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The question concerning a possible generalization of the identity

of MacMahon [4] (Cf. Gould [3, formula (6.7)])
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is implicitly answered in [2]). In formula (12) of that paper take ¢ =d =1,
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e=-a, x=-u and we get

+ L
o (- 2) ( 2)1' (a+l)r 4r ur
) (l+u) z r'r!r! 2r
(1+u)

-3 (DO o

which is the desired result. (Taking v =1 does not involve any loss in

generality.)

1 This paper was begun in 1965 and laid aside to be developed later.
2 Deceased 17 Sept. 1999.
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It may be of interest to note that
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The inner sum is equal to
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Comparing coefficients in (2) we get
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so that (3) becomes
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but this is implied by Saalschiitz's theorem, so that (3) is really nothing new.

However this does show that (2) is a consequence of Saalschiitz'’s theorem,
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which in turn is a special case of the remark following formula (13) in [2].

This remark had to do with a certain 3F2 transformation which Bailey had

noted was a consequence of Saalschiitz's theorem.
In [2] it was shown that
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where it is assumed that 1 +2a=b+c+d+e.

It would be nice to find something more elegant than this that is
equivalent to Dougall's theorem.

When x =-1, we note that formula (5) reduces to
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This formula is not given explicitly in Bailey [1]; however formula (2),

page 28, of the tract gives us

F [a,l+a/2, b, c, d , e; -l]
65 a/2,1+a-b,l+a-c,1+a-d, 1+a-e
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so there are ways to further modify our formula (6).

Saalschiitz's formula says that
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When n — o it reduces to Gauss's theorem

1y = LEI(c-a-b)
F(ay b' (*H l) - F(C'a)r((‘fb) * (9)

valid for R(c-a-b)> 0.

-When a = -n, then (9) is nothing other than the standard Vandermonde
convolution. In fact, many binomial coefficient summation identities, such as
are listed by Gould in [3] are consequences of the Saalschiitz formula.
Saalschiitz's formula is given in binomial coefficient form as formula (11.1)

in [3] and the formula of Gauss is formula (7.1) there.
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