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Abstract: Some results on combinatorial aspects of block designs using the
complementary property have been obtained. The results pertain to non-
existence of partially balanced incomplete block (PBIB) designs and
identification of new 2-associate and 3-associate PBIB designs. A method of
construction of extended group divisible (EGD) designs with three factors using
self-complementary rectangular designs has also been given. Some rectangular
designs have also been obtained using self-complementary balanced incomplete
block designs. Catalogues of EGD designs and rectangular designs obtainable
from these methods of construction, with number of replications » <10 and

block size k <10 have been prepared.
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1. Introduction
Consider a block design represented as D (v, b, r, k, N), where v treatments are

arranged in & blocks such that r=(n, ..., /)" is a column vector of treatment
replications and k=(ky, ..., kp) is a column vector of block sizes, N =
((mj))is a vxb treatments versus blocks incidence matrix. For

i=]...,v,j=1...,b, non-negative integer 7jjdenotes the number of times

b v
i" treatment appears in ;% block. Also 7i = X7 and k; = ¥ n; . A block
J= i=1
design is said to be binary if #;; =0 or 1, for all i, . If all r;’s are equal then
the design is said to be equireplicated. The design is said to be proper if all £ ’s

are equal. For details on block designs, one may refer to Dey (1986), Nigam,
Puri and Gupta (1988) and Raghavarao (1971).

Complementary design of a binary block design D (v, b, r, k, N) is a binary
block design D (v, b, b1, -r, vl -k, N=1,1} -N) that is obtained by
taking those treatments in the j* block which don’t appear in the j* block of the
original design D for all j=1,...,5, where 1, is a ¢x1 column vector of ones.
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The complementary design of a binary block design with v treatments in which
s(21) treatments appear exactly once in all the blocks will have

V=S treatments. If the binary block design D (v, b, r, k, N) has ¢ complete
blocks, i.e., every treatment appears exactly once in these ¢ blocks, then the
number of effective blocks in the complementary design will be b - ¢. Using the
complementary property of binary block designs, we have the following lemma:

Lemma 1.1: Barring trivial exceptions, the complementary design of any
equireplicate, pairwise balanced binary block design D (v, b, r, k, N; 4) is also

an equireplicate, pairwise balanced binary block design D, b b-r.vip-k,

b
lvllb -N; b-2r+2), where A= Zn,-jn,*j for all i#i(=12,...,v) in
J=1
N =((n;;)). Further, if the design D is binary equireplicate and proper, then its
complementary is also a binary, equireplicate, proper block design denoted by
D Wb b-r.v-k, l,,l'b —N). If the original design D is variance balanced

(partially balanced), then D is also variance balanced (partially balanced with
same association scheme).

Exploiting Lemma 1.1, necessary conditions for the non-existence of partially
balanced incomplete block (PBIB) designs have been obtained and new group
divisible and.nested group divisible designs have been identified in Section 2. In
Section 3, we give a method of construction of extended group divisible (EGD)
designs with three factors using the self-complementary rectangular designs and
their particular cases. Rectangular designs have also been obtained using self-
complementary balanced incomplete block (BIB) designs. Catalogues of EGD
designs and rectangular designs obtainable from this method of construction
with number of replications r <10 and block size < 10 have been given.

2. Use of Complementary Property in PBIB Designs

In this section we exploit the complementary property of binary block designs in
obtaining necessary conditions for non-existence of PBIB designs. The results
have also been used for identifying non-existent group divisible designs. Some
new group divisible and nested group divisible designs have also been identified
using the complementary property. In some cases, the new designs require less
number of experimental units than those catalogued earlier with same number of
treatments, blocks and same association scheme. In some cases, however, new
designs identified require more experimental units than their counterparts, yet
they are important and helpful in completing the catalogue of PBIB designs with
r,k<10.
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Consider a PBIB design D based on m-associate class association scheme with
parameters v,b,r,k,A;,n;; i=1,...,m where parameters have their usual
meanings, see e.g., Dey (1986) and Raghavarao (1971). Since an association
scheme is invariant with respect to complementation of the design, Using
Lemma 1.1, we can easily see that the complementary design of D is also an m-
associate class PBIB design with same association scheme as that of D and with

parameters V¥ =v,b¥=p r*¥=b—r, k*=v—k,/’t,? =b-2r+A;,n; i=1,..,m

Using this, some new group divisible and nested group divisible designs have
been obtained.

Group Divisible Designs

A group divisible design (2-associate PBIB design based on a group divisible
association scheme of mn treatments) with parameters
v=16,b=16,r =9,k=9, A4 =2,A2=5, m=8n=2 is new, as it is not
listed in Clatworthy (1973), Sinha (1991) and Ghosh and Divecha (1995). This
design can be obtained as a complementary solution of a regular group divisible
design with parameters v=16, 5=16, r=7,k=7,41=0,42=3, m=8n=2
obtained by Dey (1977) and listed at serial number 28 of Sinha (1991).

Nested Group Divisible Designs

Duan and Kageyama (1993), and Miao, Kageyama and Duan (1996) gave
catalogues of nested group divisible designs (3-associate PBIB designs based on
a nested group divisible association scheme of pmn treatments). Duan and
Kageyama (1993) presented the catalogue for r, k<15, whereas Miao,

Kageyama and Duan (1996) presented the catalogue with r,k <10. Taking the
complements of the nested group divisible designs given in the above catalogues

several new nested group divisible designs are obtained. These designs with
r, k<10 are presented in Table 2.1 in the appendix. It may be noted that the

designs at serial numbers 3, 4, 5, 6 and 7 in Table 2.1 require fewer replications
and less number of experimental units than their counterparts (designs whose
comlementaty solution yields the designs listed in Table 2.1). Furthermore, the
nested group divisible designs of Duan and Kageyama (1993) at serial numbers
42, 57, 61 and 67 can be obtained as complementary design of designs at serial
numbers 31, 45, 53 and 58 respectively.

It has also been observed that two more designs with fewer replications than
those given by Duan and Kageyama (1993) and ;s 10 can be obtained. The
parameters of these designs obtainable from DK64 and DK65 respectively are:
DI: v=27,b=9,r=4,k=12,p=3,m=3,n=3,A1 =4,43 =3,A3 =1.

D2: v=27,b=18,r=8,k=12,p=3,m=3,n=3,4 =8,A3 =6,13 =2.
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It can easily be observed that the design D2 can be obtained by taking 2-copies
of design D1. This is due to the fact that the design DK65 can be obtained by
taking 2-copies of DK64.

Non-existence of PBIB designs

We know that a necessary condition for the existence of a PBIB design based on
m-class association scheme with parameters v,b,7,k,4;,n;;i=1,...,m is that
the parameters A;,i=1,...,m , are non-negative integers. Using the fact that the
complementary design of a m-associate PBIB design is also a m-associate class
PBIB design, b—-2r+4;,i=1,...,m should also be non-negative integers. We,
therefore, have the following result:

Result 2.1: A necessary condition for the existence of an m-associate class
PBIB design with parameters v.b.r.k,A;j,n;.i=1L....m, 1is that

b-2r+2;,i=1,...,m are non-negative integers.

Example 2.1: The parameters v=4 b =121 = 9,k =3, 2,] = 8.)»2 =5 m= 2,
n =2 satisfy the parametric relationships of a regular group divisible design.
For these parameters b—2r+4;=2 and b-2r+Ay =-1. Therefore, the
design with the above parameters is non-existent. Similarly, there does not exist
a regular group divisible design with parameters v=6,b=15,r =10,k =4,
MN=9%4=4m=2n=3.

Disconnected group divisible designs have been used in construction of binary
balanced block designs. These designs are also quite useful in factorial
experiments. A group divisible design with parameters
v,b2mn,r,k,A1,Ay =0,m,n can always be obtained by writing a BIB design
with parameters v¥=n,b*=b/m.r* k* A} for each row of the association

scheme and then taking the union of all blocks. Using this fact, we have the
Result 2.2 on the existence of group divisible designs.

Result 2.2: A necessary condition for the existence of a group divisible design
with v=mn (m groups of n treatments each) and A3 =0 is that b should be
multiple of m.

Example 2.2: A group divisible design with parameters
v=12,b=15,r=5,k=4,A) =3, A3 =0,m=2,n=6 is non-existent, as p =15
is not a multiple of m(=2). 105 such designs with r,k <10 have been identified
and a catalogue of such designs is available with the first author.
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We can also say that if a group divisible design with parameters
v,b,r,k,A1,A2,m,n is non-existent, then its complementary design is also non-
existent. Here using Example 2.2 we can say the following:

Example 2.3: A group divisible design with parameters v=12,b=15,-
r=10,k =8, A} =8,1 =5,m=2,n=06is non-existent.

The parameters of complementary designs of all the 105 non-existent
disconnected group divisible designs as per Result 2.2 have been obtained.
Furthermore, it can be said that these complementary designs are also non-
existent. It was observed that for all these designs r and/or k¥ 210 except the

design given in Example 2.3.

3. PBIB Designs Using Self-Complementary Designs

In this section, we give a method of construction of PBIB designs using the
incidence matrices of the original binary, equireplicate, proper block designs and
their complementary designs. The designs obtained in this section are essentially
EGD designs. An EGD design always possesses the property of orthogonal
factorial structure with balance, see e.g., Gupta and Mukerjee (1989). Therefore,
these designs are quite useful for 2 and 3-factor factorial experiments.

A rectangular design is a 3-associate PBIB design based on a rectangular
association scheme of m rows and n columns, introduced by Vartak (1955), see
also Raghavarao (1971).

Method 3.1: Suppose that there exists a self-complementary rectangular design
D with parameters v=mn=2k,b=2r,r,k,A;,A3,A3,m, n. Let N be the

incidence matrix of D and N be the incidence matrix of the complementary
design of D. Then the design D* with incidence matrix

Nes( N
N
is a self-complementary EGD design for 3-factors, introduced by Hinkelmann

and Kempthome (1963) and Hinkelmann (1964). The parameters of design D*
are v¥=2vor 2mn, b*=b, rt=r, k*=2%=v, = Q =1, N3=13,

).2 =0, 22 =r-A, 2.2 =I‘—113,2:; =r=2A3.P*=2,m*=m.n*=n.

The EGD association scheme with three factors may be simplified as follows:
Let v = pmnbe the number of treatment combinations of a 3-factor experiment

with levels as p, m and n, respectively. Let the factors be represented by
R,F,F3, respectively. Write the pmn treatment combinations in the
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lexicographic order given by a;xaj xa3, where X denotes the symbolic direct
product and a; =(0,,...,p-1)"; a3 =(@,1,...,m-1)" a3=0]l....n-1)".
Here, the elements of a;'s are the levels of /* ® factor i =1 2,3 Arrange the pmn
treatment combinations in p sets of mn treatment combinations each such that
the treatment combinations within each set have same level of factor Fj. Divide
the mn treatment combinations within sets into an mxn array such that the
levels of factor F» are fixed in a row. If we denote the seven associate classes
001, 010, 011, 100, 101, 110, 111 of the EGD association scheme as 1,2,3,4,5,6
and 7 respectively and treatment combinations in the lexicographic order as 1,2,
, v, then the association scheme is defined as: (i) any two treatments from the
same set and the same row are 1** (001) associates; (ii) any two treatments from
the same set and the same column are 2™ (010) associates; (iii) any two
treatments from the same set and different row and column are 3™ (011)
assocxates (iv) any two treatments from different sets and the same position are
4™ (100) associates; (v) any two treatments from different sets, the same row
number and not the same column number are 5% (101) associates; (vi) any two
treatments from different sets, same column number and not the same row
number are 6% (110) associates and (vii) any two treatments from different sets,

not the same row number and not the same column number are 7" (111)
associates.

Remark 3.1: A rectangular design with A5 = A3 becomes a group divisible
design. Therefore, if the design D in Method 3.1 is a self-complementary group
divisible design, then we get an EGD design with 2.; = 2,; and )Lg = },;_

Remark 3.2: It can easily be seen that for m=n and A =25, a rectangular
design is same as a PBIB design based on an L -association scheme. Hence, if
the design D in Method 3.1 is a self-complementary PBIB design based on Lj -

association scheme, then we get an EGD design with ).I‘ = 1;, and ),; = }L;

Remark 3.3: If we take the design D in Method 3.1 as a self-complementary
BIB design D with parameters v=2k,b,r,k,A, then we get a self-
complementary rectangular design. The parameters of the design D* are
V=2n,b¥=b,r*=r, k*=v, 41 =4, =0,A3=r-1, m=2,n=v.

A catalogue of rectangular designs obtainable through this method using self-
complementary BIB design with r,k <10 has been prepared and is given in
Table 3.1.

Remark 3.4: It is interesting to note here that the parameters v, b, r, k of the
rectangular designs obtained through the above method are same as that of a
singular group divisible design obtained by replacing each treatment of the
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corresponding BIB design with two treatments. The difference, however, is that
for a singular group divisible design the roles of m and n get interchanged.
Further, the eigenvalues of the information matrix for reduced normal equations
for the rectangular designs obtained through Method 3.1, Remark 3.3 and
corresponding singular group divisible designs are the same including
multiplicities. As a consequence the average variance of all possible pairwise
treatment comparisons through the designs are also same.

Using the self-complementary group divisible designs, PBIB designs based on
an L;-association scheme and the self-complementary rectangular designs

given in Table 3.1, a catalogue of EGD designs with #,k <10 has been prepared
and is given in Table 3.2.
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Table 2.1: Nested Group Divisible Designs Obtained as Complementary of
Designs given in Duan and Kageyama (1993) and Miao, Kageyama and

Duan (1996)
SNo. v b r k p m n A4 A, A; Source
1 12 12 8 8 3 2 2 8 4 5 MKDIS8
2 16 16 10 10 4 2 2 4 7 6 DK22
3 18 9 4 8 3 3 2 4 3 1 DK38
4 18 18 8 8 3 3 2 8 6 2 DK39
5 18 18 8 8 3 2 3 7 6 2 DK40
6 24 12 5 10 3 4 2 5 4 1 DK59
7 24 24 10 10 3 4 2 10 8 2 DK60
DK#: denotes the nested group divisible design listed at serial number # in Duan and
Kageyama (1993).
MKD#: denotes the nested group divisible design listed at serial number # in Miao,
Kageyama and Duan (1996).
Table 3.1: Rectangular designs obtainable from Method 3.1.
SNo. v b r k 4 4 X3 m n Source
1 8 6 3 4 1 0 2 2 4 BIB@4,6,3,2,1)
2 12 10 5 6 2 0 3 2 6 BIB(,10,5,3,2)
3 16 14 7 8 3 0 4 2 8 BIB(8,14,7,4,3)
4 20 18 9 10 4 0 S 2 10 BIB(10,18,9,5,4)

Table 3.2: Extended Group Divisible designs for three factors for 7,k < /0
obtainable from Method 3.1.

SNo. v b r ki 2 A3 A4 4 A A7 p m n  Source
1 8 4 240 1 1 0 2 1 1 2 22 SR1
2 88 440 2 2 0 4 2 2 2 22 SR2
3 88 442 11 02 3 3 2 22 Rl
4 810 543 1 1 0 2 4 4 2 22 R2
S 810 541 2 2 0 4 3 3 2 22 R3
6 812 644 1 1 0 2 5 5 2 22 R4
7 812 640 3 3 0 6 3 3 2 22 SR3
8 814 745 1 1 0 2 6 6 2 22 RS
9 814 743 2 2 0 4 5 5 2 22 R6
10 814 741 3 3 0 6 4 4 2 22 R7
11 816 846 1 1 0 2 7 7 2 22 R8
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Source

r KA A 43 A4 %5 26 23 p mn

v b

SNo.

R9

0 4 6 6 2 22
0 6 5 5 2 22
0 8 4 4 2 22
0 2 8 8 2 22
0 4 7 7 2 22
0 8 5 5 2 22
0 2 9 9 2 22
0 4 8 8 2 22

0 6 7 7 2 2

12 816 8 44 2 2

13 816 8 4 2

R10
SR4
R11

3

3

14 816 8 4 0 4 4

15 818 9 4 7

1

1

RI12
R13

16 818 945 2 2

17 818 9 4 1

4

1
2
3

4

R14
R15

1
2
3

18 8 20 10 4 8

19 8 20 10 4 6

R16
R17

2

20 8 20 10 4 4

21

0 8 6 6 2 22

010 5 5

82010 42 4 4

SRS
SR18

2
r4

2

2 2

22 82010 40 5 5
2312 4 2 6 0

3

1
1

1
1

R42
SR19

2412 6 3 6 2

2
2

3
3

2 2 2

0 4

2512 8 460 2 2

26 1212 6 6 0

27 12

SR20

3 3 2

6
0 3 4 4 2 23

3 0

3
2 2

R43

12 6 6 3

R44
R4

R46
SR21
R47

2
3
2
2

2 3
o) i
e £
2 3
2 3

0 3 6 6 2 23

0
0
0

0 2 4 4
3
5
0 8 4 4
0

2
2
3
2
3
2
3

2
2
3
2
3
2
3

2 6 6 4
4 7 6 4
4 7 6 2
6 8 6 0 4 4
6 8 6 5
16 8 6 4

— o . g—

30 12
31 12

28 12
29 12

R48
R49
R50

33 12

7.7 2 23

6 6 2

3
3

7
0 6 5 5 2

0

34 12 18 9 6 6

3

351218 9 6 6

(o]

S 5 2

361218 9 6 2 4 4

371218 9 6 3

R52
R53
SR22

3
3
2
2

o)
r'4
"
FA
3

4 4

8 8 2

2 2 3

331220 10 6 7

010 5 5 2

39122010 6 0 5 5
40 16 6 3 8 3

41 16 6 3 8

S6
4 DI1:Table 3.1

2 42
2 42
2 42

0 0 2 2 2 4

1
2
2
2
3
3

1
0
2
2
3
3

2 2

1

0 4 2 2
0

0
0

1

SR36

4216 8 4 8 0

R97
SR37

3
3

3
3

2
6

43 16 10 5 8 3

4 16 12 6 8 0

4516 12 6 8 2

S7
SR39

0 0 4 4 2 42
0 8 4 4 2 4 2
0 4 5 5 2 24

0 2 5 5

46 16 12 6 8 6 2 2

47 16 16 8 8 0 4 4

R98
R99

3
3

3
3

48 16 16 8 8 4

2 42

49 16 16 8 8 6
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SNo. v b r kA A3 A3 A4 45 A6 43 p m n  Source
s01618 985 3 3 0 4 6 6 2 24 RIO
511618 9 83 4 4 0 6 5 5 2 4 2 RIOI
521618 989 3 3 0 0 6 6 2 42 S8
531620108 6 3 3 0 4 7 7 2 24 RI2
54162010 8 6 4 4 0 4 6 6 2 4 2 RIO3
5162010 80 5 5 010 5 5 2 42 SR40
5620 8 4100 2 2 0 4 2 2 2 52 SR52
572010 5104 2 2 0 1 3 3 2 52 R139
582012 6100 3 3 0 6 3 3 2 52 SRs3
592014 7104 3 3 0 3 4 4 2 52 RI4
602016 8100 4 4 0 8 4 4 2 52 SR
61 202010100 5 5 010 5 5 2 52 S8R5
62202010105 4 4 0 5 6 6 2 25 Rl41
63 2020 1010 8 4 4 0 2 6 6 2 5 2 Rl

X# denotes the design catalogued in Clatworthy (1973).
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