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Abstract
A subset § C V(G) is independent if no two vertices of S are
adjacent in G. In this paper we study the number of independent sets
which meets the set of leaves in a tree. In particular we determine
the smallest number and the largest number of these sets among
n-vertex trees. In each case we characterize the extremal graphs.
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1 Introduction

In general we use the standard terminology and notation of graph the-
ory, see [1]. Only simple undirected graphs are considered. By P,, n > 2
we mean a graph with the vertex set V(P,) = {z,...,2,} and the edge
set E(P,) = {{zi,zi+1};2=1,...,n— 1}. Moreover P, is a graph with one
vertex and Py is a graph with V(P) = 0. By the subdivision of an edge
e = {z,y} of G we mean inserting a new vertex of degree 2 into the edge
e. We denote it by sub(,,3(G). If {z,y} € E(G) then we say that z is a
neighbor of y. The set of all neighbors of z is called the open neighborhood of
z and is denoted by N(z). The set N(z) U {z} we call the closed neighbor-
hood and we write N(z]. For a subset X C V(G) we put N(X) and N[X]
instead of U N(z) and U N|z], respectively. Let X C V(G) U E(G).

By G\ X we denote the graph obtained from G by deleting the set X and
all edges incident with a vertex in X. The Fibonacci numbers are defined
recursively by Fop = Fy =1 and F,, = F,,_1 + F,,_3, for n > 2.

A subset S C V(G) is an independent set of G if no two vertices of S
are adjacent in G. Moreover the empty set and a subset containing exactly
one vertex also are independent in G.

The number of independent sets in G is denoted by NI(G). For graph
G on |V(G)| = @ we put NI(G) = 1. Let z be an arbitrary vertex of
V(G). By F: we denote the family of all independent sets S of G such
that x € S. By F_; we denote the family of all independent sets S of G
such that z ¢ S. Of course F = F, U F_. is the family of all independent
sets in G and NI(G) = |F| = |Fz| + |F-z|. In the chemical literature the
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graph parameter NI(G) is referred to as the Merrifield-Simmons index, see
{7]. The study of the number NI(G) of independent sets in a graph was
initiated in [9]. The problem of counting the number of independent sets in
a graph is N P-complete (see for instance [10]). However for certain types
of graphs, the problem of determining their number of independent subsets
is polynomial. For instance Prodinger and Tichy [9] proved that NI(P,)
is the sequence of Fibonacci numbers. It is interesting to know that
NI(P,) = Fyq, 1)

They also named the number NI(G) as the Fibonacci number of graph.
The literature includes many papers dealing with the theory of counting of
independent sets in graphs, see (2, 3, 4, 6, 8]. In particular characterization
of extremal trees with some independence properties has been considered
in a number of papers, for instance [5, 11, 12, 13, 14]. In what follows T
stands for a tree with the vertex set V(T'), |V(T)| denotes the cardinality
of V(T). It has been proved:

Theorem 1 [9] Let T be an n-vertex tree. Then Fpy) < NI(T) < 27141,

In (5] Lin and Lin proved that NI(T) = F,4, if and only if T = P, and
NIT)y=2"r"14+1ifand only if T = K} ;.

Recall that a vertex of degree 1 is called a leaf. For £ € V(T') denote by
L(z) the set of leaves attached to the vertex z. Further we let |L(z)| = I(z).
The vertex z € V(T') with L(z) # 0 is called a support vertez. If I(z) > 2
then z is named as a strong support vertex. If I(z) = 1 then z is named
a weak support vertez and the unique leaf attached to the weak support
vertex we call a single-leaf. The set of all support vertices in T we denote
by S(T) and the set of leaves in T' we denote by L.

A vertex z € V(T') is penultimate if z is not a leaf and z is adjacent to
at least degrz — 1 leaves. Note that z is adjacent to degrz leaves if and
only if z is the center of a star K, ,—1. Every n-vertex tree T with n > 3
has a penultimate vertex.

Let T be an arbitrary tree. From now on for a tree T with |V(T)| > 3
by T-addition we mean a local augmentation which is the operation T' —
ad )(T) of adding to the vertex z € V(T') a graph T so that a vertex =

is 1dent1ﬁed with a fixed vertex y € V(T).

In this paper we consider independent sets intersecting the set of leaves. In
particular we study independent sets S of T" such that for every z € S(T’),
SN L(z) # 0 ie., S contains for each support vertex at least one leaf.
Next we calculate the number of all independent sets which contain L as a
subset. In each case we characterize extremal trees.
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2 The number of independent sets intersecting the set L(x) for
each x € S(T)

By NI;(T) we denote the total number of independent sets in T such
that for every z € S(T'), SN L(z) # 0. It is obvious that every n-vertex
tree, n > 3 has such independent sets. The following Theorem gives the
basic rule for counting these independent sets,

Theorem 2 Let T be an n-vertex tree, n > 3. Then

NL(T)= [] (@® -1)NI(T\N[L).
zeS(T)

P R O OF: Let S(T) be the set of all support vertices of the tree T. Assume
that F is a family of all independent sets such that if S € F then for every
z € S(T), SN L(z) # 0. Let l(z) be the number of leaves attached to the
vertex z in T. Assume that L(z) = {z1,..,, 2yz)}, [(z) > 1. Then for every
@ # L'(z) C L(z) there is an independent set S € F such that L'(z) C S.
Consequently we have 2(¥) — 1 such subsets for every z € S(T'). Since
at least one vertex from L(z) belongs to S, it is easily seen that = ¢ S.
So §=8*"U |J L'(z) where S* is an arbitrary independent set of the
z€S(T)
graph T\ N[L]. Hence by the fundamental combinatorial statements we
have that NIi(T) = [] (2"® - 1)NI(T\ N[L)).
z€S(T)

Thus the Theorem is proved. o
From Theorem 2 immediately follows:

Corollary 1 Let T be ann-vertez tree,n > 3. Then NI;(T) = [] (24®)—
z€S(T)
1) if and only if every vertex from V(T') is either a leaf or a support vertez.

Theorem 3 Let T be an n-vertex tree,n > 3. Then 1 < NI(T) < 2" 1—
1. Furthermore NI)(T) = 1 if and only if every vertex from V(T) is either
a single-leaf or a weak support vertez and NI}(T') = 2"~ — 1 if and only
'lf T=K 1,n—-1-

P R O O F: Let T be an n-vertex tree with n > 3. The lower bound for the

number NI;(T) immediately follows from Corollary 1. If T = K. 1,n—1 then

it is obvious that NI;(T) = 2"~! — 1. We shall prove that for every T' #

Kyn-1, NIi(T) < 2*"' — 1. Let T # K1 n—1. Then |S(T)| > 2. Assume

that |S(T)| = s, s > 2 and for z; € S(T), i =1,..., s, |L(z:)| = Uz:). It is
8

clear that n = s + Y_ I(z;) + p where p = [V(T)| = (IS(T)| + |L|). Let F*
i=1
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be the family of all independent sets S of T such that for every z € S(T'),
SN L(z) # 0. Let S € F*. Then it is obvious that SN S(T) = @. Hence

S = |J S;US’ where S; is an arbitrary nonempty subset of L(z;) for every
i=1
i=1,...,sand S’ is an arbitrary independent set of the graph T\ (S(T)UL).
Denote T' = T\ (S(T) U L). By previous assumptions |V (T”)| = p hence
there are at most 2P independent sets in the graph 7". By the Theorem 2
+2 l(m.)
we have that NI;(T) = ]'[ (2'=) —1)NI(T") < H iz)op = 2 =

i=l

23 Bys>2 1mmed1ately follows that 272 < 2"~ — 1 what gives that
NIL(T) < NI(Kyn—1)=2""1 - 1.

Thus the Theorem is proved. (]
Theorem 4 Let n > 3 be integer. Then NIj(P,) = Fn_3.

PROOF:Let V(P,) = {z1,...,zn}, n > 3 and vertices be numbered in the
natural fashion. Then S(T') = {z2,2,-1}. Let S C V(P,) be an arbitrary
independent set of P, such that for every z € S(T'), L(z) NS # 0. Hence
Z1,Tn € S. This means that S = S’ U {z1,z,}, where S’ is an arbitrary
independent set of the graph P, \ {z1,%2, Zn-1,Zn} which is isomorphic to
P,—4. Since (1) gives exactly Fi,—3 sets S’ we have NIj(P,) = F,_3, that
completes the proof. ]

3 The total number of independent sets containing L as a subset

In this section we study the number of all independent sets including
all leaves. By NI (T') we denote the total number of independent sets in T
including the set L. It is easily seen that NI, (T) = NI(T\ N[L]). Let FL
be the family of all independent sets of T including L. Then |FL| = |F |,
where F is the family of all independent sets in T \ N[L]
Let = be an arbitrary vertex of V(T). By FL . we denote the family of
all independent sets including L such that z € S. By FL,_. we denote
the family of all independent sets including L such that z ¢ S. Evidently
FrzUFL,—z = Fr is the family of all independent sets including L in T.
Then the basic rule for counting independent sets including L in T is as
follows NIL(T) = |FL| = |FL,z| + |FL,~2|-

Theorem 5 Let T be an arbitrary n-vertez tree, n > 3. Then NI (T) > 1
with equality if and only if each vertez of V(T') is either a leaf or a support
vertez.

PR O OF: Let T be an arbitrary tree with n > 3and L C V(T') be the set
of leaves of T. The inequality is obvious. Denote T' = T'\ N[L]. Of course
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N[L) = S(T)U L. Assume that V(T) = S(T)U L. Let S be an arbitrary
independent set including L in T. Then L C S. Moreover by the definition
of independent set S(T) NS = @. By the assumption of 7" we deduce that
T’ is the empty graph. Consequently S = L is the unique independent set
including L in T. Conversely assume now that NI;(T) = 1 and let S be
the unique independent set including the set L in T. Of course $ = LU S*
where S* is the unique independent set of T’. Assume on the contrary that
there is a vertex z € V(T') \ (S(T) U L). This gives that N[L]n {z} = @.
Consequently = € V(T”). Let F’ be a family of all independent sets of T”.
Then it is obvious that the empty set and a subset containing the vertex
z belong to the family F'. Hence |F'| > 2 so NI.(T) > 2 what gives a
contradiction that S is the unique independent set including L in T.

Thus the Theorem is proved. ]

Theorem 6 Let T be an arbitrary n-vertez tree, n > 3. Then NI (T) <
Fo_3 with equality for T = P,.

P R O O F: Firstly we shall prove that NI.(P,) = Fh,~3. Let V(P,) =
{#1,...,zn}, » > 3 and vertices are numbered in natural fashion. Let
S C V(F,) be an arbitrary independent set of P, such that z;,z, € S.
Hence by Theorem 4 we obtain that NI (P,) = NI*(P,) = F,—3. Now
we prove that for every n-vertex tree NIL(T) < NIL(P,). If T = K p,
P 2 2, then the inequality is obvious. Let T # K, ,, p > 2. To avoid
trivialities assume that n > 5 and T # P,. Let X C S(T) be the set of
strong support vertices of T and L(z) = {21, ..., 2(z)}, {(z) > 2 be the set
of leaves attached to the vertex z. Assume that z;, 1 < i < I(z) be a fixed
vertex of L(z). Then it is easy to observe that NI (T) = NI (T \ {zi}).
Let u be a penultimate vertex of T and v € N(u) \ L(u). The existence of
the vertex v gives the fact that T # Kj n-1.

Claim (1). NI,(T) < NIL(Sub{u,,,} (T\ {z:}).

Denote T" = subyy »}(T \ {2}) and let F1 and F'f, be the families of all
independent sets including the set of leaves in T and in T”, respectively.
By the basic rule for counting independent sets including L we have that
NIL(T') = |FL| = |FL .| + |FL, |- Since u is the penultimate vertex in
T hence by the definition of the subdivision of edge {u, v} it follows that u
is the penultimate vertex in T”, too. Let S € F’. Then it is obvious that
u € S. This implies that NI(T') = |F'L,—u]. Let 2 be a vertex inserted
into edge {u,v}. Of course |F'p _u| = |F'L 2| +|F L —z| = |F'L |+ NIL(T),
which ends the proof of this claim.

From the above it is clear that there is_an n-vertex tree T such that
NIL(T) 2 NIL(T) and for every z € S(T), = is a weak support vertex.
Let Y € S(T) be the set of week support vertices and every y € Y is not
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penultimate. Assume that y € Y and L(y) = {w}. Let u’ be a penultimate
vertex in T and v’ € N(v') \ L{v').

Claim (2). NIL(T) < NIp(subp oy (T \ {w})).

We prove this claim analogously as Claim (1).

Consequently we can construct an n-vertex tree T* with NI (T*) > NI (T)
such that 7™ does not have strong support vertices and every week support
vertex is penultimate. If T* # P,, then there is 2’ € V(T™) and P, Pn,
for t,m > 3 are subgraphs of T* attached to the vertex z'.

Claim (3). NI (T*) < NIp(adp,(wa)(T* \ (P \ {z})) where w' is the
end vertex of P,, which is identified with the initial vertex z’ of P;.
Denote T = adp,(y oy (T* \ (P \ {2'})). Let F} and F; are families of all
independent sets including the set of leaves in T* and in T”, respectively.
By the general rule for counting independent sets we have that NI, (T*) =
|FL o+ |FL |- Let S € Fy. Of course w' € S. Denote Sy = SNV(T*\
(PLUP,)), S2=SNV(Py,)and S3=5nN Y(Pt). Evidently if ' € S then
z' € S2NS;. Since NI (T") = Ifz'zll + Iﬂ,—:'l two possible cases should
be distinguished:

1) z'eS

In this case S$; U S, U S3 i§ an independent set of T including the set of
leaves. Hence |F} .| < |Ff o]

2z ¢8

Let ¢’ € N(z')NV(P,). If ' € S then S;US,US;\ {w'} is an independent
set including the set of leaves in T”. If y' ¢ S then S; U S U S3 is an
independent set including the set of leaves in T".

Consequently from the above possibilities a’nd by fundamental combinato-
rial statements we have that |F} _,/| < |.7:JL'_x.|.

Finally we obtain that NIL(T*) = |Ff |+ |F} _oo| S VFL ol +|Fp ol =
NI (T").

Hence by Claim (3) we deduce that NI (P,) > NI, (T"), which ends the
proof. m}
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