Super Edge-Magic Labelings of Generalized
Petersen Graphs P(n, 3) *

Xu Xirong, Yang Yuansheng, Xi Yue
Department of Computer Science,
Dalian University of Technology
Dalian, 116024, P. R. China
e-mail: yangys@dlut.edu.cn
Khandoker Mohammed Mominul Haque
Department of Computer Science and Engineering
Shahjalal University of Science and Technology,
Sylhet-3114, Bangladesh
e-mail: momin@sust.edu
Shen Lixin
Department of Computer Science,
Dalian Maritime University
Dalian, 116026, P. R. China
e-mail: slx_1106Q163.com

Abstract

A graph G is called super edge-magic if there exists a bijection
f from V(G)U E(G) to {1,2,...,|V(G)| + |E(G)|} such that
J(uw) + f(v) + f(uv) = C is a constant for any uv € E(G) and
f(V(G) = {1,2,...,|V(G)|}. Yasuhiro Fukuchi proved that
the generalized Petersen graph P(n, 2) is super edge-magic for
odd n > 3. In this paper, we show that the generalized Pe-
tersen graph P(n, 3) is super edge-magic for odd n > 5.
Keywords: super edge-magic labeling, petersen graph, vertez
labeling, edge labeling
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1 Introduction

Let G = (V, E) be a simple graph with vertex set V(G) and edge
set E(G), and let p = |V(G)|, ¢ = |E(G)| be the number of vertices
and edges of G, respectively. A bijection f from V(G) U E(G) to
{1,2,...,p+q} is called an edge-magic labeling of G, if there exists a
constant C called the valence of f, such that f(u)+f(v)+ f(uv) =C
for any edge uv € E(G). An edge-magic labeling f of G is called a
super edge-magic labeling if f(V(G)) = {1,2,...,p}. We say that G
is super edge-magic if there exists a super edge-magic labeling of G.

Kotzig and Rosal4! introduced the notion of edge-magic label-
ings (in [4], edge-magic labelings are called magic valuations). They
proved that complete bipartite graphs, cycles and caterpillars are
edge-magic, and that the complete graph Ky is edge-magic if and
only if n = 1,2,3,5 or 6. They also conjectured that trees are edge-
magic. Enomoto, Lladd, Nakamigawa and Ringel (11 introduced the
notion of super edge-magic labelings. They proved that the cycle Cy,
is super edge-magic if and only if n is odd, and that the complete
bipartite graph Ko » is super edge-magic if and only if m = 1 or
n = 1, and that the complete graph K is super edge-magic if and
only if n = 1,2 or 3. They also conjectured that trees are super
edge-magic. In addition, they proved that if n = 0( mod 4), then
the wheel graph W, of order n is not edge-magic.

For the literature on super edge-magic graphs we refer to (3] and
the relevant references given in it.

Let 7, k be integers such that 7 > 3, 1 <k < n and n # 2k. For
such n, k, the generalized Petersen graph P(n, k) is defined by

V(P(n,k))={w | 1<i<2n},
E(P(n,k)) = { viv1,; mod n) » ViVi+n » Un+i¥ni1i((i+k-1) mod n)
| 1< i<n}.
Now, we introduce some necessary conditions for a graph to be
super edge-magic.

Enomoto et al. (1, Yasuhiro Fukuchi et al. (2] and F.M Figueroa-
Centeno et al. 1% proved the following useful lemmas:
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Lemma 1.1( [1], Lemma 2.1) If G is super-edge-magic, then | E(G)| <
2V(G)| - 3.

Lemma 1.2( [2], Lemma 2) Let r be an odd integer. Let p be an
integer, and let G be an r-regular graph such that |V (G)| = p.
(1)If p = 4(mod 8), then G is not edge-magic.
(2)If p = 0(mod 4), then G is not super edge-magic.

Lemma 1.3( [5], Lemma 4) If G is an r-regular super edge-magic
(p, g)-graph, where r > 0, then ¢ is odd and the valence of any super
edge-magic labeling of G is (4p + q + 3)/2.

It follows from Lemma 1.1 that if an r-regular graph is super
edge-magic, then r < 3. Since generalized Petersen graphs P(n,k)
form an important class of 3-regular graphs, it is desirable to deter-
mine which of the P(n, k) are super edge-magic.

P(n,k) is a 3-regular graph with 2n vertices and 3n edges, as a
corollary to Lemmal.l — 1.3, we get the following result:

Corollary 1.4 If P(n,k) is a super edge-magic graph, then n is
odd and the valence of any super edge-magic labeling of P(n, k) is
(11n + 3)/2.

Yasuhiro Fukuchi (2! proved that P(n,2) is super edge-magic for
odd n > 3. In this paper, we show that P(n,3) is super edge-magic
for odd n > 5.

2 Statement of the Main Result

Theorem 2.1 P(n,3) is super edge-magic for odd n > 5.
Proof. Let C = (11n + 3)/2. We define a function :
f:V(P(n,3)) UE(P(n,3)) - {1,2,...,5n}

according to following three cases:

Case 1: n=1 mod 4.
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We label the vertices as follows:

(on—(i—1)/2, 1<i<n Aimod2=1,
(3n+1)/2—-i/2, 2<i<n—-1 A imod2=0,
n—1-1/2, n+1<i<2n—4 A imod 4 =2,

flwi) = Bn—-1)/2+1, n+2<i<2n-3 A imod2=1,
n+3—1/2, n4+3<i<2n—2 A imod 4=0,
(n +1)/2, i=2n—1,
L 2, i=2n.
And the edges as follows:

f(uiv;) = C — (f(u:) + f(v;))-
Firstly, we show that f is a bijective mapping from V(G) onto
{1,2,...,2n}.
Denote by

S = {ftm)|1<i<2n}.
Then,

Si={2m—-(i—-1)/2]1<i<n A imod2=1}
={2n,2n-1,...,(3n +1)/2},
Se={(3n+1)/2—i/2|2<i<n—1 A imod2=0}
={(Bn+1)/2-1,(3n+1)/2-2,...,n+1},
S3={n-1-i/2|n+1<i<2n—-4 A imod4=2}
= {(n-3)/2,(n-7)/2,...,3,1},
Sy={(Bn-14)/2+1|n+2<i<2n-3 A imod2=1}
={n,n-1,...,(n+3)/2+1},
Ss={n+3—i/2|n+3<i<2n—2 A imod4=0}
={(n+3)/2)(n—1)/27'°-$4})
Se={(n+1)/2|i=2n-1}={(n+1)/2},
Sr={2]i=2n}={2}.

Hence, S; U S2 U S3US; U S5 U Se U S is the set of labels of all
vertices, and

S1U52U53US4U35U56US7=51U52US4U35U55U33US7

={2n,2n—1,2n—2,...,(3n+1)/2,(3n+1)/2—1,(3n+1)/2-—2:
cooon+l,n n-1,..,(n+3)/2+1, (n+3)/2, (n+1)/2,
(n=1)/2,(n—3)/2,...,4, 3, 2, 1}

={2n, 2n-1,..., 2, 1}.
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It is clear that the labels of the vertices are different. So, f is a
bijection from V(G) onto {1,2,...,2n}.

Secondly, we show that f is a bijective mapping from E(G) onto
{2n+1,2n+2,...,5n}. Denote by

D = {f(uv;) | vv; € E(P(n,3))}.
Let D = D, U Dy U D3, where

D, ={f(v,-'ul+(i modn))llﬁisn}=D11UD12,

Dy = {f(”*'”1+(i mod n)) | 1 Si<n -1}
={(1ln+3)/2 - (Tn+1)/2+i|1<i<n-1}
={2n+2,2n+3,...,3n),

Dz ={f(wivyy; mod ny) | i =7}
={(11n +3)/2 —4n+ (n —1)/2} = {2n + 1},

Dy ={f(wivitn) |1 <i<n}
= Dg3 U D23 U Da3 U Doy U Dos,

Dy =.{f(v,-v,-+,,)|1<_<i$n—4/\z'mod4=1}
={(11n+3)/2~(5n—1)/2+i|1<i<n-4Aimod 4=1}
={3n+3,3n+7,...,4n — 2},

Doy ={f(v,-'u,-+n)|2§i5n—3/\imod2=0}
={(1ln+3)/2~(5n+3)/2+i|2<i<n-3Aimod2=0}
={3n+2,3n +4,...,4n — 3},

Doz = {f(vivi4n) | 3<i<n—-2 A imod 4 =3}
={(11n+3)/2—(5n+7)/2+i|3$i5n—2/\imod4=3}
={3n+1,3n+5,...,4n — 4},

Doy ={f(vivi4n) | i=n -1}
={(11n+3)/2-(3n+3)/2 | i=n -1} = {4n},

Dos = {f(vivign) | i=n}
={(1ln+3)/2-2n+(i-1)/2-2|i=n} = {4n -1},

Dy = {f(v,'vn+l+«i+2) mod n)) In+1<i< 2n}
= D3; U D33 U D33 U D34 U Dss,

D3, ={f(vivn+l+((i+2)modn))ln+15i52n—4/\imod4=2}
= D311 U Dy,
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Dsnt = {f(0iV 414 (usz) mod ) | R+1Si<2n—8Aimod 4 =2}
={(1ln+3)/2— (5n—3)/2+i|n+1<i<2n—8
A i mod 4 =2}
= {4n+4,4n+8,...,5n — 5},
D3z = {f(vit 114 (42) mod m)) | £ = 20— 4}
={(11n +3)/2 - (n+3)/2 | i = 2n — 4} = {5n},
Dsy = {f(Wi¥ 14 (42) mod my) | R +2Si< 20 —3Aimod 4=3}
= D321 U Dago,
D3 = {f (Wi 142 modn))|n+2$i$2n—7/\imod4=3}
={(11n+3)/2—(5n—3)/2+i|n+2<i<2m -7
A imod 4 =3}
={4n+5, n+9,..., 5n -4},
D3y =A{f (”i”n+1+((i+2) mod n)) | i=2n-3}
={(11n+3)/2-(n+9)/2 | i=2n-3} = {5n -3},
Dss = {f(viV 414 (is2) mod ny) | P +3 i< 2n—6Aimod 4 =0}
={(11n+3)/2—-(5n+5)/2+i|n+3<i<2n—-6
A imod 4 = 0}
={4n+2, 4n+6, ..., Sn-T},
D3 = {f(viv 14 (i+2) mod n)) |n+4<i<2n—-5Aimod 4 =1}
={(11n+3)/2— (5n+5)/2+i|n+4<i<2n—5
Aimod 4 =1}
={4n+3, 4n+17, ..., 5n -6},
D3s ={f ("’i”n+1+((i+2) mod n)) | i=2n-2}
= {f(v2n-2vn+1) | i =2n~2} = {(11n +3)/2 - (n + 5)/2}
= {5n— 1})
D3s = {f(¥iVi14(G+2) mod my) | £ =20~ 1}
= {f(van-1Vn42) | i =2n -1} = {(1ln +3)/2 - (3n +1)/2}

= {4n + 1},

Dy = {f(vv, 114 (G+2) mod my) 1= 2n}
= {f(vanvn43) | i = 2n} = {(11n + 3)/2 — (n + 7)/2}
= {5n — 2}.
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Hence, D = D, U D, U Dj is the set of labels of all edges, and

D= DiUD,U Dj

= D UDj2U Dy U Dy U Dy3 U Doy U Das U D3y U D3 U Dsg
UD34 U D35 U D3g U D3y

= Di2UDy U Dy3 U Dag U Doy U Dos U Doy U D3g U D3z U D3y
UD313 U D3p1 U Daga U D37 U D35 U Do

= {2n+1, 2n+2,2n+3,...,3n, 3n+1,3n+5,...,4n — 4,
n+2,3n+4,...,4n-3,3n +3,3n+7,...,4n -2, 4m -1,
dn, dn +1, 4n+2,4n+6,...,5n — 7, n+3,4n4+17,...,
on —6,4n+4,4n+8,...,5n —5, 4n+5,4n+9,...,5n — 4,
m -3, 5n -2, 5n—1, 5n}

= {2n+1, 2n+2, ..., 5n}.

It is clear that the labels of each edge are distinct, and the edge
labels are {2n + 1,2n + 2,...,5n}. According to the definition of
super edge-magic labeling, we thus conclude that P(n,3) is super
edge-magic for n =1 mod 4.

Case 2: n =3 mod 8.
We label the vertices as follows:

(2n—(i—1)/2, 1<i<nAimod2=1,
Bn+1)/2-i/2, 2<i<n-1Aimod?2=0,
(n—5)/2, i=n+1)

4, i=n+2
n+2-1i/2, n+3<i<2n-8Aimod 4 =2,
2+(@3n—14)/2, n+4<i<2m-3Aimod2=1,
(n+5)/2, i=n+5,
flw) = ¢ n-2-1i/2 n+9<i<2n-10
Aimod 8=4An>19,
n+6-1/2, n+13<i<2n-6
Aimod 8=0An> 19,
2, 1=2n-14,
5, 1=2n-2,
(n+3)/2, i=2m-1,
L 1, i=2n.

And the edges as follows:
fvivy) = C = (f(v:) + f(vj)).
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By a proof similar to the one in Case 1, we have that this
assignment provides a super edge-magic labeling for P(n,3) with
n = 3 mod 8.

Case 3: n =7 mod 8.
For n = 7, we give a vertex and edge labeling of P(7,3)
shown in Figure 2.1.

Figure 2.1 : The super edge-magic labeling of the graph P(7,3).
According to the definition of super edge-magic labeling, it is

clear that this assignment provides a super edge-magic labeling for
P(7,3).
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For n > 15, we label the vertices as follows:

[ 2n —(i—1)/2,
(3n+1)/2 —i/2,
(Tl - 5)/27

3

n+2—1/2,
2+ (3n —4)/2,
(n+5)/2,
fw) = § n—-2-14/2,

n+6—1/2,
2,
(9 —3n)/2 +1,
7,
\ 1,
And the edges as follows:

1<i<nmAimod2=1,
2<i<n—-1Aimod2=0,
i=n+1,

t=n+42
n+3<i<2n-4Aimod 4=2,
n+4<i<2n—-5Aimod2=1,
t=n+35,

n+9<i<2n-14
Aimod 8 =0An > 23,
n+13<i<2n-10

Aimod 8=4An>23,
i=2n-—6,
2n-3<i<2n-1Aimod 2 =1,
i=2n-2,

i=2n.

Fivs) = C — (f(wi) + f(vy))-

By a proof similar to the one in Case 1, we have that this
assignment provides a super edge-magic labeling for P(n, 3) with

n =7 mod 8.

According to the proof of Case 1, Case 2 and Case 3, we thus con-
clude that P(n, 3) is super edge-magic for odd n > 5.

In Figure 2.2, 2.3 and 2.4, we show our super edge-magic label-
ings for P(17,3), P(19,3) and P(23,3).
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Figure 2.2 : The super edge-magic labeling of the graph P(17,3).
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Figure 2.3 : The super edge-magic labeling of the graph P(19, 3).
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Figure 2.4 : The super edge-magic labeling of the graph P(23,3).
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