Graphic Sequences with a Realization Containing a Friendship Graph

Michael J. Ferrara*

Department of Mathematics University of Colorado at Denver

Ronald J. Gould

Department of Mathematics and Computer Science

Emory University

John R. Schmitt

Department of Mathematics Middlebury College

November 10, 2005

Abstract

For any simple graph H, let $\sigma(H,n)$ be the minimum m so that for any realizable degree sequence $\pi=(d_1,d_2,\ldots,d_n)$ with sum of degrees at least m, there exists an n-vertex graph G witnessing π that contains H as a weak subgraph. Let F_k denote the friendship graph on 2k+1 vertices, that is, the graph of k triangles intersecting in a single vertex. In this paper, for n sufficiently large, $\sigma(F_k,n)$ is determine precisely.

Keywords: degree sequence, potentially graphic sequence, friendship graph.

1 Introduction

Let G be a simple undirected graph, without loops or multiple edges. Let V(G) and E(G) denote the vertex set and edge set of G respectively. For a

^{*}mferrara@math.cudenver.edu

vertex $v \in V(G)$, let N(v) denote the set of neighbors (or neighborhood) of v, and d(v) the degree of v, that is the order of N(v). We let \overline{G} denote the complement of G. Denote the complete graph on t vertices by K_t , and the friendship graph by F_k , where F_k is the graph of k triangles intersecting in a single vertex.

A sequence of nonincreasing, nonnegative integers

$$\pi=(d_1,d_2,\ldots,d_n)$$

is called graphic if there is a (simple) graph G of order n having degree sequence π . In this case, G is said to $realize \pi$, and we will write $\pi = \pi(G)$. If a sequence π consists of the terms d_1, \ldots, d_t having multiplicities m_1, \ldots, m_t , we may write $\pi = (d_1^{m_1}, \ldots, d_t^{m_t})$. There are numerous elementary methods to check if a given sequence is graphic (for example, see [3, 7, 8]).

Define $\sigma(H,n)$ to be the smallest integer m so that for every n-term graphic degree sequence with degree sum at least m there exists a realization containing H as a weak subgraph. Such sequences are said to be potentially H-graphic. Note that in the definition of this function one only needs to replace the quantifier 'there exists a' with 'for every' to obtain a value that is two more than twice the Turán number, ex(n, H). In this paper we determine the value of $\sigma(F_k, n)$.

For a survey of similar results we refer the reader to [18], and for any undefined terms to [1]

2 Useful Known Results

In [4] Erdős, Jacobson and Lehel conjectured that

$$\sigma(K_t, n) = (t-2)(2n-t+1) + 2.$$

The conjecture rises from consideration of the graph $K_{(t-2)} + \overline{K}_{(n-t+2)}$, where + denotes the join. It is easy to observe that this graph contains no K_t , is the unique realization of the sequence

$$((n-1)^{t-2},(t-2)^{n-t+2}),$$

and has degree sum (t-2)(2n-t+1). Erdős et al. proved the conjecture for t=3 and $n\geq 6$. The cases t=4 and 5 were proved separately (see [6] and [10], and [11]). For $t\geq 6$ and $n\geq {t\choose 2}+3$, Li, Song & Luo [12] proved the conjecture true via linear algebraic techniques. Later, the present authors

proved all cases of the conjecture via induction on t using graph theoretic techniques [5].

The following summarizes these results.

Theorem 1 For $t \geq 3$ and $n > n_0(t)$,

$$\sigma(K_t, n) = (t-2)(2n-t+1) + 2.$$

The following results will be used in the proof of our main result.

Theorem 2 (Erdős-Gallai [3]) A nonincreasing sequence of nonnegative integers

$$\pi = (d_1, d_2, \ldots, d_n)$$

 $(n \ge 2)$ is graphic if, and only if, the sum of the degrees is even and for each integer k, $1 \le k \le n-1$,

$$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min\{k, d_i\}.$$

The following is an extension of a theorem of Rao [17].

Theorem 3 ([6]) If π is a graphic sequence with a realization G containing H as a subgraph, then there is a realization G' of π containing H with the vertices of H having the |V(H)| largest degrees of π .

Theorem 4 ([13], [14]) Let $\pi = (d_1, d_2, \ldots d_n)$ be a non-increasing sequence of non-negative integers, where $d_1 = m$ and the degree sum is even. If there exists an integer $n_1 \leq n$ such that $d_{n_1} \geq h \geq 1$ and $n_1 \geq \frac{1}{h} \left[\frac{(m+h+1)^2}{4} \right]$, then π is graphic.

Theorem 5 ([15]) Let $n \ge 2r + 2$ and $\pi = (d_1, d_2, \ldots d_n)$ be graphic with $d_{r+1} \ge r$. If $d_{2r+2} \ge r - 1$, then π is potentially K_{r+1} -graphic.

The value of $\sigma(kK_2, n)$ was determined in [6].

Theorem 6 ([6]) $\sigma(kK_2, n) = (k-1)(2n-k) + 2$.

The lower bound for $\sigma(kK_2, n)$ is easy to obtain by considering the graph $G' = K_{k-1} + \overline{K}_{n-k+1}$. This graph is the unique realization of the degree sequence $\pi = ((n-1)^{k-1}, (k-1)^{n-k+1})$, contains no matching of size k, and has degree sum (k-1)(2n-k).

3 The Main Theorem

Erdős et al. [2], showed that any graph on n vertices having at least

$$\left| \frac{n^2}{4} \right| + \left\{ \begin{array}{ll} k^2 - k + 1 & \text{if } k \text{ is odd,} \\ k^2 - \frac{3}{2}k + 1 & \text{if } k \text{ is even} \end{array} \right.$$

edges contains a copy of F_k . The following is an analogue to this result. Our proof utilizes a technique developed in [16].

Theorem 7 For
$$k \ge 1$$
 and $n \ge \frac{9}{2}k^2 + \frac{7}{2}k - \frac{1}{2}$,

$$\sigma(F_k, n) = k(2n - k - 1) + 2. \tag{1}$$

As F_1 is isomorphic to K_3 , (1) is established for k=1 by Theorem 1. Equation (1) was established for k=2 by Lai in [9]. Our proof of Theorem 7 holds for all $k \ge 1$.

PROOF: To see that $\sigma(F_k,n) \geq k(2n-k-1)+2$, consider the graph $G=K_1+G'$, where G' is any graph on n-1 vertices where no realization of the degree sequence given by G' contains k disjoint edges. We may choose G' to be the graph $K_{k-1}+\overline{K}_{n-k}$ as in Theorem 6. Thus G is the graph $K_k+\overline{K}_{n-k}$. The graph G is the unique realization of the degree sequence $\pi=((n-1)^k,(k)^{n-k})$ and has degree sum equal to k(n-1)+(n-k)k=k(2n-k-1). To see that G contains no copy of F_k first notice that any k+1 vertices of F_k must contain at least one edge. Now if G were to contain a copy of F_k it must contain at least k+1 of its vertices from the subgraph \overline{K}_{n-k} of G, however this subgraph does not contain an edge. This establishes the lower bound.

We now establish the upper bound through a sequence of lemmas.

The following establishes that there are sufficiently many vertices of sufficiently large degree in any graph with the degree sum at least that given by (1).

Lemma 1 Let $S = (d_1, \ldots, d_n)$ be a non-increasing graphic degree sequence with with degree sum at least k(2n-k-1)+2 and $n > k^2+k-2$, then $d_1 \geq 2k$ and $d_{2k+1} \geq 2$.

PROOF: To see that $d_1 \geq 2k$, suppose otherwise, so S contains no term larger than 2k-1. Then the degree sum of S is at most n(2k-1), a contradiction.

Suppose now that $d_{2k+1} \leq 1$. Then, by Theorem 2,

$$\begin{split} \sum_{i=1}^n d_i &= \sum_{i=1}^{2k} d_i + \sum_{i=2k+1}^n d_i \\ &\leq (2k)(2k-1) + \sum_{i=2k+1}^n \min\{2k, d_i\} + \sum_{i=2k+1}^n d_i \\ &= 4k^2 - 2k + 2\sum_{i=2k+1}^n 1 \\ &\leq 4k^2 - 2k + 2(n-2k) \\ &= 2n + 4k^2 - 6k. \end{split}$$

This is a contradiction.

Let $\pi=(d_1,\ldots,d_n)$ be a non-increasing, n-term graphic sequence with degree sum at least k(2n-k-1)+2. We will now recursively define a sequence π_1,\ldots,π_{2k+1} of degree sequences. We begin by constructing the sequence π'_1 , on n-1 terms, by deleting d_1 from π and subtracting 1 from the first d_1 remaining terms. That is,

$$\pi'_1 = (d_2 - 1, d_3 - 1, \dots, d_{d_1+1} - 1, d_{d_1+2}, \dots, d_n).$$

We then obtain the sequence π_1 from π_1' by subtracting one from each of the first 2k terms in π_1' and arranging the first 2k terms in non-increasing order and then arranging the last n-2k-1 terms in non-increasing order. (As Lemma 1 guarantees that $d_{2k+1} \geq 2$ we are assured that this step is feasible.) Let

$$\pi_1 = (d_2^{(1)}, d_3^{(1)}, \dots, d_n^{(1)}).$$

For $2 \le i \le 2k + 1$, we obtain the sequence

$$\pi_i = (d_{i+1}^{(i)}, \dots, d_n^{(i)})$$

of length n-i from

$$\pi_{i-1} = (d_i^{(i-1)}, \dots, d_n^{(i-1)})$$

by deleting $d_i^{(i-1)}$ from π_{i-1} , subtracting one from the largest $d_i^{(i-1)}$ non-negative remaining terms and arranging the first 2k+1-i terms in non-increasing order and then arranging the last n-2k-1 terms in non-increasing order.

Lemma 2 If π_{2k+1} is graphic then π is potentially F_k -graphic.

PROOF: Clearly, if π_{2k+1} is graphic, then π_1 is graphic. As π is graphic, the Havel-Hakimi algorithm [7, 8] implies that π'_1 is graphic. If we can show that there is a realization of π'_1 that has a matching on those vertices of degree $d_2 - 1, \ldots, d_{2k+1} - 1$, then clearly π is potentially F_k -graphic. Let G'_1 be a realization of π'_1 and let G_1 be a realization of π_1 such that $V_1 = V(G_1) = V(G'_1) = \{v_2, \ldots, v_n\}$ with $d_{G_1}(v_i) = d_{G'_1}(v_i) - \delta_i$ where $\delta_i = 1$ for $2 \le i \le 2k+1$ and $\delta_i = 0$ otherwise.

Let H be a copy of K_{n-1} on V_1 , and consider the function $W: E(H) \rightarrow \{-1,0,1\}$ defined by

$$W(v_iv_j) = \begin{cases} -1 & v_iv_j \in E(G_1) \setminus E(G_1') \\ 1 & v_iv_j \in E(G_1') \setminus E(G_1) \\ 0 & \text{otherwise.} \end{cases}$$

The function W induces a weighting $w: V_1 \to \mathbb{Z}$, where the weight of a vertex v is the sum of the weights of the edges incident to v in H. If we let $X = \{v_2, \ldots, v_{2k+1}\}$, then one can see that w(v) = 1 if v is a member of X and w(v) = 0 otherwise.

It will be shown that there exists a collection of trails T_1, \ldots, T_k in H that satisfy the following four properties.

- (1) T_1, \ldots, T_k are edge disjoint.
- (2) The end-vertices of T_1, \ldots, T_k are distinct vertices in X, and hence cover X.
- (3) The first edge, and last edge, in each trail has weight 1 under W.
- (4) If $T_j = e_1 e_2 \dots e_p$ then $W(e_{i+1}) = -W(e_i)$ for $1 \le i \le p-1$.

If v lies on T_i , let w_i denote the vertex weighting induced by $W|_{E(T_i)}$. Note that if v is an end-vertex of T_i then $w_i(v) = 1$ and if v is an internal vertex of T_i , then $w_i(v) = 0$.

We begin by showing that T_1 exists. Select v_2 as an end-vertex of T_1 . Note that as v_2 is in X, $w(v_2) = 1$ so there is some edge e in H incident to v_2 with W(e) = 1. If there is such an edge between v_2 and some other vertex x in X, let T_1 consist of the edge v_2x . Otherwise, there is an edge v_2y such that $W(v_2y) = 1$ and y is not in X. Include the edge v_2y in T_1 . As w(y) = 0, there is some edge incident to y having weight -1, which is then

included in T_1 . Continue this process, and construct an alternating +1/-1trail in H. If at any point there exists an edge e with W(e) = 1 satisfying (1) – (4) above then include e in T_1 . As this process clearly terminates, we wish to show that it must terminate with such a choice. Assume not, so that T_1 is an alternating +1/-1 trail that violates (2) or (3) above. We show that such a trail can be extended. Assume first that (2) is violated. If the end-vertex of this trail is v_2 , then as $w(v_2) = 1$, our choice for the initial edge of T_1 implies that we can clearly continue the trail regardless of the weight of the final edge. If the end-vertex of the trail is some v in $V \setminus X$ then we note that w(v) = 0, and each time, if any, that v appears previously in the trail, it is adjacent to one edge of weight +1 and one edge of weight -1. Thus, if the last edge e on the trail has weight W(e) (which is necessarily +1 or -1), there is some edge not already in the trail which is adjacent to v and has weight -W(e) and the trail can be extended. If we assume that (2) is satisfied, but (3) is violated then the last vertex on the trail is some x in $X \setminus \{v_2\}$ but the last edge e added to the trail has weight W(e) = -1. However, w(x) = 1, which implies that we can extend the trail. Hence, T_1 exists.

Assume that trails T_1, \ldots, T_j exist satisfying (1) - (4) and without loss of generality, let the end vertices of T_i be v_{2i}, v_{2i+1} . Note that if v is in $\{v_2, \ldots, v_{2j+1}\}$ then

$$\sum_{i=1}^{j} w_i(v) = 1$$

and otherwise,

$$\sum_{i=1}^{j} w_i(v) = 0.$$

To show trail T_{j+1} exists, begin with v_{2j+2} as an end-vertex. As $w(v_{2j+2}) = 1$ and

$$\sum_{i=1}^{j} w_i(v_{2j+2}) = 0,$$

there is some edge e in H adjacent to v_{2j+2} with W(e)=1 that does not lie in any of T_1,\ldots,T_j . If there is such an edge between v_{2j+2} and some other vertex x in $X\setminus\{v_2,\ldots,v_{2j+2}\}$, let T_{j+1} consist of the edge $v_{2j+2}x$. Otherwise, we will proceed in a manner similar to the construction of T_1 , described above. That is, it can be shown that T_{j+1} is an alternating +1/-1 trail, which is edge disjoint from T_1,\ldots,T_j . If at any point T_{j+1} can be extended by an edge e of weight W(e)=1 to a vertex in $X\setminus\{v_2,\ldots,v_{2j+2}\}$ the edge e will be added to T_{j+1} . Otherwise, we will assume that T_{j+1} is an alternating trail that violates either (2) or (3). Then, as above, we can use

the induced weights from the previous trails to extend T_{j+1} . As the process of extending T_{j+1} must terminate, we can see that T_{j+1} exists satisfying (1) - (4).

Thus there exists trails T_1, \ldots, T_k satisfying (1) - (4), and assume without loss of generality that the end-vertices of T_i are v_{2i} and v_{2i+1} for all $1 \le i \le k$. Note that if an edge in H has weight 1 then it is in G'_1 and an edge in H having weight -1 is not in G'_1 . For each trail T_i , if $v_{2i}v_{2i+1}$ is an edge in G'_1 do nothing. If $v_{2i}v_{2i+1}$ is not an edge in G'_1 add this edge and all edges of weight -1 on T_i to G'_1 and remove all edges of weight 1 on T_i from G'_1 . In the event that $W(v_{2i}v_{2i+1}) = -1$ and $v_{2i}v_{2i+1}$ lies in some T_j , we examine $e_j = v_{2j}v_{2j+1}$. If e_j is in G'_1 , then we will proceed as above to add $v_{2i}v_{2i+1}$ to G'_1 . If e_j is not in G'_1 , we will add e_j to G'_1 and "switch" the edges in T_j . This will also serve to add the edge $v_{2i}v_{2i+1}$ to G'_1 . Note that it is not possible for $v_{2i}v_{2i+1}$ to lie in some T_j with $j \ne i$ if $W(v_{2i}v_{2i+1}) = +1$. Thus we can create a realization of π'_1 that contains the matching $v_2v_3, \ldots, v_{2k}v_{2k+1}$, implying that π is potentially F_k -graphic. \square

Lemma 3 If $n \ge 4k + 2$, and $d_{4k+2} \ge 2k - 1$ then π is potentially F_k -graphic.

PROOF: If $d_{2k+1} \ge 2k$ then π is potentially K_{2k+1} -graphic by Theorem 5, and thus obviously F_k -graphic.

Otherwise $d_{2k+1} \leq 2k-1$, which together with the hypothesis implies that $d_{2k+1} = d_{2k+2} = \ldots = d_{4k+2} = 2k-1$. Thus, for $i = 0, 1, \ldots, 2k+1$ the values of $d_{2k+2}^{(i)}, \ldots, d_{4k+2}^{(i)}$ differ by at most 1. Hence π_{2k+1} satisfies, for some $m \geq 1$,

$$2k-1 \ge m = d_{2k+2}^{(2k+1)} \ge \ldots \ge d_{4k+2}^{(2k+1)} \ge m-1.$$

If $m=1, \pi_{2k+1}$ must be graphic as the degree sum of π_{2k+1} is even. If $m \geq 2$, then

$$\frac{1}{m-1} \left[\frac{(m+(m-1)+1)^2}{4} \right] \le m+2 \le 2k+1.$$

By Theorem 4, π_{2k+1} is graphic, and hence, by Lemma 2, π is F_k -graphic. \square

Lemma 4 Let π be an n-term graphic degree sequence with $n \geq \frac{9}{2}k^2 + \frac{7}{2}k - \frac{1}{2}$ and degree sum at least k(2n - k - 1) + 2. If $d_{4k+2} \leq 2k - 2$ then π is potentially F_k -graphic.

PROOF: First, we claim that $d_1 \geq 4k$. If not, then the degree sum of π is at most (4k-1)(4k+1) + (n-4k-1)(2k-2), which is less than k(2n-k-1)+2 for the given values of n.

If $d_1 = n - 1$ then the degree sum of π'_1 is at least $\sigma(kK_2, n - 1)$. Therefore, there exists a realization of π'_1 that contains a copy of kK_2 and thus a realization of π that contains a copy of F_k .

Now suppose there exists an r such that $2k+1 \le r \le d_1+1$ such that $d_{r+1} < d_r$. As the degree sum of (π'_1) is at least $\sigma(kK_2, n-1)$ there exists a graph realizing π'_1 that contains a copy of kK_2 . Furthermore, by Theorem 3 there exists a realization of π'_1 with kK_2 on those vertices having degree $d_2-1,\ldots d_{2k+1}-1$. This implies that π is potentially F_k -graphic.

Otherwise, $n-2 \geq d_1 \geq d_2 \geq \ldots \geq d_{2k+1} = d_{2k+2} = \ldots d_{4k+2} = \ldots = d_{d_1+2}$.

We may conclude that there exists an m such that

$$2k-2 \ge m = d_{2k+2}^{(2k+1)} \ge \ldots \ge d_{4k+2}^{(2k+1)} \ge m-1.$$

We may then complete the proof as in the previous lemma.

Together, Lemma 3 and Lemma 4 imply that $\sigma(F_k, n) \leq k(2n-k-1)+2$, completing the proof of Theorem 7. \square

Acknowledgements: The authors wish to thank the anonymous referee for his many useful comments, which improved the clarity of our work.

References

- [1] Bollobás, B., Extremal Graph Theory, Academic Press Inc. (1978).
- [2] Erdős, P., Füredi, Z., Gould, R.J., Gunderson, D.S., Extremal Graphs for Intersecting Triangles, J. Combin. Th., Ser. B 64, (1995), 89-100.
- [3] Erdős, P. & Gallai, T., Graphs with prescribed degrees (in Hungarian) Matemoutiki Lapor 11 (1960), 264-274.

- [4] Erdős, P., Jacobson, M.S., Lehel, J., Graphs Realizing the Same Degree Sequence and their Respective Clique Numbers, Graph Theory, Combinatorics and Applications, Vol. I, 1991, ed. Alavi, Chartrand, Oellerman and Schwenk, 439-449.
- [5] Ferrara, M., Gould, R., Schmitt, J., Potentially K_s^t -graphic degree sequences, submitted.
- [6] Gould, R.J., Jacobson, M.S., Lehel, J., Potentially G-graphic degree sequences, Combinatorics, Graph Theory, and Algorithms (eds. Alavi, Lick and Schwenk), Vol. I, New York: Wiley & Sons, Inc., 1999, 387-400.
- [7] Hakimi, S.L., On the realizability of a set of integers as degrees of vertices of a graph, J. SIAM Appl. Math, 10 (1962), 496-506.
- [8] Havel, V., A remark on the existence of finite graphs (Czech.), Časopis Pěst. Mat. 80 (1955), 477-480.
- [9] Lai, C., An extremal problem on potentially $K_m C_4$ -graphic sequences, submitted.
- [10] Li, J., Song, Z., An extremal problem on the potentially P_k-graphic sequences, The International Symposium on Combinatorics and Applications, June 28-30, 1996 (W.Y.C. Chen et. al., eds.) Tanjin, Nankai University 1996, 269-276.
- [11] Li, J., Song, Z., The smallest degree sum that yields potentially P_k -graphical sequences, J. Graph Theory 29 (1998), no.2, 63-72.
- [12] Li, J., Song, Z., Luo, R., The Erdős-Jacobson-Lehel conjecture on potentially P_k -graphic sequences is true, Science in China, Ser. A, 41 1998, (5):510-520.
- [13] Li, J., Yin, J., The smallest degree sum that yields potentially $K_{r,r}$ -graphic sequences, *Science in China*, Ser. A, 45 (June 2002),(6):694-705.
- [14] Li, J., Yin, J., An extremal problem on potentially $K_{r,s}$ -graphic sequences, *Discrete Math.*, **260** (2003), 295-305.
- [15] Li, J., Yin, J., Two sufficient conditions for a graphic sequence to have a realization with prescribed clique size, submitted.
- [16] Yin, J., Chen, G., On Potentially K_{r_1,r_2,\ldots,r_m} -graphic Sequences, preprint.

- [17] Rao, A.R., The clique number of a graph with a given degree sequence, Proc. Symposium on Graph Theory (A.R. Rao ed.), MacMillan and Co. India Ltd., Indian Statistical Institute Lecture Notes Series 4 (1979), 251-267.
- [18] Rao, S.B., A survey of the theory of potentially P-graphic and forcibly P-graphic degree sequences, Lecture Notes in Math., No. 855, Springer Verlag, 1981, 417-440.