The number of independent sets intersecting the set of leaves in trees

by Iwona Włoch and Andrzej Włoch

Technical University of Rzeszów
Faculty of Mathematics and Applied Physics
ul. W.Pola 2,35-959 Rzeszów, Poland
email: iwloch@prz.edu.pl, awloch@prz.edu.pl

Abstract

A subset $S \subseteq V(G)$ is independent if no two vertices of S are adjacent in G. In this paper we study the number of independent sets which meets the set of leaves in a tree. In particular we determine the smallest number and the largest number of these sets among n-vertex trees. In each case we characterize the extremal graphs.

Keywords: independent set, counting, Fibonacci numbers, trees, structural characterizations.

AMS Subject Classification: 05C20

1 Introduction

In general we use the standard terminology and notation of graph theory, see [1]. Only simple undirected graphs are considered. By P_n , $n \geq 2$ we mean a graph with the vertex set $V(P_n) = \{x_1, ..., x_n\}$ and the edge set $E(P_n) = \{\{x_i, x_{i+1}\}; i = 1, ..., n-1\}$. Moreover P_1 is a graph with one vertex and P_0 is a graph with $V(P_0) = \emptyset$. By the subdivision of an edge $e = \{x, y\}$ of G we mean inserting a new vertex of degree 2 into the edge e. We denote it by $\sup_{x,y}(G)$. If $\{x,y\} \in E(G)$ then we say that x is a neighbor of y. The set of all neighbors of x is called the open neighborhood of x and is denoted by V(x). The set $V(x) \cup \{x\}$ we call the closed neighborhood and we write V(x). For a subset $X \subseteq V(G)$ we put V(X) and V(X) instead of V(x) and V(x) and V(x), respectively. Let $V(x) \cup V(x) \cup V(x)$.

By $G \setminus X$ we denote the graph obtained from G by deleting the set X and all edges incident with a vertex in X. The *Fibonacci numbers* are defined recursively by $F_0 = F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$, for $n \ge 2$.

A subset $S \subset V(G)$ is an *independent set* of G if no two vertices of S are adjacent in G. Moreover the empty set and a subset containing exactly one vertex also are independent in G.

The number of independent sets in G is denoted by NI(G). For graph G on $|V(G)| = \emptyset$ we put NI(G) = 1. Let x be an arbitrary vertex of V(G). By \mathcal{F}_x we denote the family of all independent sets S of G such that $x \in S$. By \mathcal{F}_{-x} we denote the family of all independent sets S of G such that $x \notin S$. Of course $\mathcal{F} = \mathcal{F}_x \cup \mathcal{F}_{-x}$ is the family of all independent sets in G and $NI(G) = |\mathcal{F}| = |\mathcal{F}_x| + |\mathcal{F}_{-x}|$. In the chemical literature the

graph parameter NI(G) is referred to as the Merrifield-Simmons index, see [7]. The study of the number NI(G) of independent sets in a graph was initiated in [9]. The problem of counting the number of independent sets in a graph is NP-complete (see for instance [10]). However for certain types of graphs, the problem of determining their number of independent subsets is polynomial. For instance Prodinger and Tichy [9] proved that $NI(P_n)$ is the sequence of Fibonacci numbers. It is interesting to know that

$$NI(P_n) = F_{n+1} \tag{1}$$

They also named the number NI(G) as the Fibonacci number of graph. The literature includes many papers dealing with the theory of counting of independent sets in graphs, see [2, 3, 4, 6, 8]. In particular characterization of extremal trees with some independence properties has been considered in a number of papers, for instance [5, 11, 12, 13, 14]. In what follows T stands for a tree with the vertex set V(T), |V(T)| denotes the cardinality of V(T). It has been proved:

Theorem 1 [9] Let T be an n-vertex tree. Then $F_{n+1} \leq NI(T) \leq 2^{n-1}+1$.

In [5] Lin and Lin proved that $NI(T) = F_{n+1}$ if and only if $T = P_n$ and $NI(T) = 2^{n-1} + 1$ if and only if $T = K_{1,n-1}$.

Recall that a vertex of degree 1 is called a *leaf*. For $x \in V(T)$ denote by L(x) the set of leaves attached to the vertex x. Further we let |L(x)| = l(x). The vertex $x \in V(T)$ with $L(x) \neq \emptyset$ is called a *support vertex*. If $l(x) \geq 2$ then x is named as a *strong support vertex*. If l(x) = 1 then x is named a *weak support vertex* and the unique leaf attached to the weak support vertex we call a *single-leaf*. The set of all support vertices in T we denote by S(T) and the set of leaves in T we denote by L.

A vertex $x \in V(T)$ is penultimate if x is not a leaf and x is adjacent to at least $deg_T x - 1$ leaves. Note that x is adjacent to $deg_T x$ leaves if and only if x is the center of a star $K_{1,n-1}$. Every n-vertex tree T with $n \ge 3$ has a penultimate vertex.

Let \widetilde{T} be an arbitrary tree. From now on for a tree T with $|V(T)| \geq 3$ by \widetilde{T} -addition we mean a local augmentation which is the operation $T \mapsto ad_{\widetilde{T}(x,y)}(T)$ of adding to the vertex $x \in V(T)$ a graph \widetilde{T} so that a vertex x is identified with a fixed vertex $y \in V(\widetilde{T})$.

In this paper we consider independent sets intersecting the set of leaves. In particular we study independent sets S of T such that for every $x \in S(T)$, $S \cap L(x) \neq \emptyset$ i.e., S contains for each support vertex at least one leaf. Next we calculate the number of all independent sets which contain L as a subset. In each case we characterize extremal trees.

2 The number of independent sets intersecting the set L(x) for each $x \in S(T)$

By $NI_l(T)$ we denote the total number of independent sets in T such that for every $x \in S(T)$, $S \cap L(x) \neq \emptyset$. It is obvious that every n-vertex tree, $n \geq 3$ has such independent sets. The following Theorem gives the basic rule for counting these independent sets.

Theorem 2 Let T be an n-vertex tree, $n \geq 3$. Then

$$NI_l(T) = \prod_{x \in S(T)} (2^{l(x)} - 1)NI(T \setminus N[L]).$$

PROOF: Let S(T) be the set of all support vertices of the tree T. Assume that \mathcal{F} is a family of all independent sets such that if $S \in \mathcal{F}$ then for every $x \in S(T)$, $S \cap L(x) \neq \emptyset$. Let l(x) be the number of leaves attached to the vertex x in T. Assume that $L(x) = \{z_1, ..., z_{l(x)}\}$, $l(x) \geq 1$. Then for every $\emptyset \neq L'(x) \subseteq L(x)$ there is an independent set $S \in \mathcal{F}$ such that $L'(x) \subset S$. Consequently we have $2^{l(x)} - 1$ such subsets for every $x \in S(T)$. Since at least one vertex from L(x) belongs to S, it is easily seen that $x \notin S$. So $S = S^* \cup \bigcup_{x \in S(T)} L'(x)$ where S^* is an arbitrary independent set of the

graph $T \setminus N[L]$. Hence by the fundamental combinatorial statements we have that $NI_l(T) = \prod_{x \in S(T)} (2^{l(x)} - 1)NI(T \setminus N[L])$.

Thus the Theorem is proved.

From Theorem 2 immediately follows:

Corollary 1 Let T be an n-vertex tree, $n \geq 3$. Then $NI_l(T) = \prod_{x \in S(T)} (2^{l(x)} - 1)^{l(x)}$

1) if and only if every vertex from V(T) is either a leaf or a support vertex.

Theorem 3 Let T be an n-vertex tree, $n \geq 3$. Then $1 \leq NI_l(T) \leq 2^{n-1} - 1$. Furthermore $NI_l(T) = 1$ if and only if every vertex from V(T) is either a single-leaf or a weak support vertex and $NI_l(T) = 2^{n-1} - 1$ if and only if $T = K_{1,n-1}$.

PROOF: Let T be an n-vertex tree with $n \geq 3$. The lower bound for the number $NI_l(T)$ immediately follows from Corollary 1. If $T = K_{1,n-1}$ then it is obvious that $NI_l(T) = 2^{n-1} - 1$. We shall prove that for every $T \neq K_{1,n-1}$, $NI_l(T) < 2^{n-1} - 1$. Let $T \neq K_{1,n-1}$. Then $|S(T)| \geq 2$. Assume that |S(T)| = s, $s \geq 2$ and for $x_i \in S(T)$, i = 1, ..., s, $|L(x_i)| = l(x_i)$. It is clear that $n = s + \sum_{i=1}^{s} l(x_i) + p$ where p = |V(T)| - (|S(T)| + |L|). Let \mathcal{F}^*

be the family of all independent sets S of T such that for every $x \in S(T)$, $S \cap L(x) \neq \emptyset$. Let $S \in \mathcal{F}^*$. Then it is obvious that $S \cap S(T) = \emptyset$. Hence $S = \bigcup_{i=1}^{s} S_i \cup S'$ where S_i is an arbitrary nonempty subset of $L(x_i)$ for every i = 1, ..., s and S' is an arbitrary independent set of the graph $T \setminus (S(T) \cup L)$. Denote $T' = T \setminus (S(T) \cup L)$. By previous assumptions |V(T')| = p hence there are at most 2^p independent sets in the graph T'. By the Theorem 2

we have that $NI_l(T) = \prod_{i=1}^s (2^{l(x_i)} - 1)NI(T') < \prod_{i=1}^s 2^{l(x_i)} 2^p = 2^{p + \sum_{i=1}^s l(x_i)} = 2^{n-s}$. By $s \ge 2$ immediately follows that $2^{n-s} < 2^{n-1} - 1$ what gives that $NI_l(T) < NI_l(K_{1,n-1}) = 2^{n-1} - 1$.

Thus the Theorem is proved.

Theorem 4 Let $n \geq 3$ be integer. Then $NI_l(P_n) = F_{n-3}$.

PROOF: Let $V(P_n)=\{x_1,...,x_n\}, n\geq 3$ and vertices be numbered in the natural fashion. Then $S(T)=\{x_2,x_{n-1}\}$. Let $S\subset V(P_n)$ be an arbitrary independent set of P_n such that for every $x\in S(T), L(x)\cap S\neq \emptyset$. Hence $x_1,x_n\in S$. This means that $S=S'\cup\{x_1,x_n\}$, where S' is an arbitrary independent set of the graph $P_n\setminus\{x_1,x_2,x_{n-1},x_n\}$ which is isomorphic to P_{n-4} . Since (1) gives exactly F_{n-3} sets S' we have $NI_l(P_n)=F_{n-3}$, that completes the proof.

3 The total number of independent sets containing L as a subset

In this section we study the number of all independent sets including all leaves. By $NI_L(T)$ we denote the total number of independent sets in T including the set L. It is easily seen that $NI_L(T) = NI(T \setminus N[L])$. Let \mathcal{F}_L be the family of all independent sets of T including L. Then $|\mathcal{F}_L| = |\mathcal{F}'|$, where \mathcal{F}' is the family of all independent sets in $T \setminus N[L]$. Let x be an arbitrary vertex of V(T). By $\mathcal{F}_{L,x}$ we denote the family of

Let x be an arbitrary vertex of V(I). By $\mathcal{F}_{L,x}$ we denote the family of all independent sets including L such that $x \in S$. By $\mathcal{F}_{L,-x}$ we denote the family of all independent sets including L such that $x \notin S$. Evidently $\mathcal{F}_{L,x} \cup \mathcal{F}_{L,-x} = \mathcal{F}_L$ is the family of all independent sets including L in T. Then the basic rule for counting independent sets including L in T is as follows $NI_L(T) = |\mathcal{F}_L| = |\mathcal{F}_{L,x}| + |\mathcal{F}_{L,-x}|$.

Theorem 5 Let T be an arbitrary n-vertex tree, $n \geq 3$. Then $NI_L(T) \geq 1$ with equality if and only if each vertex of V(T) is either a leaf or a support vertex.

PROOF: Let T be an arbitrary tree with $n \ge 3$ and $L \subset V(T)$ be the set of leaves of T. The inequality is obvious. Denote $T' = T \setminus N[L]$. Of course

 $N[L] = S(T) \cup L$. Assume that $V(T) = S(T) \cup L$. Let S be an arbitrary independent set including L in T. Then $L \subseteq S$. Moreover by the definition of independent set $S(T) \cap S = \emptyset$. By the assumption of T we deduce that T' is the empty graph. Consequently S = L is the unique independent set including L in T. Conversely assume now that $NI_L(T) = 1$ and let S be the unique independent set including the set L in T. Of course $S = L \cup S^*$ where S^* is the unique independent set of T'. Assume on the contrary that there is a vertex $x \in V(T) \setminus (S(T) \cup L)$. This gives that $N[L] \cap \{x\} = \emptyset$. Consequently $x \in V(T')$. Let F' be a family of all independent sets of T'. Then it is obvious that the empty set and a subset containing the vertex x belong to the family F'. Hence $|F'| \geq 2$ so $NI_L(T) \geq 2$ what gives a contradiction that S is the unique independent set including L in T.

Thus the Theorem is proved.

Theorem 6 Let T be an arbitrary n-vertex tree, $n \geq 3$. Then $NI_L(T) \leq F_{n-3}$ with equality for $T = P_n$.

P R O O F: Firstly we shall prove that $NI_L(P_n) = F_{n-3}$. Let $V(P_n) = \{x_1, ..., x_n\}$, $n \geq 3$ and vertices are numbered in natural fashion. Let $S \subset V(P_n)$ be an arbitrary independent set of P_n such that $x_1, x_n \in S$. Hence by Theorem 4 we obtain that $NI_L(P_n) = NI^*(P_n) = F_{n-3}$. Now we prove that for every n-vertex tree $NI_L(T) \leq NI_L(P_n)$. If $T = K_{1,p}$, $p \geq 2$, then the inequality is obvious. Let $T \neq K_{1,p}$, $p \geq 2$. To avoid trivialities assume that $n \geq 5$ and $T \neq P_n$. Let $X \subseteq S(T)$ be the set of strong support vertices of T and $L(x) = \{z_1, ..., z_{l(x)}\}$, $l(x) \geq 2$ be the set of leaves attached to the vertex x. Assume that z_i , $1 \leq i \leq l(x)$ be a fixed vertex of L(x). Then it is easy to observe that $NI_L(T) = NI_L(T \setminus \{z_i\})$. Let u be a penultimate vertex of T and $v \in N(u) \setminus L(u)$. The existence of the vertex v gives the fact that $T \neq K_{1,n-1}$.

Claim (1). $NI_L(T) \leq NI_L(sub_{\{u,v\}}(T \setminus \{z_i\}))$.

Denote $T' = \sup_{\{u,v\}} (T \setminus \{z_i\})$ and let \mathcal{F}_L and \mathcal{F}'_L be the families of all independent sets including the set of leaves in T and in T', respectively. By the basic rule for counting independent sets including L we have that $NI_L(T') = |\mathcal{F}'_L| = |\mathcal{F}'_{L,u}| + |\mathcal{F}'_{L,-u}|$. Since u is the penultimate vertex in T hence by the definition of the subdivision of edge $\{u,v\}$ it follows that u is the penultimate vertex in T', too. Let $S \in \mathcal{F}'_L$. Then it is obvious that $u \notin S$. This implies that $NI_L(T') = |\mathcal{F}'_{L,-u}|$. Let z be a vertex inserted into edge $\{u,v\}$. Of course $|\mathcal{F}'_{L,-u}| = |\mathcal{F}'_{L,z}| + |\mathcal{F}'_{L,-z}| = |\mathcal{F}'_{L,z}| + NI_L(T)$, which ends the proof of this claim.

From the above it is clear that there is an *n*-vertex tree \widetilde{T} such that $NI_L(\widetilde{T}) \geq NI_L(T)$ and for every $x \in S(\widetilde{T})$, x is a weak support vertex. Let $Y \subset S(\widetilde{T})$ be the set of week support vertices and every $y \in Y$ is not

penultimate. Assume that $y \in Y$ and $L(y) = \{w\}$. Let u' be a penultimate vertex in \widetilde{T} and $v' \in N(u') \setminus L(u')$.

Claim (2).
$$NI_L(\widetilde{T}) \leq NI_L(sub_{\{u',v'\}}(\widetilde{T} \setminus \{w\})).$$

We prove this claim analogously as Claim (1).

Consequently we can construct an n-vertex tree T^* with $NI_L(T^*) \geq NI_L(\tilde{T})$ such that T^* does not have strong support vertices and every week support vertex is penultimate. If $T^* \neq P_n$, then there is $x' \in V(T^*)$ and P_t, P_m , for $t, m \geq 3$ are subgraphs of T^* attached to the vertex x'.

Claim (3). $NI_L(T^*) \leq NI_L(ad_{P_t(w',x')}(T^* \setminus (P_t \setminus \{x'\})))$ where w' is the end vertex of P_m which is identified with the initial vertex x' of P_t .

Denote $T'' = ad_{P_t(w',x')}(T^* \setminus (P_t \setminus \{x'\}))$. Let \mathcal{F}_L^* and \mathcal{F}_L'' are families of all independent sets including the set of leaves in T^* and in T'', respectively. By the general rule for counting independent sets we have that $NI_L(T^*) = |\mathcal{F}_{L,x'}^*| + |\mathcal{F}_{L,-x'}^*|$. Let $S \in \mathcal{F}_L^*$. Of course $w' \in S$. Denote $S_1 = S \cap V(T^* \setminus (P_t \cup P_m))$, $S_2 = S \cap V(P_m)$ and $S_3 = S \cap V(P_t)$. Evidently if $x' \in S$ then $x' \in S_2 \cap S_3$. Since $NI_L(T'') = |\mathcal{F}_{L,x'}'| + |\mathcal{F}_{L,-x'}'|$ two possible cases should be distinguished:

(1)
$$x' \in S$$

In this case $S_1 \cup S_2 \cup S_3$ is an independent set of T'' including the set of leaves. Hence $|\mathcal{F}_{L,x'}^*| \leq |\mathcal{F}_{L,x'}''|$.

(2)
$$x' \notin S$$

Let $y' \in N(x') \cap V(P_t)$. If $y' \in S$ then $S_1 \cup S_2 \cup S_3 \setminus \{w'\}$ is an independent set including the set of leaves in T''. If $y' \notin S$ then $S_1 \cup S_2 \cup S_3$ is an independent set including the set of leaves in T''.

Consequently from the above possibilities and by fundamental combinatorial statements we have that $|\mathcal{F}_{L,-x'}^*| \leq |\mathcal{F}_{L,-x'}'|$.

Finally we obtain that $NI_L(T^*) = |\mathcal{F}_{L,x'}^*| + |\mathcal{F}_{L,-x'}^*| \le |\mathcal{F}_{L,x'}''| + |\mathcal{F}_{L,-x'}''| = NI_L(T'')$.

Hence by Claim (3) we deduce that $NI_L(P_n) \ge NI_L(T'')$, which ends the proof.

References

- [1] R.Diestel, *Graph Theory*, Springer-Verleg, Heideberg, New-York. Inc., (2005).
- [2] G.Hopkins, W.Staton, Some identities arising from the Fibonacci numbers of certains graphs, The Fibonacci Quarterly (1984) 225-228.

- [3] M.J.Chou, G.J.Chang, Survey on counting maximal independent sets, in; S.Tangmance, E.Schulz (Eds.), Proceedings of the Second Asian Mathematical Conference, Word Scientific, Singapore (1995) 265-275.
- [4] M.Jou, G.J.Chang Maximal independent sets in graphs with at most one cycle, Discrete Appl. Math. 79 (1997) 67-73.
- [5] S.B.Lin, C.Lin, Trees and forests with large and small independent indices, Chinese J. Math. 23 (3) (1995) 199-210.
- [6] M.Kwaśnik, I.Włoch, The total number of generalized stable sets and kernels of graphs, Ars Combinatoria 55(2000), 139-146.
- [7] R.E.Merrifield, H.E.Simmons, Topological Methods in Chemistry, John Wiley & Sons, New York, 1989.
- [8] A.S.Pedersen, P.D.Vestergaard, The number of independent sets in unicyclic graphs, Discrete Appl. Math. 152 (2005) 246-256.
- [9] H.Prodinger, R.F.Tichy, Fibonacci numbers of graphs, Fibonacci Quarterly 20, (1982) 16-21.
- [10] D.Roth, On the hardness of aproximate reasoning, Artif. Intell. 82 (1996) 273-302.
- [11] B.E.Sagan, A note on independent sets in trees, SIAM J.Alg.Discrete Math. Vol 1, No 1, February (1988) 105-108.
- [12] H.Wilf, The number of maximal independent sets in a tree, SIAM J.Alg. Discrete Math. Vol 7, No 1, January, (1986) 125-130.
- [13] I.Włoch, Generalized Fibonacci polynomial of graphs, Ars Combinatoria, 68(2003) 49-55.
- [14] J.Zito, The stucture and maximum number of maximum independent sets in trees, J.Graph Theory 15(2), (1991), 207-221.