THE CUBIC CONGRUENCE z° + az? + bz + ¢ = 0(mod p) AND
BINARY QUADRATIC FORMS F(z,y) = az® + bzy + cy?
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ABSTRACT. Let F(z,y) = ax? + bzy + cy? be a binary quadratic form
of discriminant A = b2 - dac for a,b,c € Z, let p be a prime number
and let Fp be a finite field. In this paper we formulate the number of
integer solutions of cubic congruence z° + ax? + bz + ¢ = 0 (mod p) over
Fp for two specific binary quadratic forms Fff(z,y) = 22 + kzy + ky? and
F§(z,y) = kz? + kzy + k2y? for integer k such that 1 < k < 9. Later we
consider representation of primes by F¥ and Fk.
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1. INTRODUCTION.

In 1886, Voronoi [19] presented his algorithm for computing a system of
fundamental units of a cubic number field. His technique, described in terms of
binary quadratic forms. A real binary quadratic form F is a polynomial in two
variables z and y of the type F = F(z,y) = ax?+bzy+cy? with real coefficients
a,b,c. The discriminant of F is defined by the formula 52 — dac and is denoted
by A = A(F). F is an integral form if and only if @,b,¢ € Z, and is indefinite
if and only if A(F) > 0 (for further details on binary quadratic forms see
[2,4,10])). Later his technique was restarted in the language of multiplicative
lattices by Delone and Faddeev [7]. In 1985, Buchmann (3] generalized the
Voronoi’s algorithm.

Recall that a cubic congruence over a field Fy, is
(1.1) L rur vz +w = O(mod p),

where u,v,w € F, and p is prime. Solutions of cubic congruence (including
cubic residues) was considered by many authors. Dietmann (8] consider the
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small solutions of additive cubic congruences. Manin [13] consider the cubic
congruence on prime modules. Mordell [14,15] consider the cubic congruence
in three variables and also the congruence az® + by® + ¢z® + dzyz = n(mod p).

Williams and Zarnke [20] give some algorithms for solving the cubic congruence
on prime modules.

Let H(A) denote the group of classes of primitive, integral binary qua-
dratic forms F(z,y) = az® + bzy + cy® of discriminant A. Let K be a
quadratic field Q(vA), let L be the splitting field of z° + az? + bz + c, let
fo = fo(L/K) be the part of the conductor of the extension L/K and let
f be a positive integer with fo|f. In [18], Spearman and Williams consider
the cubic congruence z® + az? + bz + ¢ = O(modp) and binary quadratic
forms F(z,y) = az? + bzy + cy®>. They proved that the cubic congruence
z3 + az® + br + ¢ = 0(mod p) has three solutions if and only if p is represented
by a quadratic form F in J, where J = J(L, K, F) is a subgroup of index 3 in
H(A(K)f?).

2. THE CUBIC CONGRUENCE z2 + az? + bz + ¢ = 0(modp) AND
F(z,y) = az? + bzy + cy>.

Let p be a prime number, F,, be a finite field and let Q, denote the set of
quadratic residues in F,. In this paper, we consider the solutions of the cubic

congruence z° + az? + bz + ¢ = 0(mod p) for given any binary quadratic form
F(z,y) = az? + bzy + c?.

Let & be a positive integer such that 1 <k <9 and let
(2.1) Ff(z,y) = 2* + kzy + ky?
be a binary quadratic form. Then the corresponding cubic congruence over F,
is
(2:2) Ct : 2% + 22 4 kx + k = 0 (modp).
Set

#CF¥(Fp) = {z €Fp: 23 +2® + kz + k =0 (modp) } .
Then we have the following theorem.

Theorem 2.1. Let C} be a cubic congruence over Fp.

(1) If p=1(mod4), then #C}(F,) = 3, if p=3(mod 4), then #C}(F,) =
1

(2) Ij"p = 1,3(mod 8), then #C}(F,) = 3, if p= 5, 7(mod 8), then #C3(F,)
=1.
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(3) If p =1,7(mod 12), then #C3(Fp) = 3 and if p = 5,11(mod 12), then
#C}(Fp) = 1. k

(4) If p =5, then #C}(Fs) = 2, if p = 1,5(mod 12), then #C{(F,) = 3
and if p = 7,11(mod 12), then #C{(F,) = 1.

(5) Ifp = 1,3,7,9(mod 20), then #C5(F,) = 3, if p = 11,13, 17, 19(mod 20),
then #C}(Fp) = 1.

(6) If p = 7, then #C¥(F7) = 2, if p = 1,5,7, 11,25,29, 31, 35(mod 48),
then #C%(F,) = 3 and if p = 13,17, 19,23, 37, 41, 43, 47(mod 48), then
H#CS(F,) =1.

(7) Ifp=1,9,11,15,23,25(mod 28), then #CI(F,) = 3, if p = 3,5, 13,17,
19,27(mod 28), then #C](Fp) = 1.

(8) Ifp=1,11,17,19,25,35,41,43(mod 48), then #C3(F,) = 3, if p = 5,
7,13,23,29,31,37,47(mod 48), then #C3(F,) = 1.

(9) Ifp =25, then #CY(Fs) = 2, if p = 1,5,13,17(mod 24), then #C}(F,) =
3 and if p=7,11,19,23(mod 24), then #C}(F,) = 1.

Proof. Now consider the cubic congruence Cf : z® + 22 + kz + k = 0(mod p).
Then we have

CY i +a®+kz+k

0(modp)
& 3z +1)+k(z 4+ 1) = 0(mod p)
& (z+1)(z? + k) = 0(mod p).

(1) Let k = 1. Then we have C} : z23+z?+z+1 = 0(mod p) & z+1 = 0(mod p)
and z2 + 1 = O(modp). Hence z = —1 = p — 1 is a solution of Cl. Ifp=
1{mod 4), then the quadratic congruence z? + 1 = 0(mod p) « z2 = —1(mod p)
has two solutions since —1 € Q,,. Hence there are total three solutions of C}.
If p = 3(mod 4), then the quadratic congruence z2 4+ 1 = 0(mod p) & 22 = —
(mod p) has no solution since —1 ¢ @Q,. Hence there are total one solution of
Cj.

(2) Let &£ = 2. Then
C:r®+2?+22+2= 0(modp) <> (z + 1)(z? + 2) = O(mod p).

Hence z = —1 = p— 1 is a solution of Cy. If p = 1,3(mod 8), then the quadra-
tic congruence x? + 2 = 0(mod p) ¢ z2 = —2(mod p) has two solutions since
—2 € Qp. Hence there are total three solutions of C?. If p = 5, 7(mod 8), then
the quadratic congruence z2+2 = 0(mod p) < 2 = —2(mod p) has no solution
since ~2 ¢ Qp. Hence there are total one solution of C%.
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Now we only prove the special case, that is, the case #C¥ (Fp) = 2, because
the others can be proved as in the same way that (1) and (2) were proved since

(2.3) p=1,7mod12) & -3€Q,
p=5,11(mod12) & -3¢Q,

p=1,5(mod12) & -4€Q,

p=7,11(mod12) & -4¢Q,
r=13,7,9mod20) & -5€Q,
p=11.13,17,19(mod20) & -5¢Q,
p=1,5,7,11,25,29,31,35(mod 48) & —-6€Q,
p=13,17,19,23,37,41,43,47(mod48) & —6¢Q,
p=1,9,11,15,23,25(mod 28) & -T€Q,
p=3,5,13,17,19,27(mod 28) & -7¢Q,
p=1,11,17,19,25,35,41,43(mod 48) & —-8€Q,
p=5,7,13,23,29,31,37,47(mod 48) & -8¢Q,
p=1513,17(mod24) & -9€@Q,
p=7,11,19,23(mod 24) ¢ -9¢ Q,.

(4) Let p=5. Then
C}:2® + 22 + 4z + 4= 0(mod 5) & (z + 1)(z? + 4) = 0(mod 5).

Hence we get = = 4 from z 4+ 1 = 0(mod 5) and we get z = 1,4 from z2 + 4 =

0(mod 5). Therefore there are two integer solutions z = 1,4 of C{ over Fs, that
is, #C?(FS) =2.

(6) Let p=7. Then
C} : 23 + 2% 4+ 6z + 6 = 0(mod 7) & (z + 1)(z? + 6) = 0(mod 7).

Hence we get = = 6 from z + 1 = 0(mod 7) and we get = 1,6 from z2 + 6 =
0(mod 7). Therefore there are two integer solutions z = 1,6 of C? over F.

(9) Let p=5. Then
C? : 2% + 22 + 9z + 9 = 0(mod 5) ¢ (z + 1)(z% + 9) = 0(mod 5).
Hence we get z = 4 from z + 1 = 0(mod 5) and we get = = 1,4 from z2 4+ 9 =
0(mod 5). Therefore there are two integer solutions z = 1,4 of C{ over Fs. O
Let k be a positive integer such that 1 < k <9 and let
(2.4) F¥(z,y) = kz? + kzy + k*y®
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be a binary quadratic form. Then the corresponding cubic congruence is
(2.5) C% : 23 4 kz® + kz + k* = O(mod p)
over [Fy,. Set
#C5(Fp) = {z € Fp: 2° + k2? + kz + k* = O(mod p)} .
Then we have the following theorem.

Theorem 2.2. Let C§ be a cubic congruence over F,,.

(1) Ifp = 1(mod 4), then #C3(F;) = 3 and if p = 3(mod 4), then #C}(F,)

=1.

(2) If p = 1,3(mod8), then #C2(F,) = 3 and if p = 5,7(mod8), then
#C3(Fp) = 1.

(3) If p =1,7(mod 12), then #C3(Fp) = 3 and if p = 5,11(mod 12), then
#C3(Fp) = 1.

(4) If p =5, then #C3(Fs) = 2, if p = 1,5(mod 12), then #C§(F,) = 3
and if p = 7,11(mod 12), then #C3(Fp) = 1.

(5) Ifp=1,3,7,9(mod 20), then #C3(F,) = 3, ifp = 11,13, 17, 19(mod 20),
then #C3(F,) = 1.

(6) If p = 17, then #C5(F7) = 2, if p = 1,5,7,11,25,29, 31,35(mod 48),
then #C3(F,) = 3 and if p = 13,17, 19, 23,37, 41,43,47(mod 48), then
#C3(Fp) = 1.

(7) Ifp=1,9,11,15,23,25(mod 28), then #CJ(F,) = 3, if p = 3,5,13,17,
19,27(mod 28), then #CI(F,) = 1.

(8) If p = 1,11,17,19,25,35,41,43(mod 48), then #CS(F,) = 3 and if
p=5,7,13,23,29,31,37,47(mod 48), then #C§(F,) = 1.

(9) Ifp =5, then #C3(Fs) = 2, ifp = 1,5,13,17(mod 24), then #C3(F,) =
3 and if p = 7,11,19,23(mod 24), then #C3(F,) = 1.

Proof. Now consider the cubic congruence C5 : 23 + kz2 + kz + k? = 0(mod p).
Then we have

Cy:z®+ka? +kz+k = O(modp)
& z*(z+k) + k(z + k) = 0(mod p)
& (z+k)(z® + k) = 0(mod p).
Hence we have z = p — k and 22 + k = 0(modp) & z2 = —k(modp). So the
quadratic congruence 2 = —k(mod p) has two solutions if —k € Qp and has
no solution if —k ¢ Q,. We know from (2.3) that for which primes p, —k is a

quadratic residue and for which primes it is not. So we only prove the other
cases.
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(4) Let p=5. Then
C3 : 73+ 4z% + 4z + 16 = 0(mod 5) & (z + 4)(z? + 4) = 0(mod 5).

Hence we get = 1 from £ +4 = O(mod5) and we get z = 1,4 from 22 + 4 =
0(mod 5). Therefore there are two integer solutions = = 1,4 of C§ over Fs.

(6) Let p=7. Then
CS : % + 622 + 6z + 36 = O(mod 7) & (z + 6)(22 + 6) = O(mod 7).

Hence we get = = 1 from z + 6 = 0(mod 7) and we get z = 1,6 from z2 + 6 =
0(mod 7). Therefore there are two integer solutions = 1,6 of C§ over F.

(9) Let p = 5. Then
C? : 2% + 92° + 9z + 81 = O(mod 5) & (z + 9)(z? + 9) = O(mod 5).

Hence we get 2 = 1 from z + 9 = 0(mod 5) and we get = 1,4 from 22 + 9 =
0(mod 5). Therefore there are two integer solutions £ = 1,4 of C§ over Fs. O

3. REPRESENTATION OF PRIMES BY BINARY QUADRATIC FORMS.

Representation of integers (or primes) by binary quadratic forms has an
important role on the theory of numbers and many authors consider this prob-
lem [5,11,12,16,17). In fact, this problem intimately connected to reciprocity
laws [6). The major problem of the theory of quadratic forms was: Given a
form F, find all integers n that can be represented by F, that is, for which
F(z,y) = az? + bzy + cy® = n. This problem was studied for specific quadratic
forms by Fermat, and intensively investigated by Euler. Fermat considered the
representation of integers as sums of two squares. It was, however, Gauss in
the Disquisitiones who made the fundamental breakthrough and developed a
comprehensive and beautiful theory of binary quadratic forms. Most impor-
tant was his definition of the composition of two forms and his proof that the
(equivalence classes of) forms with a given discriminant A form a commuta-
tive group under this composition. The idea behind composition of forms is
simple. If forms F and G represent integers n and m, respectively, then their
composition F * G [10, p.149] should represent n.m. The implementation of
this idea is subtle and extremely difficult to describe [9]. Attempts to gain con-
ceptual insight into Gauss theory of composition of forms inspired the efforts
of some of the best mathematicians of the time, among them Dirichlet, Kum-
mer and Dedekind. The main ideal here was to extend the domain of higher
arithmetic and view the problem in a broader context. Note that the equation
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F(z,y) = az? + bzy + cy® = n can be rewritten as

F(z,y)

az? + bzy + cy?

(e (c =5,

a
= n

Therefore we have thus expressed the problem of representation of integers by
binary quadratic forms in terms of domain

R= {# 1y, vV E Z,usv(mod2)}.

So if we take a = a and b = ﬁ-%@, then we have

a2 + bay + cy® = ~(oz + By)(@s +By) = N(az + By),

where N denotes the norm. Thus to solve F(z,y) = m is to find z,y € Z such
that N(az + By) = m. Kummer noted in 1840 that the entire theory of binary
quadratic forms can be regarded as the theory of complex numbers of the form
r+yVA (1, p.585).

In this section we will consider the representation of primes by binary
quadratic forms Ff = (1,k,k) and F¥ = (k,k,k?) for 1 < k < 9.

Theorem 3.1. Let Ff(z,y) = 22 + kzy + ky®. Then

(1) Every prime number p = 1(mod 6) can be represented by F}.

(2) Every prime number p = 1,5(mod 8) can be represented by F2.

(3) Every prime number p = 1(mod 6) can be represented by F3.

(4) There is no prime number can be represented by Ff.

(5) Every prime number p = 1,5,9,11, 19(mod 20) can be represented by
Fp.

(6) Every prime number p = 1(mod 12) can be represented by F§.

(7) Every prime number p = 1,7, 25, 37(mod 42) can be represented by F.

(8) Every prime number p = 1,9(mod 16) can be represented by FP.

(9) Every prime number p = 1,19(mod 30) can be represented by FY.

Proof. (1) Let p be a prime number such that P = 1(mod6). Note that the
discriminant of Fi(z,y) = 22 + zy + 32 is -3, that is, A(Fl) = -3, and
also the class number for this discriminant is —1 (10, p.194]. Therefore every
prime number p = 1(mod 6) can be represented by F!. In other words, the
ring of integers in the field generated by a square root of —3 is a PID. Since
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primes p = 1(mod 3) split there, we have (p) = PP. Let P = z + yw, where
w? 4+ w+ 1 = 0. Then if we take norm, then we have the result. .

Now we only prove (4) since the others can be proved as in the same way
that (1) was proved. Let p be a arbitrary prime number. Then the Diophantine
equation

Fiz,y) =2 +4y+4° = (z +2y)> =p

has no solution (x,y) since p is prime. ()

Theorem 3.2. Let Ff(z,y) = kz? + kzy + k®y%. Then

(1) Every prime number p = 1(mod6) can be represented by F).

(2) There is no prime number can be represented by Fz.

(3) There is no prime number can be represented by Fs.

(4) There is no prime number can be represented by Fj.

(5) There is no prime number ezcept for p =5 can be represented by FJ.
(6) There is no prime number can be represented by F¥.

(7) There is no prime number except for p =7 can be represented by Fy.
(8) There is no prime number can be represented by Fs.

(9) There is no prime number can be represented by F.

Proof. (1) Let k = 1. Then F}(z,y) = 2% + zy + y* = F}(z,y) which is the
binary quadratic form in (1) of Theorem 3.1. Therefore every prime number
p = 1(mod 6) can be represented by Fj.

(2) Let &£ = 2 and let p can be represented by F7. Then the equation

Fi(z,y) = 22%4+2zy+4y°=p
& 222 +2zy+4y’-p=0

—y % /2p—Ty?
2

e neg=

has an integer solution (z,y). So 2p — 7y? must be a square. Let 2p — 7y? = 2
for a non zero integer ¢. Then

2+ Tyl

)
must be a prime. If t is odd and y is even or ¢ is even and y is odd, then
‘:—"'.‘,713 is rational, if ¢ and y both even or odd, then ‘2—"'-27”: is even. Therefore
in both cases £+_27u3 can not be a prime number, which is a contradiction.
Consequently, the equation F2(z,y) = 222 + 2zy + 4y = p has no integer
solution, that is, there is no prime p can be represented by FZ.
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(3) Let £ = 3 and let p can be represented by F3. Then the equation
F(z,y) = 3z%+3zy+ 9y’ =p
& 322+3zy+ 9% -p=0

- _ =3y+ \/12p — 99y2

T2

has an integer solution (z, ). So 12p—99y2 must be a square. Let 12p—99y2 =
t2. Then
12 + 992[2

T2
must be a prime. Note that ‘2—'*9235- is odd if t is an odd multiple of 3 and y is
odd, is even or odd if ¢ is an even multiple of 3 and y is even and is rational
otherwise. So if —"'92”— is even or rational, then it can not be a prime. We
know that —"592”— is odd if t is an odd multiple of 3 and y is odd or ¢ is an
even multiple of 3 and y is even. So if ¢ is an odd multiple of 3 and y is odd,
then z, 2 = '—3& = :!: is not an integer. If ¢ is an even multiple of 3 and
y is even, then ZTy2 = -_3g£ = 3¢ + £ is an integer but in this case ‘3+929”3
is not a prime. So in all cases there is no integer solutions, that is, there is no
prime p can be represented by Fj.

(4) Let k = 4 and let p can be represented by F. Then the equation
Fi(z,y) = 42®+4zy+16y2=p
& 4% +4zy+16y2 —p=0

-y p—15y°
2

has an integer solution (z,y). So p— 15y* must be a square. Let p— 152 = 2.
Then

S T2 =

p= t? + 15‘!12
must be a prime. If ¢t and y are both even or odd, then t2 + 1542 is even, and
if t is odd and y is even, or t is even and y is odd, then ¢ + 1542 is odd. If
t? + 152 is even, then it can not be a prime. If ¢2 + 15y is odd, then we
know that ¢ is odd and y is even or ¢ is even and y is odd. So in both cases

T12=F+ -;- is not an integer. Consequently, there is no integer solution of
Fi(z,y) = 422 + 4zy + 16y° = p.

(5) Let k = 5. First we show that 5 can be represented by F}. It is easily
seen that the equation

Fj(z,y) =5z® + 5zy + 25y = 5
has integer solutions (+1,0). Therefore 5 can be represented by F3}.
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Let p > 5 can be represented by Fs. Then the equation

F(z,y) = S5z°+5zy+25y°=p
& 5z24+5zy+259° -p=0

—5y & \/20p — 47557
& ma=—" 1?)p :

has an integer solution (z,y). So 20p — 475y® must be a square. Let 20p —
475y% =t2. Then

_ 244752

T2
must be a prime. Note that gﬁ-"—s‘ﬁ is odd if ¢ is an odd multiple of 5 and y
is odd, is even or odd if ¢ is an even multiple of 5 and y is even and is rational
otherwise. So if ﬁ”— is even or rational, then it can not be a prime. If
i"—"’”— is odd, then we know that ¢ is an odd multiple of 5 and y is odd or
t 1s an even multlple of 5 and y is even. If ¢ is an odd multiple of 5 and y is
odd, then u;_g_s_y_ is divisible by 5, and if ¢ is an even multiple of 5 and y is
even, then "'—4255”- is divisible by 5. So it both cases it can not be a prime.
Therefore the equation F3(z,y) = 522 + 5zy + 25y2 = p has no solution (z, y).

(6) Let k = 6 and let p can be represented by F$. Then the equation
F(z,y) = 6z>+6xy+36y°=p
& 6z2+6xy+36y°-p=0

o -3y £ /6p — 207y?
6

T12=
has an integer solution (z,y). So Let 6p — 207y? must be a square. Let 6p —
207y? = 2. Then

_ 42072
T 6

must be a prime. Note that ‘—2'"—%015’: is even if ¢ is an odd multiple of 3 and y
is odd or if ¢ is an even multiple of 3 and y is even and is rational otherwise.
In both cases it can not be a prime. Therefore the equation F$(z,y) = 622 +
6zy + 36y2 = p has no integer solution.

(7) Let k = 7. First we show that 7 can be represented by FJ. It is easily
seen that the equation

Fl(z,y) =T2% + Tzy + 49y% =7

has integer solutions (+1,0). Therefore 7 can be represented by Fj.
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Let p > 7 can be represented by Fj. Then the equation

Fi(z,y) = 7z2+Tzy+49%*=p
& T+ T7zy+49% —p=0

-Ty + /28p — 1323y?
& X2 = Y l: y

2

has an integer solution (z,y). So 28p — 1323y must be a square. Let 28p —
1323y = ¢t2. Then

_ 2413237

- 28
must be a prime. Note that ‘2—“9211 is odd if ¢ is an odd multiple of 7 and y
is odd, is even or odd if ¢ is an even multiple of 7 and y is even and is rational
otherwise. So if —“E"- is even or rational, then it can not be a prime. If
M is odd, then we know that if ¢ is an odd multiple of 7 and y is odd or ¢
is an even multiple of 7 and y is even. So if ¢ is an odd multiple of 7 and y is odd,
then 2,5 = ‘—7]”;"“—‘ = :{l + ﬁ is not an integer. If ¢ is an even multiple of 7 and
y is even, then z; 5 = '—711’;*—‘ = 3¢ + L is an integer but in this case L""%‘Eﬁ
is not a prime. So in all cases the equation FJ(z,y) = 7% + Tzy + 49y2 = p
has no integer solution (z, y).

(8) Let k = 8 and let p can be represented by F3. Then the equation

an(z,y) = 8:2+8:cy+64y2=p
o 822 4+8zy+64y°-p=0

—2y+ \/2p — 124y

o T12=

has an integer solution (z,y). So 2p—124y® must be a square. Let 2p—-124y% =
t2. Then

_ 2+ 124y
T2

must be a prime. Ift is even, then Lu—“”— is even and if ¢ is odd, then iﬁy_
is rational. So in both cases, it can not be a prime. Therefore the equatlon
F§(z,y) = 822 + 8zy + 64y% = P has no integer solution.

(9) Let k=9 and let p can be represented by F§. Then the equation

F(z,y) = 9z2+4+9zy+81y2=p
< 972497y +81y —p=0
4

-9y + /36p ~ 2835y2
18

T2 =
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has an integer solution (z,y). So 36p — 2835y be a square. Let 36p— 2835y2 =
t2. Then

_ 124283512

- 36
must be a prime. Note that "*—283@: is odd if ¢ is an odd multiple of 3 and y
is odd, is even or odd if ¢ is an even multiple of 3 and y is even and is rational
otherwise. So if ﬂ”— is even or rational, then it can not be a prime. If
_+28£y_ is odd, then we know that ¢ is an odd multiple of 3 and y is odd
or t is an even multiple of 3 and y is even. So if ¢ is an odd multiple of 3
and y is odd, then z,2 = "—9”3 =3 + L a is not an integer If t is an even
multiple of 3 and y is even, then Tyo = —31— R + 4 18 is not an integer or

an integer but in this case ﬂv— is not a prime. So in all cases the equation
F3(z,y) = 922 + 9zy + 81y = p has no integer solution. 0O
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