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Abstract

For any integer k, two tournaments 7" and 7”, on the same finite
set V are k-similar, whenever they have the same score vector, and
for every tournament H of size k the number of subtournaments of
T (resp. T') isomorphic to H is the same. We study the 4-similarity.
According to the decomposability, we contruct three infinite classes
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of pairs of non-isomorphic 4-similar tournaments.

MSC: 05C20.
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1 Basic notions

A tournament T, consists of n vertices p1,ps, - - , P sSuch that each pair of
distinct vertices p; and p; is joined by one and only one of the oriented arcs
(pi, p;) or (pj,p:)- If the arc (p;, p;) is in Ty, then we say that p; dominates
p;j (symbolically, p; — p;). We set N*(p;) := {p; : pi = p;}. Let Abe
a subset of V := {p1,p2,--- ,Pn} and let z € V, if z dominates (resp. is
dominated by) all elements of A, we write z — A (resp. A — z). The score
of p; is [N*(p;)| that is the number s; of vertices that p; dominates. The
score vector of Ty, is the ordered n-tuple (31,82, - ,85,). We usually label
the vertices so that s; < sy < -+« < 8,,. For more details see (7).

Let T be a tournament with V as set of vertices. With each non-empty sub-
set X of V is associated the subtournament of T induced by X, that is the
tournament 7°(X) having X as set of vertices and the arcs (a, b) of T', where
a,b € X, as arcs. A sequence of arcs of the type (a,b), (b,¢), -+ ,(p,q) de-
termines a path P(a,q) from a to ¢. If the vertices a,b,c,---,q are all
different and the arc (g,a) is in the tournament, then the arcs in P(a, q)
plus the arc (g,a) determine a cycle denoted a = b—¢c —--- - ¢ —a,
or (a,b,¢,---,p,q). The length of a path or a cycle is the number of arcs
it contains. A k-cycle is a cycle of length k. It is well-known that, up to
isomorphism, there is exactly one tournament with 4 vertices forming a 4-
cycle, such a tournament is called a 4-cycle tournament; hence in any tour-
nament the number of 4-cycles and the number of 4-cycle subtournaments
are the same (the 4-cycles are considered up to a circular permutation).
The tournament T is {ransitive if, whenever © dominates v, and v domi-
nates w, then u dominates w. A chain of T is a transitive subtournament
of T. A k-chain is a chain with k vertices. A subset I of V is an interval
of T, if for every a,b € I, and every z € V \ I, we havea — z iff b — z.
Clearly, the empty set, V and the singletons of V' are intervals of T', called
trivial intervals. The tournament T is said to be indecomposable whenever
all its intervals are trivial, in the contrary T is said to be decomposable. Let
z € V and A be a set disjoint from V. Let T'(A) be a tournament with A
as set of vertices. We say that we dilate = by T(A) if we replace = by T(4),
and for all z € V' \ {z}, if z — z then z —» A, and if z — z then A — z;
we obtain a new tournament 7", and we say that T” is obtained from T by
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dilatation, note that A is an interval of 7. A diamond D of T is a subtour-
nament of T with 4 vertices, having only one 3-cycle, note that this 3-cycle
dominates or is dominated by a vertex a of T called the principal vertex
of D; if o dominates the 3-cycle, we say that D is a positive diamond, if
« is dominated by the 3-cycle, we say that D is a negative diamond. Note
that whenever T is a tournament with two vertices a, b, where a — b, if we
dilate b by a 3-cycle, we obtain a positive diamond and if we dilate a by
a 3-cycle, we obtain a negative diamond. For vertices a,b,c of T, we say
that a separatesband cifb—a —corc—a—b. Let T and T’ be two
tournaments with sets of vertices V and V’, respectively. An isomorphism
from T onto T" is a one-to-one correspondence f from V onto V” such that
forall z,y € V,z — y in T iff f(z) — f(y) in T'. The tournaments T’
and T’ are then isomorphic, which is denoted by T' ~ T, if there is an
isomorphism from T onto T".

Let k be a positive integer, and let T and 7’ be two tournaments on the
same set V of n vertices. We say that T and T” are k-similar if they have
the same score vector, and for every tournament H of size k the number of
subtournaments of T isomorphic to H is equal to the number of subtour-
naments of T/ isomorphic to H.

Let T}, be a tournament with score vector (s;, s2,-- - , 8p), and let ¢3(T5)
be the number of 3-cycles of T,,. It is known, see [7], that c3(Ty) = (3) —

> i1 (%)- As a consequence we have:

Proposition 1.1 If T and T' are two tournaments with the same score
vector, then T and T’ have the same number of 3-cycles and the same
number of 3-chains.

Note that there is no analogous result for 4-cycles and diamonds as
shown by the following pair of tournaments {S, S’}.

Tournament S : Tournament S’ :
z: vertices dominated by x x: vertices dominated by x
1: 2 3 4 1: 2 3 4
2: 3 2: 3
3: 4 3: 5
4: 2 5 4: 2 3
5: 1 2 3 5: 1 2 4

The 4-cycles of S, (resp. S'), are (1,3,4,5), (2,3,4,5), (resp. (1,2,3,5),
(1,4,3,5), (2,3,5,4)).

The diamonds of S are 1 — (2,3,4) and (1,4,5) — 2, but there is no dia-
mond in §'.
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From this pair, by dilatation, we can obtain an infinite class of pairs of
decomposable non-isomorphic tournaments with the same score vector and
satisfying the same conclusion as the initial pair.

It is well-known that every subtournament with 4 vertices, of a tourna-
ment is either a diamond, a 4-chain, or a 4-cycle subtournament.
For a tournament T, let ¢4(T"), 6(T), 61(T), 6 (T), e4(T) be the numbers
of 4-cycles, diamonds, positive diamonds, negative diamonds, and 4-chains,
respectively. In [8], the relationship between theses numbers is given by the
following result.

Proposition 1.2 (/8]) Let T be a tournament with score vector (81,82, ,8n)
then:

1) e4(T) = (3) - 6(T) ~ ea(T).

2) ea(T) =35, (3) —6* (1) = L0, (*757") =87 (D).

8) ea(T) = (3) = 6~(T) - Tiey (3) = () — (D) - Zie, (757%)-

Proof. 1) Every subtournament with 4 vertices of T is either a diamond,
or a 4-chain, or a 4-cycle subtournament. So if A is a 4-element set of
vertices of T' which forms neither a diamond nor a chain, then A forms a
4-cycle of T and only one.

2) From 1), (3) = ca(T) + ea(T) + 6+(T) + 6~ (T). We have Y"1, (¥) =
(3) = 67(T) — ca(T). Then the first equality of 2) follows. To conclude it is
sufficient to consider the tournament obtained from T by reversing all its
arcs.

3) follows from 1) and 2). o

Proposition 1.3 (/8]) Let T and T’ be two tournaments with the same
score vector. If f(T) = f(T') for some f € {6F,67,cq,e4}, then g(T) =
g(TI) fOT allge {6+,6_,C4, 64}’

Proof. It follows from 2) and 3) of Proposition 1.2. o

As a consequence of Propositions 1.1 and 1.3 we have:

Proposition 1.4 Let T and T’ be two tournaments with the same score
vector. If f(T) = f(T') for some f € {6%,67,cs,es}, then T and T'
have the same numbers of 3-cycles, 3-chains, 4-cycles, 4-chains, 4-cycles
subtournaments, positive diamonds and negative diamonds.

2 Introduction

W. Kocay [6] gave a list of all families of pairwise non-isomorphic tourna-
ments of size 9, having the same number of 3-cycles and the same number
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of positive (resp. negative) diamonds. In this list, each family has only two
elements, except one with three elements. We remark that the tournaments
of these families have the same score vector, and they are 4-similar. This
list motivated our paper. Ulam’s Reconstruction Conjecture [10] (see [1]),
applied to tournaments, states that: “given two tournaments T and 7" with
the same set V of vertices, if for every z € V, T(V\ {z}) ~ T"(V\{z}), then
T ~T'. This hypothesis implies that 7" and T" have the same score vector
(F. Harary and E. Palmer [3]); furthermore, for every tournament H, the
number of subtournaments of T isomorphic to H is equal to the number
of subtournaments of T” isomorphic to H (Kelly’s Lemma [5]). Hence T
and T' are k-similar for every k. P.K. Stockmeyer [9] gave an infinite fam-
ily of pairs T, T’ of non-isomorphic tournaments of size 2P + 29 satisfying
Ulam’s hypothesis. Note that T" and T’ are k-similar and non-isomorphic.
A stronger condition than 4-similarity was studied by Y. Boudabbous [2]:
let T and T” be two indecomposable tournaments on the same vertex set V
satisfying T;x =~ Ty for every k-element subset X of V, where k € {2,3,4};
then T >~ T". From Kocay’s list, one can easily obtain by dilatation an infi-
nite family of pairs of 4-similar tournaments of arbitrary size n > 9, which
are non-isomorphic.

We give another infinite family of pairs of 4-similar tournaments of arbitrary
sizem > 8, m # 3 (mod 4) which are indecomposable and non-isomorphic.
We also construct an infinite class of pairs {T',T'} of decomposable non-
isomorphic 4-similar tournaments T' and T, each one with a unique non
trivial interval, in fact these non trivial intervals are of size 2. Finally
we show that indecomposability is not preserved under the 4-similarity by
constructing an infinite class of pairs {T',T"} of 4-similar tournaments with
T indecomposable, T' decomposable with a unique non trivial interval,
in fact this interval is of size 2. Nevertheless, under Ulam’s hypothesis,
indecomposability is preserved, as has been shown by P. Ille [4].

3 Pairs of 4-similar, decomposable,
non-isomorphic tournaments

Theorem 3.1 For every integer m > 7, there are two decomposable, non-
isomorphic, 4-similar tournaments of size m, such that each has a unique
non trivial interval, where these intervals are of size 2; moreover they have
the same diamonds.

Proof.

Description of tournaments. Let m > 6 be an integer, we set n := m—4.
Let T be the tournament with vertex set V := {a,b,¢,d,1,2,--- ,n} and
such that @ — b — ¢ — d — a is a cycle denoted A; C = {1,2,--- ,n} is
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a chain with { — j iff i < j. Moreover ¢ — a; d — b; N*(i) = {a,d,j :
JEC, i<j}ifiisodd; N*(i)={b,c,j : j€C, i <j}ifiiseven The
tournament T” is defined from T by reversing the directions of the arcs of
the cycle A which becomes a cycle A’ in T'. We denote by I' the set of
vertices of A. Note that T and 7’ have the same score vector.

a b

The chain 1,2,...,6 is oriented from left to right.
Arcs (c,3), (d,b), (x,i) with x=a,b,c,d and i=1,2,...,6 are not represented.

Uniqueness and Interval size. Assume m > 7. The tournament T is
decomposable since {a,d} is a non trivial interval of T'; and T" is decom-
posable since {b,c} is a non trivial interval of 7. We shall prove that T
and T” each have exactly one non trivial interval. Let I be an interval of
T or T’ having at least two elements z,y.

Case 1. z,y € C.

If 2,y do not have the same parity, then every element of I' separates z
and y, thus I' C I. But every element of C separates a and b, hence C C I,
thus I =V.

If z,y have the same parity, w.l.o.g. £ — y, so that z —  + 1 — y, hence
z + 1 € I, thus we conclude as above.

Case 2. z,yeT.

Case 2.1. z = a and y € {b,c}. Every z € C separates a and y, so that
C C I, thus we are in case 1.

Case 2.2. z=a and y=d.

InT',d — b— a, so that b € I. Then we are in case 2.1. In T we shall
prove at the end that I = {a,d} or I =V.

Case 23. z=band y=c.

InT,c— a — b, so that a € I. Then we are in case 2.1. In 7" we shall
prove at the end that I = {b,c} or I=V.

Case 2.4. £ = b and y = d. Then a € I because ¢ separates b and d. Thus
we are in case 2.1.

Case 2.5. = c and y = d. Every z € C separates c and d so that C C 1.
Thus we are in case 1.

Case3. zeCandyeT.
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Case 3.1. z is odd.

If y = a, then if z = 1, 3 separates z and y, so that 3 € I. If z # 1, then 2
separates z and y, so that 2 € I. In both cases we are in case 1.

Ify=c, thenif z = 1, 2 separates z and y, then 2 € I. If £ # 1, then 1
separates = and y, so that 1 € I. In both cases we are in case 1.

If y = b (resp. y = d), then d (resp. b) separates = and y, so that d € I
(resp. b € I). Then we are in case 2.

Case 3.2. z is even.

If y € {b,c}, then x — 1 separates = and y, so that z — 1 € I. Then we are
in case 1.

If y € {a,d}, then for £ = 2, 3 separates z and y, so that 3 € I; for z > 2,
2 separates = and y, so that 2 € I. In both cases we are in case 1.

Now we can complete Cases 2.2 and 2.3 using, in each one, Cases 2.1 and 3.

Non-isomorphism. Assume m > 6. We shall prove that T and 7" are
non-isomorphic by induction on n.

If n = 2, the score of a, b and 2 is 2 in both T and 7, the score of ¢,
d and 1 is 3 in both T and 7. By contradiction assume that T and 7’
are isomorphic then the set {a,b, 2} is globaly invariant. But Ti{ap2) is 2
chain, however T}, , ,, is a cycle, that gives a contradiction. Let n > 3. By
contradiction assume that f is an isomorphism from T onto 7". If n = 3,
a and n are the unique vertices having the minimal score, and since n — a
in both T and T’ we have f(e) = a and f(n) = n. If n > 3, since n is
the unique vertex having the minimal score in T and 7" then f(n) = n.
Then in both cases f(n) = n. Let S and S’ be respectively the tourna-
ments obtained from T and 7" by deleting the vertex n. Then S and §’
are isomorphic. This contradicts the induction hypothesis.

Diamonds. Assume that m > 6. We claim that T and 7" have the same
diamonds. For it is sufficient to prove that every diamond of T or 7" does
not contain any arc of A in T, or any arc of A’ in T”. In fact we shall prove
that every diamond of T or T” has at most one vertex in common with T'.
Let A be a diamond of T or T and « be the principal vertex of A.

Fact 1. {a,b} is not an arc of the 3-cycle of A. Assume the contrary and
suppose that {a,b,7} is the 3-cycle of A, so A = {a,b,7,a}. We have
b—2k+1— aand a — 2k — b, for every k, in both 7" and 7”. Then
a¢ C,so € {cd}.

In T, since b — ¢ — a, then a = d. Since d — a then d — =, so v = 2p for
some p, which contradicts {a, b, v} is a cycle.

In T', since @ — d — b, then & = ¢. From ¢ — a, we have ¢ — 9, so
v = 2p+ 1 for some p, which contradicts {a,b,v} is a cycle.

Fact 1. {c,d} is not an arc of the 3-cycle of A. Assume the contrary and
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suppose that {c, d,~} is the 3-cycle of A, so that A = {c,d, v, a}. We have
c—~>2k+1—dand d— 2k — c for every k, in both T and T’. Then
a¢C,s0 o€ {a,b}. InT, sinced — b — ¢, then o = a. From d — a, we
get v — a, 50 v = 2p + 1 for some p, which contradicts {c,d,~} is a cycle.
InT', sincec—~a—+dthena=b. Fromc—bwegety— b soy=2p
for some p, which contradicts {c, d,~v} is a 3-cycle.

Fact 2. {b,c} is not an arc of the 3-cycle of A. Assume the contrary and
suppose that {b,c,v} is the 3-cycle of A. Then v ¢ C because all vertices of
C dominates b and ¢ or is dominated by b and ¢. In T” there is no solution
for 4. In T, v € {a,d}, every vertex of C separates a and b, and separates
d and c, so that « ¢ C, so « € I, thus A =T": That is impossible.

Fact 2. {a,d} is not an arc of the 3-cycle of A. Assume the contrary and
suppose that {a,d,~} is the 3-cycle of A, then v ¢ C because all vertices
of C dominates a and d or is dominated by a and d. Then no solution for
inT. In T, v € {b,c}; every vertex of C separates b and d, and separates
c and a, then a ¢ C, so a € I, thus A =I: Again this is impossible.

Fact 3. {b,d} is not an arc of the 3-cycle of A. Assume the contrary and
suppose that {b,d,~} is the 3-cycle of A. Then a ¢ {a,c} because a and
¢ separate b and d in both T and 7”. Then a € C, which contradicts the
fact that « is the principal vertex of A.

Fact 3. {a,c} is not an arc of the 3-cycle of A. Assume the contrary and
suppose that {a,c,~} is the 3-cycle of A. Then a ¢ {b,d} because b and
d separate a and ¢ in both T and T'. Then a € C, which contradicts the
fact that « is the principal vertex of A.

In conclusion, let {u, v, w} be the 3-cycle of A in T or T”. Then {u,v,w}
has at most one vertex in I'. Since {u,v,w} € C, then {u, v, w} has exactly
one vertex in I'. Let u be this vertex, so v,w € C. Then necessarily v and w
have different parities. Since a does not separate v and w, we have a ¢ T.
Consequently, A has only one vertex in common with I', and thus A is the
same in T and T".

Therefore the tournaments T and T have the same diamonds and by Propo-
sition 1.4, they are 4-similar. o

-4  Pairs of 4-similar tournaments of another
kind.

Theorem 4.1 For every integer n > 2, there are two 4-similar tourne-
ments of size 4n + 2, one indecomposable, the other decomposable with a
unique non trivial interval, where this interval is of size 2.
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Proof.
Description of tournaments. Given two integers n > 2 and p > 2, let
T,p be the tournament with vertex set:

— PN /
V.= {aibic:d$1:2a"' y Ty U1, U2y " * -y Un—1,1,2,--- 1 PaUL U, ’u(p—l)'}

and such thata —» b — ¢ — d — aisa cycle denoted A; C := {1,u;,2,uz,-++ ,n—
l,up-1,n}isachainwithl »u; =2 - uy—--- > n-1>u,_; »n
and the arcs obtained by transitivity; the other arcs are ¢ — a; d — b;
i—ae,b—ic—id—iforie{l,23... ,n—l,n}, {a,b,c,d} — u;
for i € {1,2,3,--- ,n—1}; €' := {1, u1,2",up,--- ,(p - 1), u(p_l)r,p'}
is a chain with 1’ — 4y — 2/ — uy -»m—»(p—l) —ru(p 1):-—>p
and the arcs obtained by tra.nmtmty, the other arcs are i’ — ¢, a — 7,
b—i,d—fori e {1,2,%,--,-1),p}; {a,b,c,d} = uy for
e{12,%,---,p-1)}% andz:—»y forallze CandyeC'.

The tournament T}, ,, is defined from T, , by reversing the directions of the
arcs of the cycle A which becomes a cycle A’ in T}, ,. We denote by I' the
set of vertices of A. Note that Ty, and Ty, , have the same score vector.

d c
T2
The chain 1,up, 2, I, up», 2" is oriented from loft o right.
Arcs (c,8), (d,b), (x,y) with x=a,b,c,d and y in the chain above are not represented.

Intervals. The tournament T, , is decomposable since {1, b} is a non triv-
ial interval. We shall prove that T, , is indecomposable and {1,b} is the
unique non trivial interval of T}, ,. Let I be an interval of T, , or T, ,
having at least two elements z,y.

Case l. z,y €.

Case 1.1. z=aand y = b.

In T, p, c € I because b — ¢ — a. Since ¢ —» d — a, then d € I, thus
rcir.

In T, ,, d € Ibecause a — d — b. Since d — ¢ — b, then ¢ € I, thus
rcir.

The elements of {1,2,---,n} separate a and b, so that {1,2,--- ,n} C I.
The elements of {1/,2', ... ,p’} separate @ and ¢, hence {1/,2/,--- ,p'} C I.
For every z € {1,2,--- ,n-1}U{1,2,--- ,(p-1)}, z s u, >z +1, 50
that u, € I, and thus CUC’ C I. Consequently I = V.
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Case 1.2. £ = a and y = ¢. Then b € I because b separates a and c. Then
we are in case 1.1.

Case 1.3. c=aand y=d.

In T, p, 1€ Ibecaused —+1— a. Now b€ I becaused—b—1. In T}, ,,
b € I because b separates a and d. In both cases b € I, then we are in case
1.1.

Casel4. z=bandy=c.

InT,p,a€Ibecausec —a—b. InT, ,, b— 1" —c s0that 1’ € I. Now
c—a — 1, hence a € I. In both cases a € I, so that we are in case 1.1.
Case 1.5. z =b and y = d. Then a € I because ¢ separates b and d. Then
we are in case 1.1.

Case 1.6. z=cand y =d. In T}, p, d = b — ¢, so that b € I. Then we are
in case 1.4. :

InT, ,, c— a— d, so that a € I. Then we are in case 1.2.

Case 2. z,y € C.

Case 2.1. If z € {1,2,--- ,n} and y = u; for some j, then a separates z
and y, so that a € I. In T,, p, b separates z and @, so that b€ I;in T}, ,, d
separates = and a, hence d € I. In both cases we are in case 1.

Case 2.2. If z,y € {1,2,--- ,n}, wlog. z — y, then z — u; — y, thus
uz € I. Then we are in case 2.1.

Case2.3. Ifz=u;and y=u; withi < jthenz - i+1 - y,s0i+1€l.
Then we are in case 2.1.

Case 3. z,y € C'.

Case 3.1. If z € {1',2',--- ,p'} and y = u;-.

z — ¢ — y, 50 that ¢ € I. Also ¢ — a — z, so that @ € I. Then we are in
case 1.

Case 3.2. fz,y € {1',2',--- ,p'}, wlog. z — y, so that z — u; — y,
thus u, € I. Then we are in case 3.1.

Case 3.3. If z = uy and y = uj» with ¢’ < j' then z — (i + 1) — y, hence
(i+ 1)’ € I. Then we are in case 3.1.

Case4. z€Cand ye C'.

Case 4.1. If £ # n, then £ — n — y, so that n € I, thus we are in case 2.
Case 4.2. f z = n and y = k' with ¥’ € {1,2/,---,p}, then g, c separate
z and y. Thus a,c € I, so that we are in case 1.

Case 4.3. fz = n and y = u with ¥’ € {1',2,---,(p — 1)’}, then
z — 1’ — gy, so that 1’ € I. Then we are in case 3.

Case 5. z€eCandy el

Case 5.1. z € {1,2,--- ,n} and y = a.

InThp,a—+b—oz,s0thatbe€l. InTy, ,a—>d—z,s0thatde . In
both cases, we are in case 1.

Case 5.2. z € {1,2,--- ,n}andy="b.

In T}, 5, z — @ — b, so that a € I. Thus we are in case 1.

If z # 1 then 1 separates z and b, so that 1 € I. Thus, by case 2, I = {1,b}
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orl=V.

Case 5.3. z € {1,2,--- ,n}and y=c.

InT,p,c—+d—z,50thatd€ . In T}, ,, ¢ — b — x, 50 that b € I. Then
we are in case 1.

Case 5.4. z € {1,2,--- ,n} and y = d.

d — b — z, s0 that b € I. Then we are in case 1.

Case 5.5. z = u; and y = a.

InTn,p,a—»b—*ut,sothatbeI InT,,,a—d—u,sothatdeI. In
both cases, we are in case 1.

Case 5.6. z=1u; and y = b.

InT,p b—c— u,s0that c€ I. InT,,,b—a—u,sothatael. In
both cases, we are in case 1.

Case 5.7. z=usand y =c.

¢ — a — U, so that @ € I. Then we are in case 1.

Case 5.8. £ = u; and y =d.

d — b — uy, so that b € I. Then we are in case 1.

Case 6. z€ C' and yeT.

Yy — u1 — T, so that u; € I. Thus we are in case 5.

Diamonds. We claim that T, , and Ty, ,, have the same number of positive
diamonds.

The tournaments T}, , and T, ,, have the same diamonds containing no arc
of Ain T, 5, and no arc of A’ in T’ . We only list the positive diamonds of
Ty,n (resp. positive diamonds of T, ,,) with at least one arc of A (resp. A’);
such diamonds have at most two vertices %, j in C U C’. Note that, in Tan
(resp T, ), there is no diamond with at least one arc of A (resp. A’) hav-
inga cycle of the form (z, y, z) with {z,y} = {a,c} or {b,d}, and z € CUC".

The 3-cycles of T, , having at least one vertex of I", except those of the
form (z,y, z) with {z,y} = {a,c} or {b,d} and 2 € CUC’, are:

(a,b,0), (a,b,i) for every i € {1,2,---,n}, (b,c,d), (c,d,i') for every ¢ €
{1,2,...,n'}, (a,u,j) for i < j in {1,2,--- ,n}, (¢, z,i') with € C and
¢ e{l,2,--- 7'}, (quw,j') for i < j in {1,2,--- ,n'}.

The 3-cycles of T, ,, having at least one vertex of I, except those of the
form (z,y, z) with {a:, y} = {a, c} or {b, d} and z € CUC', are:

(b,a, d), (c,b,7") for every i’ € {1’ 2, ,n}, (d,¢,a), (a,d,?) with i €
{1 2,--- ,n}, (@,u4,7) for i < j in {1, 2 -,n}, (¢,z,%') with z € C and
i e{l’ 2,---,0'}, (e, up,5’) with @ < 7’ in {1,2',--- | n'}.

Positive diamonds of T, ,, with at least one arc of A, are:

d(a,b,i) for i € {1,2,--- ,n},
d(a,us, §) fori < j in {1,2,--- ,n},
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b(c,z,i') with z € C and ¢’ € {1",2',--- ,n'},
blc,uw,j') for ¢ < j' in {1/,2',... | n'}.

Positive diamonds of T}, ,,, with at least one arc of A’, are:
d(c,b,#') for i’ € {1/,2',--- ,n'},

b(aaui,j) fori< .7 in {ls 2a tee yn}a

d(c,z,#) with z € C and # € {1,2',--- ,n'},

d(c,ui,§') with &' < §' in {1,2',--- ,n'}.

Clearly, T, and T}, ,, have the same number of positive diamonds, and by
Proposition 1.4, they are 4-similar. ]

5 Pairs of 4-similar, indecomposable,
non-isomorphic tournaments

Theorem 5.1 For every integer m 2> 8, m # 3 (mod 4), there are two
indecomposable, non-isomorphic, tournaments T and T' of size m which
are 4-similar.

Proof.

Description The following pair {T, T"} of tournaments (see W. Kocay [6])
are indecomposable, have the same score vector, and the same number of
positive (resp. negative) diamonds; the vertices are 1,2,--- ,9.

Tournament T : ournament T :
x: vertices dominated by x z: vertices dominated by 3
1: 7 8 1: 7 8
2: 1 3 6 9 2: 16 79
3: 15 89 3: 1259
4: 1 2 3 8 4: 1 2 3 8
5: 1 2 4 7 5: 1 2 4 7
6: 1 3 4 5 6: 1 3 45
7: 2 3 4 6 7: 3 4 6 8
8: 2 5 6 7 8: 2 3 5 6
9: 1 4 5 6 7 8 9: 1 4 5 6 7 8

Tournaments T and T' are respectively isomorphic to the tournaments
Ts and Ty introduced below. In fact this pair {T,T"} led us to construct
the following class of tournaments T,,.

Given an integer n > 4, let T,, be the tournament with vertex set
V = {a,b,¢,d,1,2,--- ,n} such that a - b — ¢ — d — a is a cycle
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denoted A; C := {1,2,--.,,n} is a chain with ¢ — j iff # < j. Moreover
c—a;d— b N*(i)={c,d,j : j€C,i<j}lifi=1(mod4); N*(i) =
{b,j : j€C, i<j}ifi=2 (mod4); N*(i)={a,d,j : j€C, i<j}if
i =3 (mod 4); N*(i) = {a,b,c,j : j€C, i<j}ifi=0 (mod4).

The tournament T, is formed from T;, by reversing the directions of the
arcs of the cycle A which becomes a cycle A’ in T},. We denote by I the
set of vertices of A. Note that T}, and T}, have the same score vector.

b

a

[
>

d < c
Ts
The chain 1,2,...,5is oriented from left to right.
Arcs (c,8), (d,b), (x,i) with x=a,b,c.d and i=1,2,...,5 are not represented.

Non-isomorphism. We show that T,, and T, are non-isomorphic by in-
duction on n > 4.

Case 1. If n = 4, we have s(a) = s(b) = 38(2) = 3(3) = s(4) = 3,
s(c) = s(d) = 4, s(1) = 5. Suppose that there is an isomorphism f from
T4 onto T, then f(1) =1, f(c) = d and f(d) = c. Since f(1) = 1 and
{a,b} — 1, then {f(a), f(b)} — 1, s0 f(a), f(b) € {a,b}; thus f(a) = b and
f(b) = a. Now f({2’314}) = {2’3’4}’ 80 f(2) =2, f(3) =3, f(4) =4
Thus, as 3 — d, then 3 — ¢; contradiction.

Now let n > 4, and suppose there is an isomorphism f from T,, onto T},.
We have:

If n =1 (mod 4) or n = 3 (mod 4), s(n) = 2, then s(n) # s(z) for all
T #n.

If n = 2 (mod 4), s(n) = 1, then s(n) # s(z) for all z # n.

If n = 0 (mod 4), s(n) = s(n —1) = s(n - 2) = 3, and s(z) > 3 for
z¢{n—-2,n—1,n}. Then f(i) =ifori€ {n—-2,n—1,n}.

In all these cases, f(n) = n. Then there is an isomorphism between the
tournaments obtained from T, and T}, by deleting the vertex n. That gives
a contradiction since these tournaments are respectively T,-, and T},_,
which are non-isomorphic by the induction hypothesis.

Indecomposability. Given an integer n > 4, we shall prove that T, and

T;, are indecomposable. Let I be an interval of T;, or T}, having at least
two elements z, y.
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Case 1. z,y €T.

Case1.l. z=aand y=b.

InT, c € I because b — ¢ — a. Since ¢ — d — a, we have d € I, so that
rcir.

InT’, d € T because a — d — b. Since d — ¢ — b, we have ¢ € I, so that
TcCl.

Each z € C separates at least two elements of I', so that C C I. Conse-
quently I = V.

Case 1.2. £ = and y = ¢. Then b € I because b separates a and c.
Case 1.3. c=aand y=d.

1€ 1 because g — 1 — d. Now b € I becaused — b — 1.

Case14. z=band y=c.

InT,a € Ibecausec —a—b InT, b—-»l—»c,sothatlel Now
¢ — a — 1, so that ¢ € I. Then in both cases @ € I.

Case 1.5. z ="b and y = d. Then a € I because a separates b and d.

In cases 1.2. to 1.5, we conclude using case 1.1.

Case 1.6. c=candy=d. InT,d — b — c, so that b € I. Thus we are in
case 1.4.

In TV, ¢ = a — d, so that @ € I. Thus we are in case 1.2.

Case 2. z,y € C. We can assume = < y. Thus £ + 1 € I. There are at
least two elements of I' which separate z and z + 1. Then we are in case 1.
Case3. z€Candy€eT.

Case 3.1. £ =1 (mod 4) and y = a.

T — ¢ — a, so that ¢ € I. Then we are in case 1.

Case 3.2. z #1 (mod 4) and y = a.

a — 1 — z, so that 1 € I. Then we are in case 2.

Case 3.3. z=1 (mod 4) and y = b.

x — d — b, so that d € I. Then we are in case 1.

Case 3.4. z £ 1 (mod 4) and y = b.

b— 1— z, so that 1 € I. Then we are in case 2.

Case 3.5. =1 (mod 4) or £ = 2 (mod 4), and y = c.

¢ — a — 1, so that a € I. Then we are in case 1.

Case 3.6. =3 (mod 4) or z =0 (mod 4), and y =c.
c—z—1—z,s0 that z — 1 € I. Then we are in case 2.

Case 3.7. z =1 (mod 4) or z = 3 (mod 4), and y = d.

d — b — z, so that b € I. Then we are in case 1.

Case 3.8. £ =2 (mod 4) with 2 # 2 or £ =0 (mod 4), and y = d.

d — 2 — z, so that 2 € I. Then we are in case 2.

Case 3.9. =2 and y =d.

2 — 3 — d, so that 3 € I. Then we are in case 2.

Cycles. The tournaments T}, and T}, have the same 4-cycles without any
arc of A in T,,, or any arc of A’ in T,. We have only to list the 4-cycles
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of T, (resp. 4-cycles of T},) with at least one arc of A (resp. A’). In what
follows 0 <1< k.

The 4-cycles of T;,, with at least one arc of A, are: (e,b,¢,d), (a,b,c,4k +
3)a (a’ b’4k +1, C), (as b’4k + 1: d)v (aa b:4k + 3’ d)7 (0,, ba4l + 1’ dk + 3):
(a,b,4! + 1,4k + 4), (a,b,4! + 3,4k + 4), (a,b,4! + 3,4k + 7), (b, ¢, 0,4k +
2), (b,c,d,4k + 2), (b,c,d, 4k + 4), (b,c,4k + 3,d), (b,c, 4l + 2,4k + 4),
(b,c,4l + 2,4k +6), (b,c, 41+ 3,4k +4), (b,c, 41+ 3,4k +6), (¢, d, a, 4k +1),
(c,d,b,4k +1), (c,d, 4l +2,4k +4), (c,d, 4! +2,4k +5), (c, d, 4l +4, 4k +5),
(c,d,41+4,4k+8), (d, a,41+1,4k+3), (d, a,41+1, 4k+5), (d, a, 41+2, 4k+3),
(d,a,4l + 2,4k +5).

The 4-cycles of T}, with at least one arc of A’, are: (b,a,d,c), (b,a,d,4k +
2), (b,a,d,4k + 4), (b,a,4k + 1,¢), (b,a,4k + 1,d), (b,a,4l + 1,4k + 2),
(b,a,41+1,4k+4), (b,a,41+2,4k +6), (b,a,4l + 2,4k +4), (a,d, b, 4k +3),
(a,d,c,4k + 3), (a,d, 4l + 2,4k + 3), (a,d, 4! + 2,4k + 4), (a,d, 4k + 4,¢),
(a,d, 4l + 4,4k +7), (a,d, 4l + 4,4k + 8), (d,c,a,4k + 1), (d, c, b,4k + 1),
(d,c,b,4k+3), (d,c,41+2,4k +3), (d,c, 41 +2,4k +5), (d,c, 4l + 3,4k +5),
(d, ¢, 41+3,4k+7), (c,b, 4l+1,4k+4), (c, b, 41+1, 4k+5), (c, b, 4i+3, 4k+4),
(c,b,41 + 3,4k +5).

Case 1. m = 0 (mod 4) ie. n = 4p. We have ci(T;,) = c4(T.) =
8p% 4+ 10p + 1.

Case 2. m =1 (mod 4) i.e. n =4dp+ 1. We have ci(T,,) = cu(T%) =
8p? +14p+ 5.

Case 3. m = 2 (mod 4) i.e. n = 4p+ 2. We have ¢y(T;,) = (7)) =
8p% +16p+7.

Case 4. m = 3 (mod 4) i.e. n =4p+ 3. We have ¢4(T;,) = 8p> + 20p + 13
and c4(T}) = 8p? + 20p + 12.

Remark. Thus, if n # 3 (mod 4), the tournaments T, and T}, have the
same number of 4-cycles. Then by Proposition 1.4, they are 4-similar. Note
that if n = 3 (mod 4), ca(T) # ca(Tn)- o
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