COLORING THE LINE

ARNFRIED KEMNITZ AND MASSIMILIANO MARANGIO

ABSTRACT. The distance graph G(S, D) has vertex set V (G(S, D)) =
S C R™ and two vertices u and v are adjacent if and only if their
distance d(u, v) is an element of the distance set D C Ry.

We determine the chromatic index, the choice index, the total
chromatic number and the total choice number of all distance graphs
G(R, D), G(Q, D) and G(Z, D) transferring a theorem of de Bruijn
and Erdés on infinite graphs. Moreover, we prove that |D| + 1 is
an upper bound for the chromatic number and the choice number of
G(S,D), SCR.

1. INTRODUCTION

If S is a subset of the n-dimensional Euclidean space, S C R®, and D a
set of positive real numbers, D C Ry, then the distance graph G(S, D)
is defined to be the graph G with vertex set V(G) = S and two vertices
u and v are adjacent if and only if their distance d(u,v) is an element of
the so-called distance set D. The graphs G(Z", D) with D C N are called
integer distance graphs and the graphs G(Q", D) with D C Q. rational
distance graphs.

A (vertez) coloring of a graph G = (V(G), E(G)) is an assignment of
colors to the vertices of G such that adjacent vertices are colored differently.
The minimum number of colors necessary to color the vertices of G is the
chromatic number x(G) of G.

If L = {L(v) : v € V(G)} is a set of lists of colors then an L-list (vertex)
coloring of a graph G is a coloring of the vertices of G such that each vertex
obtains a color from its own list and adjacent vertices are colored differently.
A graph G is called k-choosable if such a coloring exists for each choice of
lists L(v) of cardinality k. The minimum k such that G is k-choosable is
the choice number ch(G) of G.
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Coloring problems on distance graphs are motivated by the famous Hadwi-
ger-Nelson unit distance plane coloring problem which asks for the mini-
mum number of colors necessary to color the points of the Euclidean plane
(i.e., V(G) = S = R?) such that pairs of points of unit distance (i.e.,
D = {1}) are colored differently. In [9] Hadwiger gives a tiling of the plane
in seven sets of congruent hexagons such that no set contains two points of
distance 1. On the other hand, there exist 4-chromatic unit distance graphs
in the plane (see [16], e.g.). Therefore, we have 4 < x(G(R?,{1})) < 7.
No substantial progress on the problem has been made till now [18].

The restriction of the problem to rational or integer points of the plane is
solved. It is proved in [26] that x (G(Q?,{1})) =2. Obviously, x(G(Z2,{1}))
= 2 since the lattice graph G(Z?, {1}) is bipartite.

The coloring number col(G) of a graph G is defined to be the minimum
cardinal number « for which a well-ordering of the vertex set exists such

that every vertex v € V(G) is adjacent to less than o vertices which are
smaller than v (7).

If G is finite then col(G) = maxyce 0(H) + 1 (see [20]) where 6(H) is the
mintmum degree of the graph H.

By definition of x(G), ch(G) and col(G) it is obvious (see, e.g., {10]) that
(1)  x(G) £ ch(G) < col(G).

An important statement on colorings of infinite graphs is the following
result of de Bruijn and Erdés which gives a relationship between the chro-
matic number of an infinite graph and the chromatic numbers of its finite
subgraphs.

Theorem (de Bruijn, Erdds [3]). If x(H) < k for all finite subgraphs H of
an infinite graph G then x(G) < k.

This theorem implies that in case of finite chromaticity of an infinite graph
its chromatic number is attained by a finite subgraph.

Johnson [11] transferred the result of de Bruijn and Erdés to an analo-
gous statement for the choice number of infinite graphs which can also be
obtained by some minor modifications of the original proof.

Theorem (Johnson [11]). If ch(H) < k for all finite subgraphs H of an
infinite graph G then ch(G) < k.

On the other hand, the result cannot be transferred to an analogous state-
ment for the coloring number of infinite graphs (see [7]).
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An edge coloring of a graph G is an assignment of colors to the edges of
G such that adjacent edges are colored differently. A total coloring is an
assignment of colors to the vertices and edges such that neighbored elements
- that are two adjacent vertices or two adjacent edges or a vertex and an
incident edge — are colored differently, respectively. The minimum number
of colors necessary to color the edges of G is the chromatic indez x'(G) and
to color the vertices and edges the total chromatic number x"(G).

Again, if the colors belong to specific lists assigned to the edges or to vertices
and edges of G, respectively, and the cardinality of the lists is k then G is
called k-edge choosable or k-total choosable, respectively, if such colorings
exist for each choice of lists. The minimum & such that G is k-edge choosable
is the choice index ch'(G) of G, and the minimum k such that G is k-total
choosable is the total choice number ch”(G).

In this note we consider distance graphs G(, D) with vertex set V (G(S, D))
= § C R which we will call 1-dimensional distance graphs or line distance
graphs. Among others, we prove that |D| + 1 is an upper bound for the
chromatic number, the choice number and the coloring number (for finite D
in case of coloring number) of line distance graphs. Moreover, we determine
the chromatic index, the choice index, the total chromatic number and the
total choice number of the line distance graphs G(S, D), § =R, Q, or Z.

2. VERTEX COLORINGS

Line distance graphs G(S, D) were introduced by Eggleton, Erdds, and
Skilton [5]. They proved that x(G(Z, D)) = x(G(R, D)) if D is a subset of
the set N of positive integers.

There exist several papers in which the chromatic number of certain line
integer distance graphs are determined (see, e.g., [4, 5, 6, 13, 14, 15, 22, 28]).
For example, x(G(Z,P)) = 4 is proved in [6] where PP is the set of primes.
If D C N also contains nonprimes it turns out that the determination of
x(G(Z, D)) is in general difficult if [D| > 3 and D contains elements of
distinct parity.

If d is an arbitrary divisor of the elements dy,dy, ... of D C N then the inte-
ger distance graph G(Z, {d;,dy, ...}) is isomorphic to d copies of G(Z, {%1,
‘—f}, ...}). Therefore, we can restrict ourselves to distance sets whose ele-
ments have greatest common divisor 1, that is, G(Z, D) is connected.

If D € N is finite then x(G(Z, D)) < |D|+1 [24]. Obviously, x(G(Z, D)) =
2 for 1-element distance sets D. If D contains only odd integers then
x(G(Z, D)) = 2 (color all vertices alternately with two colors). Therefore,
it holds x(G(Z, D)) = 2 for 2-element distance sets if D contains two odd
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elements and x(G(Z,D)) = 3 if D consists of two coprime elements of
distinct parity.

If |ID| = 3 and the greatest common divisor of D = {z,y,z} is 1 then
x(G(Z,D)) =4 ifand only if D = {1,2,3n} or D = {z,y,z+y} andz #y
(mod 3). If z,y,z are odd then x(G(Z, D)) = 2. For all other 3-element
distance sets D, x(G(Z, D)) = 3 [23, 28).

On the other hand, if |D| = 3 and D € r - N where r is a positive real
number then x(G(R, D)) < 3 [27].

If |D| > 4 then a complete characterization of line integer distance graphs
with respect to chromatic number is not known till now.

If |D| = 4 and the greatest common divisor of D is 1 then x(G(Z, D)) = 5 if
Dy ={1,2,3,4n} or D; = {z,y,z+y,ly —z|} andz =y =1 (mod 2) [18].
We conjecture that there are no other 4-element distance sets D such that
x(G(Z, D)) =5 (see [14]). The conjecture is supported by [19] where it is
proved that x(G(Z,D)) < 4if D = {a,b,¢,d} and a < b < ¢ < d < 2000
and D # Dy and D # D,.

If D={1,2,...,k — 1,kn} then x(G(Z,D)) = |D| +1 [12]. In [19] it is
proved that x(G(Z, D)) = |D|+1if D = {1,4,5,6,7} or D = {1,2,...,2k—
1,2k + 1,4k}

We generalize the above mentioned result of [24] by showing that |D| +1 is
an upper bound for the choice number of an arbitrary line distance graph
G(S,D), SCR.

A graph G is called k-degenerate if each subgraph of G contains a vertex
of degree at most k, that is, if col(G) < k + 1 for finite graphs.

Theorem 1. IfS C R, S # 0 and DCR,, then x(G(S, D)) < ch(G(S, D))
<|D|+1. :

Proof: Let H be a finite subgraph of G(S,D) and H’' be an arbitrary
subgraph of H, H' C H. The vertex v = min V(H’) is adjacent to at most
|D| vertices which implies that H is |D|-degenerate. Therefore, x(H) <
ch(H) < col(H) = maxp:cy 6(H')+1 < |D|+1 which gives x(G(S, D)) <
ch(G(S, D)) < |D| + 1 by the Theorem of Johnson. 0

For example, x(G(R, D)) = ch(G(R, D)) = |D|+1 =3 if D = {1,2}.

Since the result of de Bruijn and Erd6s cannot be transferred to an anal-
ogous statement for the coloring number of infinite graphs (see Introduc-
tion) we cannot use the method of Theorem 1 to prove that col(G(S, D)) <
|[D|+1for SCR.
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Theorem 2. If S C R, S # 0 and D C R, finite then col(G(S,D)) <
|D| + 1.

Proof: Let 0 < z < min D. We partition R into semi-open intervals I; =
[iz, (¢ + 1)z), i € Z, of length z.

Let <o be a well-ordering of Iy. We extend this to a well-ordering < of R
as follows:

If 1,72 € I; then 7y < rp if and only if ry — iz <g 72 —iz. If ry € [,
T2 € Iiz, i) # 42, then ry < 7, if and only if |{;| < [i2] or iy = —is > 0.

This is a well-ordering of R since each non-empty subset T C R has a
smallest element which is determined as follows: Let r € I;(,). We choose
the smallest g in the well-ordering 0,1,—1,2, -2,... of Z which is in the
set J = {i(r) : r € T}. Since I;, is well-ordered the elements of T'N I;, have
a smallest element which obviously is the smallest element of T'.

Each vertex r of G(S, D) has at most |D| neighbors s with s < r since
z<mnDandr <r+difr>0andr <r~difr <0foralldeD.
Therefore, col(G(S, D)) < col(G(R, D)) < |D] + 1. O

Let D = {dy,...,ds} and H be a subgraph of G(S, D) with vertex set
{0,d,...,ds,d1+da,d1+d3,...,ds_1+ds,d1+da+ds, . ..,d1 +da+- - -+ds}
(Vi consists of 0 and all sums of elements of D). Then 6(H) = |D| and
therefore col(G(S, D)) > col(H) = |D| + 1. This gives

Corollary 1. IfD={d1,...,d,} and{O,dl,...,ds,d1+d2,d1+d3,...,ds_l
+ds,dy+do+ds,...,d; +d2+"'+ds} C S then COl(G(S,D)) = |D|+1.

This implies in particular that col(G(Z, D)) =col(G(Q, D)) = col(G(R, D))
=|D|+1if D is finite and D C N, D C Q,, D C Ry, respectively.

3. EDGE COLORINGS

The Theorem of de Bruijn and Erdés can be transferred to edge color-
ings by considering the line graph L(G) = (V(L(G)), E(L(G))) of G =
(V(G), E(G)) which is defined by V(L(G)) = E(G) and two vertices of
V(L(G)) are adjacent if and only if the corresponding edges of E(G) are
adjacent.

Theorem 3. If x'(H) < k (or ch'(H) < k, respectively) for all finite
subgraphs H of an infinite graph G then x'(G) < k (or ch'(G) < k, respec-
tively).
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Proof: Let G = (V(G),E(G)) be an infinite graph. Let H' be a fi-
nite subgraph of L(G) with V(H’') = {e1,...,em} C E(G) and H =
G[{e1,-..,em}] the subgraph of G induced by these edges. Then the ver-
tex sets of H' and L(H) coincide which implies H’ C L(H). Therefore,
x(H") < x(L(H)) = x'(H) < k by assumption. Since H’ is an arbitrary
subgraph of L(G) we obtain x(L(G)) = x'(G) < k by the Theorem of de
Bruijn and Erdés.

If we apply the Theorem of Johnson instead we get the analogous result for
the choice index. (]

Theorem 3 can also be proved by modifying the original proof of the The-
orem of de Bruijn and Erdés [3); see also [21].

We use this result to determine the chromatic index and the choice index
of G(S,D) for S =7Z,Q, or R.

Theorem 4. If S C R, S # 0, then X' (G(S, D)) < ck'(G(S,D)) < 2|D|.

Proof: Let K C G(S, D) be a finite subgraph. If E(K) = @ then obviously
x'(K) = ch'(K) < 2|D|. Otherwise let H' be an arbitrary subgraph of
the line graph L(K) with V(H') = {e1,...,em} and H = K[{ey,...,en}]
We consider the vertex v = minV(H) and the edge e = vw with w =
min N (v) where Ny (v) is the neighborhood of v in the graph H.

#<ID| - # < |D|

AN

V o g<io1 W

FIGURE 1. Edge e = vw with its adjacent edges in H.

Letd=w-ve€Dandi=|{z:z€ D,z <d}|. Then e = vw is adjacent
to at most 2 |D| — 1 edges since e is adjacent to at most |D| — ¢ edges that
are incident to v and to at most |D|+i—1 edges that are incident to w (see
Figure 1). Since e € V(H') = V(L(H)) we obtain §(H') < 2|D| — 1. This
implies that L(K) is (2|D| — 1)-degenerate, that is, x(L(K)) = x/(K) <
ch(L(K)) = ch'(K) < col(L(K)) < 2|D|. Therefore, x'(G(S,D)) <
ch'(G(S, D)) < 2|D| by Theorem 3. a

If A(G(S, D)) = 2|D| then equality holds in Theorem 4.
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Corollary 2. IfSCR, S # 0 and A(G(S, D)) = 2|D| then x'(G(S, D)) =
ek’ (G(S, D)) = 2|D).

For example, let I }3 C N for N € {Z,Q,R} be a closed interval of length
2maxD. If If C Sor (I§ CSand DC Qi) or (I C Sand DCN)
then x'(G(S,D)) = ch’'(G(S,D)) = 2|D| since in these cases we have
A(G(S,D)) = 2|D|. (Note that d € R4\ Q4 (d € R4\ N) yields no edges
in G(S,D)if SCQ (SCZ).)

Corollary 3. If S=Ror (S=Qand DCQ,)or (S=Z and DCN)
then x'(G(S, D)) = ch'(G(S, D)) = 2|D|.

4. TOTAL COLORINGS

The Theorem of de Bruijn and ErdSs can also be transferred to total
colorings by considering the total graph T(G) = (V(T(G)), E(T(G))) of
G = (V(G), E(G)) which has vertex set V(T(G)) = V(G) U E(G) and two
elements of V(T'(G)) are adjacent if and only if the elements are adjacent
or incident in G.

Theorem 5. If x"(H) < k (or ch"(H) < k, respectively) for all finite
subgraphs H of an infinite graph G then x"(G) < k (or ch”(G) < k, re-
spectively).

Proof: Let G = (V(G), E(G)) be an infinite graph. Let H” be a finite sub-
graph of the total graph T(G) with vertices V(H")={vy,...,vn,€1,...,6m}
CV(T(G), v1,...,vn € V(G), e1,...,em € E(G). f V = {vy,...,0,} U
{us,wi : e; = wyw;, i = 1,...,m} then let H = G[V] be the subgraph of
G induced by V. Then H” C T(H) which implies x(H") < x(T(H)) =
x"(H) < k by assumption. Since H” is an arbitrary finite subgraph of
T(G) we get x(T(G)) = x"(G) < k applying the Theorem of de Bruijn and
Erdds.

Using the Theorem of Johnson instead we obtain the analogous result for
the total choice number. O
We apply Theorem 5 to determine the total chromatic number and the total
choice number for line distance graphs.

Theorem 6. If S CR, S #0, then x"(G(S, D)) < ch”(G(S,D)) < 2|D| +
1.

Proof: Let K be a finite subgraph of G(S, D). If E(K) = § then x"(K) =
ch”"(K) = 1 < 2|D| + 1. Otherwise let H” be an arbitrary subgraph of
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the total graph T(K) with V(H") = {e1,...,m,V1,...,vn}, & € E(K),
i=1,...,mandv; e V(K),j=1,...,n

Let V = {v1,...,vn} U {us,w; : &; = ww;,i = 1,...,m} and H = K[V]
be the subgraph of K induced by V. This implies H” C T(H). Consider
v=minV(H). If v € V(H") then v is adjacent to at most |D| vertices and
is incident to at most |D| edges in H i.e. d(v) < 2|D| in H”.

If v € V(H") then v is incident to at least one edge e;, 1 < i < m.
We consider the induced subgraph H|[{ey,...,en}] and the edge e; = vw,
1 < j £ m, where w = min Ny((e,,....e.})(v). Then edge e; is adjacent
to at most 2|D| — 1 edges in H|[{es,...,em}] (see proof of Theorem 4).
Therefore, the degree d(e;) in H” is at most 2|D| -1+ 1 since v ¢ V(H").
In both cases we have §(H”) < 2|D)|, that is, T(K) is 2 |D|-degenerate.

This implies that x(T(K)) = x"(K) < ch(T(K)) = ch"(K)

< col(T(K)) < 2|D| + 1 which gives x”(G(S,D)) < ch”(G(S,D)) <
2|D| + 1 by Theorem 5. ]

In case of A(G(S, D)) = 2|D| we obtain equality in Theorem 6.

Corollary 4. If S CR, S # 0 and A(G(S, D)) = 2|D| then x"(G(S, D))
= ch"(G(S, D)) = 2|D| +1.

Corollary 5. If S=Ror (S=Qand DCQ4)or (S=Z and DCN)
then x"(G(S, D)) = ck"(G(S,D)) =2|D| + 1.

Proof: In all three cases we have A(G(S, D)) =2|D|. (]

Corollaries 3 and 5 generalize results of [15] where the chromatic index and
the choice index such as the total chromatic number and the total choice
number of line integer distance graphs have been determined by construc-
tions. Moreover, open questions of [15] are answered in the affirmative.

5. HIGHER DIMENSIONAL DISTANCE GRAPHS

In this note we consider colorings of 1-dimensional distance graphs G(.S, D)
with V(G(S,D)) = § € R and D C Ry. For higher dimensional dis-
tance graphs G(S,D), S € R*, D C Ry, it is obvious that x'(G(S, D)),
ch’'(G(S, D)), x"(G(S,D)) and ch”(G(S,D)) are infinite if S = R™ or
S=Q"and D CQ,, and n > 2 and D # 0 (see [15]).

The integer case of Corollary 3 can be generalized as follows:

Theorem 7. x'(G(Z", D)) = A(G(Z", D))
where A(G(Z", D)) = S aep 127 NOS3O)].
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Proof: Let A = A(G(Z"™, D)). The vertices v € Z" of the boundary & of
the n-dimensional sphere S7(0) with radius d € D and center 0 are all the
neighbors of vertex 0 with distance d which implies for the degree d(0) of
vertex 0 that d(0) =, p 1Z" N 3S3(0)| = A.

Since —z € Z" N 8S}(0) whenever z € Z™ N S} (0) and every pair z,—z
determines a direction in R", all edges {v,v + z}, v € Z", with ||z|| = d
are on infinite paths which can be 2-edge colored. Therefore, all edges of
G(Z", D) can be colored with -2A- -2 = A colors. O

It is proved in [8] that every r-degenerate graph G with A(G) > 2r is class
1. Theorem 7 can also be proved by using this result.

It is proved in [10] that ch(G(R?,{1})) is infinite by embedding the hy-
percubes Q,, in the distance graph G(R?,{1}). Since this class contains
subgraphs of arbitrarily high coloring number the choice number of this
class is not bounded (see [1]). Obviously, this implies that ch(G(R", D)) is
infinite for n > 2. By an analogous argument we obtain ch(G(Q", D)) = oo
ifn>2.

The determination of ch(G(Z", D)), ck'(G(Z", D)), x"(G(Z", D)) and
ch"(G(Z", D)) is an unsolved problem for n > 2.

Only few results are known for the chromatic number x(G(S, D)) for higher
dimensional distance graphs. For example, even for a unit distance space
coloring (i.e., V = S = R®, n > 2, D = {1}, generalizing the Hadwiger-
Nelson unit distance plane coloring problem) none of the chromatic numbers
is known. There only exist upper and lower bounds for x(G(R™, {1})) (see,
e.g., [2, 17, 25]).
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