
ascy || a1as. If 1 € agbg, then aas is relatively short; otherwise ¢; € bas.
Consider the point ¢; € bzaz with ajco || asas. If ¢; € azaq, then agag is
relatively short; otherwise ¢y € a4bs. Consider the point ¢3 € azbg U bpay
with ages || @1az, and the point ¢4 € agaq with agey || agas.

If agcy follows ages, then, by an argument similar to that in Case 2 of
Lemma 1, we obtain that a;ag or asag is a relatively short side of H. Now
it remains to consider the case that agcs precedes ages. Let di € asby be
the point such that aad; || azas, d2 € a1by U azb; be the point such that
aqdy || aza3. Consider the point d3 € ajag U baag with azds || @102, and the
point dy € asag U bjag with azdy || agas. Clearly azds follows azds. We
obtain similarly that asaj a relatively short side of H.

Subcase 3.2: §* = {asag}. Let ¢; € byag be the point such that
azcy || azaq. If ¢ € asae, then azay is relatively short; otherwise ¢; € baas.
Consider the point c; € aghy U agb; with agco || azas. If c2 € agay, then
azag is relatively short; otherwise ca € a1b; U aszb,. Consider the point
€3 € aiag U bag with ages || ajaz, and the point ¢; € asag U byag with
ascy || aqas. If ¢4 € bras, then ayas is relatively short; otherwise ¢4 € asag.
If ascs precedes ascy, then ajag or azay is relatively short. If ages follows
ascy, then, by a similar argument as before, we obtain that asas or asa, is
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a relatively short side of H.

Subcase 3.3: S* = {a1a6}. The conclusion can be obtained by an
argument similar to that in the case S* = {aza4} mentioned above.

Case 4: |S*| =0.  The conclusion can be obtained by an argument
similar to that in the case S* = {aza4} mentioned above. O

Combining Lemmas 1 and 2, we obtain our Theorem.
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