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Abstract: A graph G is called resonant if the boundary of each
face of G is an F-alternating closed trail with respect to some
f-factor ' of G. We show that a plane bipartite graph G is
resonant if and only if it is connected and each edge of G is
contained in an f-factor and not in another f-factor.
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In this paper, we consider the resonance of bipartite graphs. The con-
cept for resonance originate from chemical significance of hexagonal systems
and was extended to plane bipartite graphs. A hezagonal system [11] is a
special connected plane graph without cut vertices, each interior face of
which is surrounded by a regular hexagon of side length one. Some ele-
gant characterizations for hexagonal system to be resonant were obtained
in [12, 18] and there is a survey [15] about this topic. For plane elementary
bipartite graphs, it also can be described by resonant faces [14].

We take the basic terminology from [7]. The graphs in this paper will
be simple and finite. Let G be a plane bipartite graph with vertex set V' (G)
and edge set E(G). By a plane graph G we mean an embedding of a planar
graph in the plane. This plane graph decomposes the plane into a number
of open regions called faces. A bipartite graph means a graph for which the
vertices are colored by white or black so that two adjacent vertices receive
different colors.

*This research is supported by NSFC of Gansu Province in P.R. China, No.: 3XS051-
A25-030.

ARS COMBINATORIA 85(2007), pp. 233-239



For a vertex z of graph G, the degree of z is denoted by dg(z). Let g and
f be two integer-valued functions defined on V(G) such that g(z) < f(z)
for each z € V(G). A (g, f)-factor of G is a spanning subgraph F of G
satisfying g(z) < dr(z) < f(z) for all z € V(G). In particular, a (f, f)-
factor is called an f-factor. If f is a constant function taking the value k,
then an f-factor is said to be a k-factor. A 1-factor of G is also a perfect
matching. In 1952, Tutte [10] gave a criterion for the existence of an f-
factor of a graph. A necessary and sufficient conditions for existence of a
(g, f)-factor was obtained by Lovész [8] in 1970. Little [6] introduced the
concept of factor-covered graph. Liu [2, 3] extended this concept to general
situation. For a graph G with an f-factor is called f-factor-covered if each
edge of G is contained in some f-factor. G is called f-factor-deleted if G—e
contains an f-factor for every edge e of G.

We now extend some concepts concerning l-factor to f-factor, such
as “allowed”, “elementary” and “resonance” etc.. If f = 1, then these
concepts express the general meanings. Let G be a graph with an f-factor.
An edge of G is called f-allowed if it lies in some f-factor of G and f-
forbidden otherwise. An f-fized single edge of G is the edge that there is
no f-factor of G containing it. And an edge e of G is called f-fized double
edge if e belongs to all f-factors of G. G is said to be f-elementary if all
its f-allowed edges form a connected subgraph of G. If G is 1-elementary,
we always say that G is elementary. As early as in 1915, Konig [5] had
employed this concept in studying the decomposition of a determinant.
After nearly half a century, Hetyei [4] formally used the term “elementary”
for this concept and obtained various properties of elementary bipartite
graphs. Let F be an f-factor of G. A closed trail P of G is called F-
alternating if the edges of P appear alternately in E(F) and E(G)\E(F).
A face ¢ of G is said to be resonant if G has an f-factor F such that the
boundary of ¢ is an F-alternating closed trail. G is called resonant if each
face of G is resonant.

From [14] we know the following result: Let G be a plane bipartite graph
with more than two vertices, then each face of G is resonant if and only if
G is elementary. But for a plane bipartite graph G with f-factors(where
f # 1), the conditions of f-elementary is not enough for G to be resonant.
For example(see Fig. 1), there is no f-factor such that the faces 1 or ¢
are resonant.

The symmetric difference of two finite sets A and B is defined by
A@® B := (AU B)\(AN B). This binary operation is associative and com-
mutative. Let M; and M, be two different perfect matchings of G. Then
the symmetric difference M; € M> consists of mutually disjoint (M1, Ma3)-
alternating cycles. But this is different from f-factors.

Lemma 1[9]. Let G be a connected graph with all its vertices in even
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Fig. 1. Bipartite graph G and its f-factors

degree, and G has a 2-edge coloring (not necessary proper) with blue and
red colors. If the number of red-color-edges equals to the number of blue-
color-edges for every vertex of G, then G has an (red, blue)-alternating
Euler tour.

Lemma 2. If F| and F; are two different f-factors of G, then the
connected components of G' = (V, E(F,) @ E(F3)) are (Fy, F;)-alternating
closed trails.

Proof: Color the edges of F; and F; with red and blue respectively.
For a vertex z of G, if there are k(0 < k < f(z)) edges incident with z
which lie in both F and Fy, then dg (z) = 2(f(z) — k). Thus the number
of red edges equals to the number of blue edges for every vertex of G’. By
Lemma 1, the connected components of G’ are (Fy, F)-alternating closed
trails. O

Lemma 3[1]. Let F be an f-factor of a bipartite graph G and P an
alternating closed trail relative to F. Then P is the edge-disjoint union of
alternating cycles relative to F.

Corollary 4. Let F be an f-factor of a bipartite graph G and P an
alternating closed trail relative to F. Then the edges which do not belong
to any cycle of P form an F-alternating path P'.

Proof: By Lemma 3, the cycles of P are F-alternating. Assume that
P’ is not an F-alternating path. Then there are two adjacent edges e; and
ez of P’ such that e; € F or e; ¢ F(i = 1,2). u is the same end of e; and
e2. Let P, be the F-alternating closed trail of P using u as its initial and
terminal vertices, and e; ¢ Py. Then P = e; Piey or P, = esPje; is not an
F-alternating trail of P, which contradicts P, C P. O

Lemma 5[14]. Let M be a perfect matching of a graph G and C an
M -alternating cycle of G. Then M @ E(C) is also a perfect matching of
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G and C is an (M @ E(C))-alternating cycle of G.
For f-factors, we have the similar result below.

Lemma 6. Let F be an f-factor of a bipartite graph G and P an F-
alternating closed trail of G. Then F @ E(P) is also an f-factor of G and
P is an (F @ E(P))-alternating closed trail of G.

Proof: The result is obvious by using Lemmas 3 and 5. O

If a bipartite graph G is elementary, then G is 2-edge-connected. That
is, G has no cut-edge. Conversely, for a bipartite graph G with perfect
matchings, if G has a cut-edge, then the cut-edge is certainly forbidden,
and G is certainly non-elementary. But for f-factors, this is different.

Lemma 7. Assume that a bipartite graph G is f-elementary. If G has
cut-edges, then all the cut-edges of G are f-fized double edges.

Proof: At first we show that all the cut-edges of G are allowed. Oth-
erwise, suppose a cut-edge e is a fixed single edge. Then the union of all
f-factors in G forms a disconnected subgraph of G, which contradicts that
G is f-elementary.

Further we show that a cut edge ab is a fixed double edge. Otherwise
ab is not a fixed double edge. Then there is an f-factor F of G such that
ab ¢ F. Let G, = (1, F)) and G = (V2, E;) be the two connected
components of G — ab. Then F; : = F[) G, is an f-factor of G;. We have

Y. fl@)= ). dr(z)=0(mod?2).

zeV(Gy) zeV(G1)
Since ab is an allowed edge, there is an f-factor F' of G such that ab € F'.
Then
Yo f@y= Y dr(@= Y, drne(z)+L
zeV(G1) zeV(G1) zeV(G1)
So

Z drng, (z) = 1(mod 2),
zeV(Gy1)

contradicting the Handshaking Lemma. The theorem is proved. O

Corollary 8. If a connected graph G is both f-factor-covered and f-
factor-deleted, then G is 2-edge-connected.

Proof: If G has a cut-edge e, by Lemma 7 e is a f-fixed double edge
since G is f-elementary. Hence G — e has no f-factor, which contradicts
that G is f-factor-deleted. O

Lemma 9. Suppose a graph G is both f-factor-covered and f-factor-
deleted, and e is an edge of an f-factor F' of G. Then there are an edge €'
adjacent to e and an f-factor F' of G such thate' ¢ F, e ¢ F' and e’ € F'.
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Proof: Let u be an endpoint of e. Assume that ej,eg, - ,ex are the
edges incident with u but not belong to F. Because G is f-factor-deleted,
we have k = dg(u) — f(u) = 1 and G — e has an f-factor F’ such that F'
contains some e;. Otherwise, only f(u)— 1 edges incident with u belonging
to F’. The result is proved. O

Theorem 10. A connected plane bipartite graph G is both f-factor-
covered and f-factor-deleted if and only if each face of G is resonant.

Proof: Assume that each face of G is resonant. For any edge e of
G, let P be a boundary of the faces containing e. Then there is an f-
factor F' such that P is an F-alternating closed trail, and by Lemma 6
F @ E(P) is another f-factor. Ife € F, then e ¢ F @ E(P); ife ¢ F, then
e € F@ E(P). Hence G is both f-factor-covered and f-factor-deleted.

Conversely, assume that G is both f-factor-covered and f-factor-deleted.
Let ¢ be a face of G. We will show that ¢ is resonant. For an edge e on
the boundary of ¢, there are two f-factors F; and F; such that e € F} and
e ¢ F5. By Lemmas 2 and 3, there is an (Fy, Fy)-alternating cycle C of
F, @ F; such that e € E(C). Without loss of generality, assume that ¢
lies in the interior of C. Denote by I[C] the subgraph of G consisting of
C together with the interior. Obviously, I[C] is connected. We now show
that the every face of I[C] is resonant by induction on the number m of
edges contained in the interior of C.

If m =0, the result is trivially true.

Now we suppose that the result is true for 0 < m < k. That is: if the
number of edges in the interior of an f-alternating cycle C is no more than
k, then the every face of I[C] is resonant. On the basis of this, we give the
proof of m = k + 1 in the following.

In the interior of C, let e; be an edge with an endpoint on C. If the
two ends of e; are both on C, then C and e; form two cycles C; and Cs.
Whenever e; belongs to Fi(or F3) or not, C; and C> are f-alternating
cycles relative to some f-factors of G. And the number of edges in the
interior of C; and C: are no more than k respectively. So by the induction
hypothesis, each face of I{C1] and I[C5] is resonant.

If one of ends of e; is in the interior of C, then there are three cases to
be considered.

Case 1: e; € F1,e; ¢ F» (see Fig. 2 (a) and (b)).

By Lemmas 2 and 3, F; @ F> has a cycle C’ containing e;. Let P be an
(F1, F2)-alternating path of C’ such that only end vertices lie on C. If the
two end vertices of P are different, then C and P form two cycles C; and C,
such that C,()Cy = P, see Fig.2(a). Without loss of generality, suppose
C) is an Fj-alternating cycle and C; is thus an F} @ E(C))-alternating
cycle. If the two end vertices of P are the same, then we can get that
C, is an (Fy, Fy)-alternating cycle and C; is an (Fy, Fy)-alternating closed
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Fig. 2.

trail, see Fig.2(b). By the two narration above, the number of edges in
the interior of the C; and C, are no more than k respectively. So by the
induction hypothesis, each face of I[Ci] and I[Cy] is resonant. For e; ¢ Fy
and e; € Fy, use the same argument.

Case 2: e; € Fy ) F, (see Fig. 3(a)).

By Lemma 9, there is an edge es adjacent to e; and an f-factor F3 such
that e; ¢ F3,eq ¢ Fy,ex € F3. Then by Lemma 2, an (F}, F3)-alternating
closed trail C’ of F} (P F; contains e; and ep. Let P be a part(or the whole)
of C' in I[C] such that only end vertices lie on C. If the two end vertices
of P are different, then by Corollary 4 we can get an (Fj, F3)-alternating
path by deleting the (F, F3)-alternating cycles of P.

Fig. 3.

If the two end vertices of P are the same, keep an (F}, F3)-alternating
cycle of P which has a vertex same to the ends of P and delete the other
cycles. Then discussed as in Case 1, two cycles C; and Ca(or C is a cycle
and C; is a closed trail) is obtained, which alternate with respect to some
f-factors of G. And the number of edges in the interior of the C; and C;
are no more than k respectively. So by the induction hypothesis, each face
of I[C)] and I[C5] is resonant.

Case 3: €; ¢ F1, e; ¢ F> (see Fig. 3(b)).

Let u be an endpoint of e; in the interior of C and F3 be an f-factor
such that e; € F3. Among all the edges incident with u except e;, there
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are f(u) edges in F} and f(u) — 1 edges in F3. Then there are at least one
edge ez incident with u, such that e; € F, and e, ¢ F3. By Lemma 2,
there is an alternating closed trail of F} € F; containing e, and e;. Similar
to those methods used in Case 2, we can get an (F3, F} )-alternating path
or cycle dividing C into two alternating cycles or closed trails C; and C,.
The number of edges in the interior of the C; and C, are no more than k
respectively. So by the induction hypothesis, each face of I[C)] and I [Cq]
is resonant.

Therefore each face of I{C] is resonant over the discussions above, and
the theorem is proved. O
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