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Abstract

We describe a technique for producing self-dual codes over rings
and fields from symmetric designs. We give special attention to bi-
planes and determine the minimum weights of the codes formed from
these designs. We give numerous examples of self-dual codes con-
structed including an optimal code of length 22 over Z4 with respect
to the Hamming metric from the biplane of order 3.
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1 Introduction

Numerous constructions of self-dual codes over fields from designs exist.
However, these constructions do not generally apply to codes over rings.
This is because usually the construction requires that a prime p sharply
divides the order to make the code formed from the design the right di-
mension to make a self-dual code. There do exist constructions of self-dual
codes over rings from symmetric designs, see [8], where self-dual codes over
Z4 are constructed but again in that construction 4 sharply divides the
order of the symmetric design. In this work we shall give a construction
of self-dual codes over rings, specifically the ring Z,. It will not require m
to sharply divide the order of the design. The construction was inspired
by a construction given by Glynn [6] in which he produced binary self-dual
codes from projective planes of odd order. The construction by Glynn re-
quires the codes to be binary. In [4], his construction was generalized to any
projective plane and for codes over non-binary fields. However, all of these
constructions were only for codes over fields. In this work the construction
is generalized to any symmetric design and is extended to codes over rings.
We begin with the necessary definitions of designs and codes.

1.1 Symmetric Designs

A t — (v,k, )\) design is a set of v points, with blocks of size k such that
through any ¢ points there are A blocks. Let D be a 2 — (v, k, A) symmetric
design. We know by definition that the number of points is equal to the
number of blocks. The number of points on a block is n+ A and the number
of blocks through a point is n + A. Let L be a block, through each point
there are (n + A — 1) blocks other than L. In this count each block is
counted A times. A symmetric design with A = 1 is a projective plane and
a symmetric design with A = 2 is a biplane. Hence in a symmetric design
we have v = 51‘—"1——}&11& + 1 and k = n + A where n is the order of the
design.

Let D = (P,B,I) be a (v, k, A) symmetric design. If B’ = {}’ | b’ is the
complement of a block in B} then D¢ = (P,B',I) isa (v,v—k,b—2r—})
symmetric design, where b is the size of the blocks. We refer to this design
as the complementary design.
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1.2 Codes

A code of length N over the ring Z,, is a subset of ZY. If the code is
a submodule then we say that the code is linear. We attach the usual
innerproduct to the space, i.e. [v,w] = Y v;w; and C+ = {v | [v,w] = 0}
for all w € C. The code C* is linear and we have |C||CL| = m¥". If a code
C has C C C* then C is said to be a self-orthogonal code. If C = C+
then C is said to be a self-dual code. Two codes are said to be equivalent if
one can be obtained from the other by permuting the rows or multiplying
a column by a unit,

A code over Z,, has a generator matrix that is equivalent to a matrix
of the following form

(o, Az Az Ag o0 0 Apenn
0 a21k2 a2A2_3 02A2,4 o ree 02A2,3+1
0 0 azly, aszAsq -+ -+ a3Azsi1
1 . . L . :
() : : 0 - K :
\ 0 0 0 oo 0 asIk, asAs,s+l )

where A; ;j are binary matrices for ¢ > 1. It can be arranged so that a; =1
and @; < a; and a; divides m for all 2. A code of this form is said to be of
type {1%*,a5%,05°,...,a¥} and has [];_, (2)* elements.

The Hamming weight of a vector is the number of non-zero coordinates
in the vector and the minimum Hamming weight of a code is the smallest
of all non-zero weights in the code. The Hamming weight enumerator of a
code C is defined by We(z,y) = 3 .cc 44} where wt(c) is the Hamming

weight of the vector c.

2 Construction of self-dual codes

Throughout this section we assume that m is an integer dividing n + 1
where n is the order of the design.

Let D be a symmetric 2— (v, k, A) design with P the points set and B the
blocks set. We denote the points by P = {q1,42,...,gp|} and the blocks

by B = {¢1,¢,,...,¢p|}. The ambient space for the codes we consider is
ZPvs,
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For a point g let x4 be the vector that is'1 at the coordinate correspond-
ing to g and 0 elsewhere. We let 1, be the vector that is 1 at the coordinate
corresponding to £ if ¢ is incident with £ and 0 elsewhere.

We define

() A(gi,45) = (Xi = X5, i — ¥35)-
The weight of A(g;i,g;) is 2n + 2 where n is the order of the design.

Lemma 2.1 For a symmetric design D of order n and m dividing n + 1
(3) [A(gi, ;). Al 950)] = 0.

Proof. It is enough to consider the following three cases.
Case 1: If the g; are 4 distinct points then the supports of the x(g;) are
distinct. Then

[("!’Qi - "/’9;'), (d’q.-: - ¢'qu )] = [‘/)qu"/’q,-:] - ["/’qu"/’qjl] - ["x[’qj ’wq;'] + [1/’%’ ’ ’/)qj']
= A=A-A+2=0.

Case 2: If ¢; = g and g; # g;+ then

(4) [(an - qu)’ (qu'l — Xaqyr )] =1,

since the support of x(g;) is the support of x(gi:) and the others are disjoint.
Then

[('t[’qa d’qi (1/’9. w‘lj' )] = W’qu 1/’«1;] - [“l’q”'»bq,l] - ["I’Qj"'/’q-'] + ['/’q,'"d"qjll
= m+A)-A-A+Ar=n.

This gives that

(5) [((Xqi - qu): (?liqf - ¢qj))) ((Xq.-: - qu, )1 (d"q‘r - ¢qu ))] =1+n=0.

Case 3: If ¢; = gj» and g; # gi then in an argument similar to Case 2
we get

(qX(XQ( - qu): (¢m - ‘/)Qj))’ ((XQ.-I - qul)a ("/’q‘: - ¢qj: ))] = _(1 + n) =

Next we construct a self-orthogonal code. Let

(7 Cm(D) = (A(9i,95) | 2,95 € P).
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We shall construct self-dual codes from this code in a variety of ways de-
pending on the structure of Z,,. Let M be the |P| — 1 by 2|P| matrix
where the i-th row of M is A(q1,¢i+1). It is clear that the rows of M are
orthogonal over Z,, and that M generates C,, (D). Further, it is apparent
from the structure of M that the type of Cp,(D) is 1/P!~!, We summarize
these results in the following.

Lemma 2.2 Let D be a symmetric design of order n with m an integer
dividing n + 1, then C,,(D) is a self-orthogonal, linear code with mIPl-1
elements.

Let P be the vector that is 1 on the coordinates corresponding to the
points and 0 on the coordinates corresponding to the blocks and let L be the
vector that is 0 on the coordinates corresponding to the points and 1 on the
coordinates corresponding to the blocks. We note that P € C,(D)* since
[A(g: )], P] =1—-1=0and L € Cn(D)" since [A(gi,q;), L] =n—n=0.
To make aP + BL self-orthogonal we need [aP + AL, aP + BL] = 0 which
means that (a® + 82)|P| = 0. If |P| # 0 (mod m), this means that
a? = — 2 5o that the ring must have v/—1.

If the ring Z,, has +/—1, and m does not divide v then let

(&) Emn(D) = (Cm(D), P + V-1L).

The reason that we cannot use this description of E,,,(D) when m divides
v and A — 1 is the square root of —1, is that the vector will already be in
Cm(D). This will be explained in the following.

In a symmetric design we have

ZA(qhQi) = Z((X‘h -Xq,'):('/)q‘ _¢Qj))

=2 =2
= (v=-1,-1,-1,...,-1,e(1),(2),...,a(v)),
where
ali) = -n—-A if £; is not incident with ¢,
"l v-n-2A if ¢; is incident with ¢;
Lemma 2.3 Ifm divides v then (—1,-1,...,—1,—n—\,—n—2J,... , —R—
A) € Cn(D).
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Proof. By the previous computation when m divides v we have

3 Algyg) = (=1,-1,...,=L,=n= A -n—A...,—n— A),

=2

0

Multiplying the above vector by —1 we have (1,1,...,1,n + A\,n +
A...,n+A). Now (n+ )% = (A - 1)2.

Lemma 2.4 If m divides v and (A\—1) = /-1 then P++/—1L € Cr(D).

Proof. Follows from the previous discussion. 0

In this case we can define
9 E. (D) = (Cn(D),P + L).

We know that P + L is in Cn(D)*. Then [P+ L,P+ L] = 2v = 0, and
this gives the following.

Theorem 2.5 Let D be a symmetric design of order n with m an integer
dividing n+1. If m does not divide v or (A—1) is not /—1 and /-1 € Z,
then E.,(D) is a self-dual code over Z., of length 2|P|. If m does divide v
and (A —1) = /=1 then E! (D) is a self-dual code over Z, of length 2|P|.

Proof. The code is self-orthogonal by construction and its cardinality is
m|Cp(D)| = mIPl. o

Corollary 2.6 Let D be a symmetric design of order n with p a prime
dividingn+ 1. Ifp=1 (mod 4) then En(D) is a self-dual code over Fp,.

Proof. It is well known that F, contains a +/—1 if and only if p = 1
(mod 4) and |P|=n2+n+1=1%0 (mod m). Then the result follows
from the previous theorem. (]

Next we shall consider a construction of self-dual codes when the ring

does not necessarily have v/—1 but is a square.
If m = g2 take F,,,(D) = (Cy(D), P, qL).
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Theorem 2.7 Let D be a symmetric design of order n with m = ¢* and
integer dividing n+1. The code F,,,(D) is a self-dual code over Z,, of length
2|P|.

Proof. We have that [gP,qP) = ¢> = 0 and [¢L,qL) = ¢> = 0. Then we
have that |F,(D)| = ¢(g(|Cm(D))) = m|Cm(D)| = m!Pl, so Fn(D) is a
self-dual code. o

In the case where Z,, does not contain a v/—1 and m is not a square we
can proceed as follows. We shall construct a self-dual code in this case of
length 2v + 2. To each vector in C; j = (Cra(D) +iP + jL) adjoin a vector
of length 2, w; ;. For linearity we need w;; = iw; o + jwo,;. To make
this new code self-dual we need these new vectors to satisfy the following:
[wi,j, wi 7] = —[Ci,j,Cy j+). Hence we need to find w ¢ and wo,; such that

(10) [w1,0, w1,0] = [wo,1,w0,1] = —v,
since [P, P] = [L, L} = v, and
(11) [wy,0,w0,1] =0,

since [P, L} = 0.
If there exist o, 8 with a2 + 82 = —v, let wy0 = (o,0) and wy,; =
(=B, a). These vectors satisfy (10) and (11). Then define

(12) Gm(D) = U;,;(Ci,j, wi,;)-

The length of this code is 2v + 2 and has dimension 2%#2. This gives the
following theorem.

Theorem 2.8 Let D be a symmetric design of order n with q a prime
dividing n + 1 with o? + 82 = v in F,. Then G,,(D) is a self-dual code of
length 2v + 2.

If Z, has a = v/—v — 1 then we proceed as follows. Let w0 = (,1)
and wo,; = (1, —a). These vectors satisfy (10) and (11). Then define

(13) Hm(D) = U;,;(Ci 5, wi5)-

The length of this code is 2v+2 and has |Hy, (D)| = m2Cp (D) = m2(m?~!) =
m¥*+1, 50 the code is self-dual. This gives the following.
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Theorem 2.9 Let D be a symmetric design of order n with m dividing
n+ 1 where Z,, contains /—v— 1. Then Hpn(D) is a self-dual code of
length 2v + 2.

In [4], the minimum weights of the codes formed from projective planes
were given. These result have a natural generalization to the ring Z,. The
proof is a straightforward generalization, but lengthy, and so we omit the
proof of the following.

Theorem 2.10 Let IT be a projective plane of order n, then the minimum
weight of Cry(D) is 2n + 2, the minimum weight of Em(D) is2n if m =2
and 2n + 2 otherwise, and the minimum weight of Gm(D) and Hp(D) is
n+4.

3 Minimum Weights

We shall provide some new definitions of vectors which are needed to deter-
mine the minimum weights of the codes. For a given block £ in £, let 7, be
the vector of length v that has a 1 at the coordinate corresponding to ¢ and
a 0 elsewhere. Let p, be the vector of length v with a 1 at the coordinate
for a point p if £ is incident with p and a 0 elsewhere. These are similar
to x and A but their roles are reversed. We shall show that we could also
have generated the codes using these vectors. The reason for our choice of
vectors is so that they can be used in the proofs to determine some of the
minimum weights of the self-dual codes constructed.
Define

(14) F(zl’ZZ) = (/‘fx - I.l'lzanlz - 7’51)'

Notice that the order is reversed in the second part. Let ¢; and é; be two
blocks in the design with {q1,¢2,.-.,qn} the points on £; not on £; and
{4\,d5,-..,q,} the points on £ not on ¢;. It is easy to see that Y-, (xq —
Xq,) = He, — pe, on the first v coordinates. On the second v coordinates
consider Y51 (Ag — Ag;). For the coordinate corresponding to £y, the vector
Mg is 1 and the vector Ay is 0. In the sum there is an n which is —1. On
the coordinate for £; there a 1 for each Ay and a 0 for each Ag,. In the sum
there is a —n which is 1, since p divides n + 1. On any other block there
are two coordinates with a 1 and two with a —1 since any block intersects
¢, and ¢ exactly twice. Thus on the second set of coordinates the vector
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is e, — Me,. This gives

n
(15) Z A(Qi,qo = F(elt£2),
i=1
where the points incident with ¢; and not incident with £ are {g1,42,...,9n}

and the points incident with £, and not incident with ¢, are {q},43,...,93}.
It is a simple matter to see the following.

Theorem 8.1 The code Cp (D) = (A(41,42) | £1,¢2 € L).

Lemma 8.2 Let D be a symmetric design of order n. Vectors of the form
(Xps Ap) are in Cm(D)* and vectors of the form (e, —ne) are in Crm(D)*.

Proof. We shall show this vector is orthogonal to each generator. If g # ¢’
then

(16) [(Xq; )‘q)v (Xq — X¢'» )\q - /\q’)] =14+4n=0
If g # g1,z then
(17) [(an )‘q)a (Xm = Xag2+ )\q, - /\qg)] =0+2-2=0.

The second computation is similar. For any block £ € L, we have

(18) [(11es =7e), (e, — Btas ez — )] = A= A =0,

ife# 0,0,

(19) (e, =ne), (e, — pitzs M —Me)) =n+1=0,

if¢=4¢;, and

(20) [(12e, —e), (e, — Bezs M, — Mey)] = —n — 1 =0,

if £ =, o

Lemma 3.3 If w € Cr,(D) and ¢ is tangent to Suppp(w) then we # 0.
Proof. We know (u¢, —7¢) € Crn(II)1. Thus
[(/,Lz, —nl)1w] =1—-w,=0,

and then w; = 1. O
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3.1 Minimum Weights for Codes from Biplanes

We shall use these results to find the minimum weights of codes formed
from biplanes. Throughout this section II is a biplane of order n.

We shall now find the codes Cp(IT), Gy (II) and Hy,(II) and Cp(I1)*
when II is a biplane.

Theorem 3.4 For n > 2 the minimum weight of Cn(II) is at least n + 5.

Proof. Let w € C,,(II) and assume wi(w) < n + 5. Without loss of
generality assume a = |Supp(w)| < § +2. It is easy to see that we can take
a > 1. By Lemma 3.3 we know that we # 0 if £ is tangent to Suppp(w).
Through any point in Suppp(w) there are at least n 4 4 — 2a tangents so

(21) wt(w) > a(n +4 — 2a) +a,

which implies a(n + 5~ 2a) < n+4, which foralla > landn > 2is a
contradiction.

For n = 2 the generators have weight 2n+42 = 6 < 2+ 5, so the theorem
does not apply. For n = 1 the generators have weight 4 < 5, so the theorem
does not apply. o

Lemma 3.5 Given a set containing a points with 0 < a < n + 2, the

mazimum number of lines in a biplane that can meet these points is a(n +
2—a)+ el 4

Proof. The maximum occurs when the points are collinear. In this case
there are a(n + 2 — a) tangents and (a — 1) + (¢ —2) + ... + 2+ 1 secants.
Then the number of lines meeting these points is

l1+a(n+2-a)+1 + (a-1)+(a—2)+...+1
= gn+2-a)+1+(a—1)a—

ala—1)
2

a(a—1)
2

= a(n+2-a)+ + 1

Theorem 3.6 The minimum weight of Crp(I1)* is n + 3.
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Proof. We note that (xp, A\p) € Cm(IT)* and this vector has weight n+ 3.
Hence the minimum weight is at most n + 3. Assume w € Cp,(II)* with
wt(w) < n + 2. Without loss of generality we can assume |Suppp(w)| <
242 If ¢ and £ are exterior to Suppp(w) then [w, (ug — per, e — ne)) =
0 which implies that [w,n¢] = [w,ne] = 0. If m and m’ are tangent to
Suppp(w) then [w, (m — pm?, Im’ — Mm)] = 0 which implies that [w, 7m] =
[w, 7m'] = 0. Hence w has the same innerproduct for all 7, exterior lines £
and the same innerproduct with 7, for all tangent lines m.

Since |Suppp(w)| < %2, we know that there must be lines exterior by
using Lemma 3.5, and that there must be tangent lines as well. Let m be
a tangent block and £ be an exterior block for Suppp(w). Then we have

[w, (ke = pmytm — )] = 0

[w, pe] = [w, pm] + [0, m] = [w,me) = O

=1+ [w, m)] — [w, 7] 0

[w,m] = [w,me] = 1.
This gives that w has non-zero innerproduct with 7, all tangent lines or all
exterior lines. In either case, this implies that w must be non-zero on the

coordinate corresponding to £.
If it is the exterior lines that have non-zero innerproduct then

(e—-1)

wt(w) > a+v—(a(n+2—a)+a 3 ~4+1)
2 —
> o+ T 0TE +3n+2-—a(n+2—a)—--—-——a(a 1).
2 2
Then we have
2 —
n+3 > a+"—%'ﬁ_a(n+2_a)_2(‘179
n?,n 2_ola—1)
0 > a+?+-2-—2—an—2a+a -———
n? 1 a(a—1)
0 (- —2- :_R2- )
> > (2 ain+(a—2—-2a+a 5

[~

n 1 a? a
0 > —2-+(§—a)n+(—2——§-—2)
0 > n+(l-an+(a®-a—-4)

which is a contradiction for all @ with 0 < a < n + 3.
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If it is the tangent lines that have non-zero innerproduct, then the proof
in Theorem 3.4 shows the weight must be at least n+5. Hence the minimum
weight of Cp, (IT)* is n + 3. 0

We note that there are codes which exceed this bound as given in the
next section.

Theorem 3.7 IfII is a biplane of order n with p a prime dividing n, then
the minimum weight of Gn(D) and Hy,(II) is n + 5.

Proof. We have that
Q = U(Ca,, Wa,8),

and wt(we,3) = 2 if o and B are not both 0. Also we know the minimum
weight of Cp,0 = Cn(IT) is » + 5 and the minimum weight of Co 3 > 7+ 3.
It is known that there are vectors of weight n + 3 in some C, 5. Hence the
minimum weight is n + 5. 0

4 Self-dual codes constructed from symmet-
ric designs

4.1 Biplane Computations

e For the biplane of order 1, the code Ex(II) is the [8,4,4] Hamming
code.

o For the biplane of order 2, the code G3(II) is an optimal [16,8, 6]
ternary self-dual code.

e The code E,(I) is the optimal [22, 11, 6] baby Golay code.

e There are three biplanes of order 4.
For all three E5(II) is a self-dual [32, 16, 8] code over Fs.

o There are three biplanes of order 7.
For all three, E,(Il) is a [74,37,10] Type I code.
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e There are five biplanes of order 9.

For all five, Ex(1) is a [112,56,> 12] Type I code, and E5(II) is a
(112,56, > 12] self-dual code over Fs.

e There is one known biplane of order 11.
The code Ex(IT) is a [158, 79, > 14] Type I code, and the code G3(II)

is a [160, 80, 14] ternary self-dual code. The codes E4(IT) and Eg(IT)
are length 158 self-dual codes with minimum weight at least 14.

4.2 Symmetric Designs

The following lemma will reduce the number of cases we must consider.

Lemma 4.1 If there exists a symmetric design of order n then A\ divides
n(n —1).

Proof. The number of points is M’%M"—Hl + 1. If this number is an in-
teger then (n+A—1)(n+A) must be divisible by A. Taking (n+A—1)(n+A)
(mod ) gives n(n — 1). m]

Lemma 4.2 If D and D’ are complimentary designs then Crn(D) and
Crn(D’) are equivalent codes.

Proof. Consider the generator matrix of Cp,(D). Multiplying the columns
corresponding to the blocks by —1 produces the generator matrix of Cp, (D).
Hence the codes are equivalent. ]

This means that we only need to consider one of the designs, as the
code formed from the other is equivalent.

4.3 Symmetric designs of order 1

We know that there exists a 2— (v, A+1, A) design for all A > 1. Specifically,
take A+ 2 points and let the blocks be any possible A+ 1 subset. Then any
two blocks meet in A places. Let Dy be this design of order 1. Moreover,
this represents all symmetric designs of order 1, since a symmetric design
of order 1 must have A + 2 points and block size A + 1. We have that 2 is
the only integer greater than 1 that divides the n + 1.

The following is easy to see.
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Proposition 4.3 The code E3(D,) is a [2X + 4, ) + 2,4] self-dual binary
code, for A > 1. If A = 1 then E5(D,) is a [6, 3, 2] self-dual code. If2|P| =0
(mod 4) then F3(D) is a Type II code.

Proof. The fact that the code is Type II when 2|P| =0 (mod 4) fol-
lows from the fact that each of the generators has weight congruent to 0
(mod 4). m}

Proposition 4.4 The code E3(D)) = Ea(D5) for all .

Proof. Let A° be A defined on the complementary design. Then A(g;, g;) =
A°(gi, g;), which gives the result. ]

4.4 Symmetric designs of order 2

The only possible symmetric designs of order 2 have A = 1 or 2. That is the
unique projective plane of order 2, and the unique biplane of order 2 which
is the complement of the projective plane of order 2. The only integer that
divides n+ 1 is 3. The result for the plane is given in [4], and the result for
the biplane is given in the previous section.

e If D is the projective plane of order 2 then E3(D) is the optimal
(16,8, 6] ternary self-dual code.

e If D is the biplane of order 2 then E3(D) is the [16,8,6] ternary
self-dual code as above.

4.5 Symmetric designs of order 3

For n = 3, the possible X are 1,2,3,6. These correspond to the projective
plane of order 3, the biplane of order 3 and their complements. Here both
2 and 4 divide n + 1.

e If D is the projective plane of order 3 then the code Fy(D) over
Z4 is a length 26 self-dual code with minimum weight 5 and weight
enumerator given in Table 1. The code Ex(D) is a [26,13, 6] binary
code.
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o If D is the biplane of order 3 then the code Fy(D) over Z4 is a length
22 self-dual code with minimum weight 6 and weight enumerator given
in Table 1. This code is an optimal self-dual code. The code Eq(D)
is the [22, 11, 6] binary baby Golay code.

4.6 Symmetric designs of order 4

For n = 4 the possible A are 1,2,3,4,6,12. These correspond to the pro-
jective plane of order 4, the three biplanes of order 4, the design formed
from the codewords of the simplex code, and their complements. Here only
5 divides n + 1.

o If D is the projective plane of order 4 then E5(D) is a [42,21,10]
self-dual code over F; [4].

o If D is any of the 3 biplanes of order 4 then F5(D) is a [32,16, 8]
self-dual code over Fs, as in the previous section.

o If D is the design formed from the simplex code then E5(D) is a
(30,15, 8] self-dual code over Fs, with weight enumerator given in
Table 1.
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Table 1: Weight Enumerators

Plane-3 | Biplane-3 | Simplex | Weight
1 1 1 0
26 0 0 5
52 (4 0 6
0 352 0 7
702 550 1260 8
1872 880 0 9
4433 7436 4872 10
18096 33024 3360 11
79404 86900 87220 12
257116 185680 159600 13
665340 358270 1482180 14
1609296 584672 4502912 15
3440905 769505 22110720 16
6086600 | 811536 65096640 17
9029358 675180 202580140 18
11348688 | 425920 473746560 19
11902124 | 191620 | 1116132192 20
10238618 | 55088 | 2004097480 21
7039656 7613 22
3673904 23
1354080 24
320216 25
38377 26
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