Graphic Sequences with a Realization Containing a Friendship Graph Michael J. Ferrara* Department of Mathematics University of Colorado at Denver Ronald J. Gould Department of Mathematics and Computer Science **Emory University** John R. Schmitt Department of Mathematics Middlebury College November 10, 2005 #### Abstract For any simple graph H, let $\sigma(H,n)$ be the minimum m so that for any realizable degree sequence $\pi=(d_1,d_2,\ldots,d_n)$ with sum of degrees at least m, there exists an n-vertex graph G witnessing π that contains H as a weak subgraph. Let F_k denote the friendship graph on 2k+1 vertices, that is, the graph of k triangles intersecting in a single vertex. In this paper, for n sufficiently large, $\sigma(F_k,n)$ is determine precisely. **Keywords**: degree sequence, potentially graphic sequence, friendship graph. # 1 Introduction Let G be a simple undirected graph, without loops or multiple edges. Let V(G) and E(G) denote the vertex set and edge set of G respectively. For a ^{*}mferrara@math.cudenver.edu vertex $v \in V(G)$, let N(v) denote the set of neighbors (or neighborhood) of v, and d(v) the degree of v, that is the order of N(v). We let \overline{G} denote the complement of G. Denote the complete graph on t vertices by K_t , and the friendship graph by F_k , where F_k is the graph of k triangles intersecting in a single vertex. A sequence of nonincreasing, nonnegative integers $$\pi=(d_1,d_2,\ldots,d_n)$$ is called graphic if there is a (simple) graph G of order n having degree sequence π . In this case, G is said to $realize \pi$, and we will write $\pi = \pi(G)$. If a sequence π consists of the terms d_1, \ldots, d_t having multiplicities m_1, \ldots, m_t , we may write $\pi = (d_1^{m_1}, \ldots, d_t^{m_t})$. There are numerous elementary methods to check if a given sequence is graphic (for example, see [3, 7, 8]). Define $\sigma(H,n)$ to be the smallest integer m so that for every n-term graphic degree sequence with degree sum at least m there exists a realization containing H as a weak subgraph. Such sequences are said to be potentially H-graphic. Note that in the definition of this function one only needs to replace the quantifier 'there exists a' with 'for every' to obtain a value that is two more than twice the Turán number, ex(n, H). In this paper we determine the value of $\sigma(F_k, n)$. For a survey of similar results we refer the reader to [18], and for any undefined terms to [1] ### 2 Useful Known Results In [4] Erdős, Jacobson and Lehel conjectured that $$\sigma(K_t, n) = (t-2)(2n-t+1) + 2.$$ The conjecture rises from consideration of the graph $K_{(t-2)} + \overline{K}_{(n-t+2)}$, where + denotes the join. It is easy to observe that this graph contains no K_t , is the unique realization of the sequence $$((n-1)^{t-2},(t-2)^{n-t+2}),$$ and has degree sum (t-2)(2n-t+1). Erdős et al. proved the conjecture for t=3 and $n\geq 6$. The cases t=4 and 5 were proved separately (see [6] and [10], and [11]). For $t\geq 6$ and $n\geq {t\choose 2}+3$, Li, Song & Luo [12] proved the conjecture true via linear algebraic techniques. Later, the present authors proved all cases of the conjecture via induction on t using graph theoretic techniques [5]. The following summarizes these results. **Theorem 1** For $t \geq 3$ and $n > n_0(t)$, $$\sigma(K_t, n) = (t-2)(2n-t+1) + 2.$$ The following results will be used in the proof of our main result. Theorem 2 (Erdős-Gallai [3]) A nonincreasing sequence of nonnegative integers $$\pi = (d_1, d_2, \ldots, d_n)$$ $(n \ge 2)$ is graphic if, and only if, the sum of the degrees is even and for each integer k, $1 \le k \le n-1$, $$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min\{k, d_i\}.$$ The following is an extension of a theorem of Rao [17]. **Theorem 3 ([6])** If π is a graphic sequence with a realization G containing H as a subgraph, then there is a realization G' of π containing H with the vertices of H having the |V(H)| largest degrees of π . **Theorem 4** ([13], [14]) Let $\pi = (d_1, d_2, \ldots d_n)$ be a non-increasing sequence of non-negative integers, where $d_1 = m$ and the degree sum is even. If there exists an integer $n_1 \leq n$ such that $d_{n_1} \geq h \geq 1$ and $n_1 \geq \frac{1}{h} \left[\frac{(m+h+1)^2}{4} \right]$, then π is graphic. **Theorem 5** ([15]) Let $n \ge 2r + 2$ and $\pi = (d_1, d_2, \ldots d_n)$ be graphic with $d_{r+1} \ge r$. If $d_{2r+2} \ge r - 1$, then π is potentially K_{r+1} -graphic. The value of $\sigma(kK_2, n)$ was determined in [6]. Theorem 6 ([6]) $\sigma(kK_2, n) = (k-1)(2n-k) + 2$. The lower bound for $\sigma(kK_2, n)$ is easy to obtain by considering the graph $G' = K_{k-1} + \overline{K}_{n-k+1}$. This graph is the unique realization of the degree sequence $\pi = ((n-1)^{k-1}, (k-1)^{n-k+1})$, contains no matching of size k, and has degree sum (k-1)(2n-k). #### 3 The Main Theorem Erdős et al. [2], showed that any graph on n vertices having at least $$\left| \frac{n^2}{4} \right| + \left\{ \begin{array}{ll} k^2 - k + 1 & \text{if } k \text{ is odd,} \\ k^2 - \frac{3}{2}k + 1 & \text{if } k \text{ is even} \end{array} \right.$$ edges contains a copy of F_k . The following is an analogue to this result. Our proof utilizes a technique developed in [16]. Theorem 7 For $$k \ge 1$$ and $n \ge \frac{9}{2}k^2 + \frac{7}{2}k - \frac{1}{2}$, $$\sigma(F_k, n) = k(2n - k - 1) + 2. \tag{1}$$ As F_1 is isomorphic to K_3 , (1) is established for k=1 by Theorem 1. Equation (1) was established for k=2 by Lai in [9]. Our proof of Theorem 7 holds for all $k \ge 1$. PROOF: To see that $\sigma(F_k,n) \geq k(2n-k-1)+2$, consider the graph $G=K_1+G'$, where G' is any graph on n-1 vertices where no realization of the degree sequence given by G' contains k disjoint edges. We may choose G' to be the graph $K_{k-1}+\overline{K}_{n-k}$ as in Theorem 6. Thus G is the graph $K_k+\overline{K}_{n-k}$. The graph G is the unique realization of the degree sequence $\pi=((n-1)^k,(k)^{n-k})$ and has degree sum equal to k(n-1)+(n-k)k=k(2n-k-1). To see that G contains no copy of F_k first notice that any k+1 vertices of F_k must contain at least one edge. Now if G were to contain a copy of F_k it must contain at least k+1 of its vertices from the subgraph \overline{K}_{n-k} of G, however this subgraph does not contain an edge. This establishes the lower bound. We now establish the upper bound through a sequence of lemmas. The following establishes that there are sufficiently many vertices of sufficiently large degree in any graph with the degree sum at least that given by (1). **Lemma 1** Let $S = (d_1, \ldots, d_n)$ be a non-increasing graphic degree sequence with with degree sum at least k(2n-k-1)+2 and $n > k^2+k-2$, then $d_1 \geq 2k$ and $d_{2k+1} \geq 2$. PROOF: To see that $d_1 \geq 2k$, suppose otherwise, so S contains no term larger than 2k-1. Then the degree sum of S is at most n(2k-1), a contradiction. Suppose now that $d_{2k+1} \leq 1$. Then, by Theorem 2, $$\begin{split} \sum_{i=1}^n d_i &= \sum_{i=1}^{2k} d_i + \sum_{i=2k+1}^n d_i \\ &\leq (2k)(2k-1) + \sum_{i=2k+1}^n \min\{2k, d_i\} + \sum_{i=2k+1}^n d_i \\ &= 4k^2 - 2k + 2\sum_{i=2k+1}^n 1 \\ &\leq 4k^2 - 2k + 2(n-2k) \\ &= 2n + 4k^2 - 6k. \end{split}$$ This is a contradiction. Let $\pi=(d_1,\ldots,d_n)$ be a non-increasing, n-term graphic sequence with degree sum at least k(2n-k-1)+2. We will now recursively define a sequence π_1,\ldots,π_{2k+1} of degree sequences. We begin by constructing the sequence π'_1 , on n-1 terms, by deleting d_1 from π and subtracting 1 from the first d_1 remaining terms. That is, $$\pi'_1 = (d_2 - 1, d_3 - 1, \dots, d_{d_1+1} - 1, d_{d_1+2}, \dots, d_n).$$ We then obtain the sequence π_1 from π_1' by subtracting one from each of the first 2k terms in π_1' and arranging the first 2k terms in non-increasing order and then arranging the last n-2k-1 terms in non-increasing order. (As Lemma 1 guarantees that $d_{2k+1} \geq 2$ we are assured that this step is feasible.) Let $$\pi_1 = (d_2^{(1)}, d_3^{(1)}, \dots, d_n^{(1)}).$$ For $2 \le i \le 2k + 1$, we obtain the sequence $$\pi_i = (d_{i+1}^{(i)}, \dots, d_n^{(i)})$$ of length n-i from $$\pi_{i-1} = (d_i^{(i-1)}, \dots, d_n^{(i-1)})$$ by deleting $d_i^{(i-1)}$ from π_{i-1} , subtracting one from the largest $d_i^{(i-1)}$ non-negative remaining terms and arranging the first 2k+1-i terms in non-increasing order and then arranging the last n-2k-1 terms in non-increasing order. #### **Lemma 2** If π_{2k+1} is graphic then π is potentially F_k -graphic. PROOF: Clearly, if π_{2k+1} is graphic, then π_1 is graphic. As π is graphic, the Havel-Hakimi algorithm [7, 8] implies that π'_1 is graphic. If we can show that there is a realization of π'_1 that has a matching on those vertices of degree $d_2 - 1, \ldots, d_{2k+1} - 1$, then clearly π is potentially F_k -graphic. Let G'_1 be a realization of π'_1 and let G_1 be a realization of π_1 such that $V_1 = V(G_1) = V(G'_1) = \{v_2, \ldots, v_n\}$ with $d_{G_1}(v_i) = d_{G'_1}(v_i) - \delta_i$ where $\delta_i = 1$ for $2 \le i \le 2k+1$ and $\delta_i = 0$ otherwise. Let H be a copy of K_{n-1} on V_1 , and consider the function $W: E(H) \rightarrow \{-1,0,1\}$ defined by $$W(v_iv_j) = \begin{cases} -1 & v_iv_j \in E(G_1) \setminus E(G_1') \\ 1 & v_iv_j \in E(G_1') \setminus E(G_1) \\ 0 & \text{otherwise.} \end{cases}$$ The function W induces a weighting $w: V_1 \to \mathbb{Z}$, where the weight of a vertex v is the sum of the weights of the edges incident to v in H. If we let $X = \{v_2, \ldots, v_{2k+1}\}$, then one can see that w(v) = 1 if v is a member of X and w(v) = 0 otherwise. It will be shown that there exists a collection of trails T_1, \ldots, T_k in H that satisfy the following four properties. - (1) T_1, \ldots, T_k are edge disjoint. - (2) The end-vertices of T_1, \ldots, T_k are distinct vertices in X, and hence cover X. - (3) The first edge, and last edge, in each trail has weight 1 under W. - (4) If $T_j = e_1 e_2 \dots e_p$ then $W(e_{i+1}) = -W(e_i)$ for $1 \le i \le p-1$. If v lies on T_i , let w_i denote the vertex weighting induced by $W|_{E(T_i)}$. Note that if v is an end-vertex of T_i then $w_i(v) = 1$ and if v is an internal vertex of T_i , then $w_i(v) = 0$. We begin by showing that T_1 exists. Select v_2 as an end-vertex of T_1 . Note that as v_2 is in X, $w(v_2) = 1$ so there is some edge e in H incident to v_2 with W(e) = 1. If there is such an edge between v_2 and some other vertex x in X, let T_1 consist of the edge v_2x . Otherwise, there is an edge v_2y such that $W(v_2y) = 1$ and y is not in X. Include the edge v_2y in T_1 . As w(y) = 0, there is some edge incident to y having weight -1, which is then included in T_1 . Continue this process, and construct an alternating +1/-1trail in H. If at any point there exists an edge e with W(e) = 1 satisfying (1) – (4) above then include e in T_1 . As this process clearly terminates, we wish to show that it must terminate with such a choice. Assume not, so that T_1 is an alternating +1/-1 trail that violates (2) or (3) above. We show that such a trail can be extended. Assume first that (2) is violated. If the end-vertex of this trail is v_2 , then as $w(v_2) = 1$, our choice for the initial edge of T_1 implies that we can clearly continue the trail regardless of the weight of the final edge. If the end-vertex of the trail is some v in $V \setminus X$ then we note that w(v) = 0, and each time, if any, that v appears previously in the trail, it is adjacent to one edge of weight +1 and one edge of weight -1. Thus, if the last edge e on the trail has weight W(e) (which is necessarily +1 or -1), there is some edge not already in the trail which is adjacent to v and has weight -W(e) and the trail can be extended. If we assume that (2) is satisfied, but (3) is violated then the last vertex on the trail is some x in $X \setminus \{v_2\}$ but the last edge e added to the trail has weight W(e) = -1. However, w(x) = 1, which implies that we can extend the trail. Hence, T_1 exists. Assume that trails T_1, \ldots, T_j exist satisfying (1) - (4) and without loss of generality, let the end vertices of T_i be v_{2i}, v_{2i+1} . Note that if v is in $\{v_2, \ldots, v_{2j+1}\}$ then $$\sum_{i=1}^{j} w_i(v) = 1$$ and otherwise, $$\sum_{i=1}^{j} w_i(v) = 0.$$ To show trail T_{j+1} exists, begin with v_{2j+2} as an end-vertex. As $w(v_{2j+2}) = 1$ and $$\sum_{i=1}^{j} w_i(v_{2j+2}) = 0,$$ there is some edge e in H adjacent to v_{2j+2} with W(e)=1 that does not lie in any of T_1,\ldots,T_j . If there is such an edge between v_{2j+2} and some other vertex x in $X\setminus\{v_2,\ldots,v_{2j+2}\}$, let T_{j+1} consist of the edge $v_{2j+2}x$. Otherwise, we will proceed in a manner similar to the construction of T_1 , described above. That is, it can be shown that T_{j+1} is an alternating +1/-1 trail, which is edge disjoint from T_1,\ldots,T_j . If at any point T_{j+1} can be extended by an edge e of weight W(e)=1 to a vertex in $X\setminus\{v_2,\ldots,v_{2j+2}\}$ the edge e will be added to T_{j+1} . Otherwise, we will assume that T_{j+1} is an alternating trail that violates either (2) or (3). Then, as above, we can use the induced weights from the previous trails to extend T_{j+1} . As the process of extending T_{j+1} must terminate, we can see that T_{j+1} exists satisfying (1) - (4). Thus there exists trails T_1, \ldots, T_k satisfying (1) - (4), and assume without loss of generality that the end-vertices of T_i are v_{2i} and v_{2i+1} for all $1 \le i \le k$. Note that if an edge in H has weight 1 then it is in G'_1 and an edge in H having weight -1 is not in G'_1 . For each trail T_i , if $v_{2i}v_{2i+1}$ is an edge in G'_1 do nothing. If $v_{2i}v_{2i+1}$ is not an edge in G'_1 add this edge and all edges of weight -1 on T_i to G'_1 and remove all edges of weight 1 on T_i from G'_1 . In the event that $W(v_{2i}v_{2i+1}) = -1$ and $v_{2i}v_{2i+1}$ lies in some T_j , we examine $e_j = v_{2j}v_{2j+1}$. If e_j is in G'_1 , then we will proceed as above to add $v_{2i}v_{2i+1}$ to G'_1 . If e_j is not in G'_1 , we will add e_j to G'_1 and "switch" the edges in T_j . This will also serve to add the edge $v_{2i}v_{2i+1}$ to G'_1 . Note that it is not possible for $v_{2i}v_{2i+1}$ to lie in some T_j with $j \ne i$ if $W(v_{2i}v_{2i+1}) = +1$. Thus we can create a realization of π'_1 that contains the matching $v_2v_3, \ldots, v_{2k}v_{2k+1}$, implying that π is potentially F_k -graphic. \square **Lemma 3** If $n \ge 4k + 2$, and $d_{4k+2} \ge 2k - 1$ then π is potentially F_k -graphic. PROOF: If $d_{2k+1} \ge 2k$ then π is potentially K_{2k+1} -graphic by Theorem 5, and thus obviously F_k -graphic. Otherwise $d_{2k+1} \leq 2k-1$, which together with the hypothesis implies that $d_{2k+1} = d_{2k+2} = \ldots = d_{4k+2} = 2k-1$. Thus, for $i = 0, 1, \ldots, 2k+1$ the values of $d_{2k+2}^{(i)}, \ldots, d_{4k+2}^{(i)}$ differ by at most 1. Hence π_{2k+1} satisfies, for some $m \geq 1$, $$2k-1 \ge m = d_{2k+2}^{(2k+1)} \ge \ldots \ge d_{4k+2}^{(2k+1)} \ge m-1.$$ If $m=1, \pi_{2k+1}$ must be graphic as the degree sum of π_{2k+1} is even. If $m \geq 2$, then $$\frac{1}{m-1} \left[\frac{(m+(m-1)+1)^2}{4} \right] \le m+2 \le 2k+1.$$ By Theorem 4, π_{2k+1} is graphic, and hence, by Lemma 2, π is F_k -graphic. \square **Lemma 4** Let π be an n-term graphic degree sequence with $n \geq \frac{9}{2}k^2 + \frac{7}{2}k - \frac{1}{2}$ and degree sum at least k(2n - k - 1) + 2. If $d_{4k+2} \leq 2k - 2$ then π is potentially F_k -graphic. PROOF: First, we claim that $d_1 \geq 4k$. If not, then the degree sum of π is at most (4k-1)(4k+1) + (n-4k-1)(2k-2), which is less than k(2n-k-1)+2 for the given values of n. If $d_1 = n - 1$ then the degree sum of π'_1 is at least $\sigma(kK_2, n - 1)$. Therefore, there exists a realization of π'_1 that contains a copy of kK_2 and thus a realization of π that contains a copy of F_k . Now suppose there exists an r such that $2k+1 \le r \le d_1+1$ such that $d_{r+1} < d_r$. As the degree sum of (π'_1) is at least $\sigma(kK_2, n-1)$ there exists a graph realizing π'_1 that contains a copy of kK_2 . Furthermore, by Theorem 3 there exists a realization of π'_1 with kK_2 on those vertices having degree $d_2-1,\ldots d_{2k+1}-1$. This implies that π is potentially F_k -graphic. Otherwise, $n-2 \geq d_1 \geq d_2 \geq \ldots \geq d_{2k+1} = d_{2k+2} = \ldots d_{4k+2} = \ldots = d_{d_1+2}$. We may conclude that there exists an m such that $$2k-2 \ge m = d_{2k+2}^{(2k+1)} \ge \ldots \ge d_{4k+2}^{(2k+1)} \ge m-1.$$ We may then complete the proof as in the previous lemma. Together, Lemma 3 and Lemma 4 imply that $\sigma(F_k, n) \leq k(2n-k-1)+2$, completing the proof of Theorem 7. \square Acknowledgements: The authors wish to thank the anonymous referee for his many useful comments, which improved the clarity of our work. # References - [1] Bollobás, B., Extremal Graph Theory, Academic Press Inc. (1978). - [2] Erdős, P., Füredi, Z., Gould, R.J., Gunderson, D.S., Extremal Graphs for Intersecting Triangles, J. Combin. Th., Ser. B 64, (1995), 89-100. - [3] Erdős, P. & Gallai, T., Graphs with prescribed degrees (in Hungarian) Matemoutiki Lapor 11 (1960), 264-274. - [4] Erdős, P., Jacobson, M.S., Lehel, J., Graphs Realizing the Same Degree Sequence and their Respective Clique Numbers, Graph Theory, Combinatorics and Applications, Vol. I, 1991, ed. Alavi, Chartrand, Oellerman and Schwenk, 439-449. - [5] Ferrara, M., Gould, R., Schmitt, J., Potentially K_s^t -graphic degree sequences, submitted. - [6] Gould, R.J., Jacobson, M.S., Lehel, J., Potentially G-graphic degree sequences, Combinatorics, Graph Theory, and Algorithms (eds. Alavi, Lick and Schwenk), Vol. I, New York: Wiley & Sons, Inc., 1999, 387-400. - [7] Hakimi, S.L., On the realizability of a set of integers as degrees of vertices of a graph, J. SIAM Appl. Math, 10 (1962), 496-506. - [8] Havel, V., A remark on the existence of finite graphs (Czech.), Časopis Pěst. Mat. 80 (1955), 477-480. - [9] Lai, C., An extremal problem on potentially $K_m C_4$ -graphic sequences, submitted. - [10] Li, J., Song, Z., An extremal problem on the potentially P_k-graphic sequences, The International Symposium on Combinatorics and Applications, June 28-30, 1996 (W.Y.C. Chen et. al., eds.) Tanjin, Nankai University 1996, 269-276. - [11] Li, J., Song, Z., The smallest degree sum that yields potentially P_k -graphical sequences, J. Graph Theory 29 (1998), no.2, 63-72. - [12] Li, J., Song, Z., Luo, R., The Erdős-Jacobson-Lehel conjecture on potentially P_k -graphic sequences is true, Science in China, Ser. A, 41 1998, (5):510-520. - [13] Li, J., Yin, J., The smallest degree sum that yields potentially $K_{r,r}$ -graphic sequences, *Science in China*, Ser. A, 45 (June 2002),(6):694-705. - [14] Li, J., Yin, J., An extremal problem on potentially $K_{r,s}$ -graphic sequences, *Discrete Math.*, **260** (2003), 295-305. - [15] Li, J., Yin, J., Two sufficient conditions for a graphic sequence to have a realization with prescribed clique size, submitted. - [16] Yin, J., Chen, G., On Potentially K_{r_1,r_2,\ldots,r_m} -graphic Sequences, preprint. - [17] Rao, A.R., The clique number of a graph with a given degree sequence, Proc. Symposium on Graph Theory (A.R. Rao ed.), MacMillan and Co. India Ltd., Indian Statistical Institute Lecture Notes Series 4 (1979), 251-267. - [18] Rao, S.B., A survey of the theory of potentially P-graphic and forcibly P-graphic degree sequences, Lecture Notes in Math., No. 855, Springer Verlag, 1981, 417-440.