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Abstract. The edge-neighbor-scattering number of a graph G
is defined to be ENS(G) = Srcnéa(oé){w(G/S) —|S|}, where S is

any edge-cut-strategy of G, w(G/S) is the number of the com-
ponents of G/S. In this paper, we give edge-neighbor-scattering
number of some special classes of graphs, and then mainly dis-
cuss the general properties of the parameter.

1 Introduction

Gunther and Hartnell[1][2] introduced the idea of modelling a spy network
by a graph whose vertices represent the stations and whose edges represent
links of communication. If a station is destroyed, the adjacent stations
will be betrayed so that the betrayed stations become useless to network
as a whole. Therefore, instead of considering the stability of a commu-
nication network in standard sense, some new graphical parameters such
as vertex-neighbor-integrity[3] and edge-neighbor-integrity[4] were intro-
duced to measure the stability of communication networks in “neighbor”
sense. The common ground of these parameters is that, when removing
some vertices( or edges) from a graph, all of their adjacent vertices( or
edges) are removed. So we call them the “neighbor stability” parame-
ters. In[5] we introduced a graphical parameter called “vertex-neighbor-
scattering number”. Similarly, we can consider the edge analogue: edge-
neighbor-scattering number of a graph.( in this paper, “graph” is equivalent
to “communication network”)

Let G = (V,E) be a graph and e be any edge in G. N(e) = {f €
E(G)|f # e,e and f are adjacent} is the open edge-neighborhood of e, and
Nle] = N(e) U {e} is the closed edge-neighborhood of e. An edge e in G
is said to be subverted when Nle] is deleted from G. In other words, if
e = [u,v], G — Nle] = G — {u,v}. A set of edges S C V(G) is called an

ARS COMBINATORIA 85(2007), pp. 271-277



edge subversion strategy of G if each of the edges in S has been subverted
from G. The survival subgraph is denoted by G/S. An edge subversion
strategy S is called an edge-cut-strategy of G if the survival subgraph G/S is
disconnected, or is a single vertex, or is ¢. The edge- neighbor-connectivity
of G, A(G), is the minimum size of all edge-cut-strategies of G. A graph G
is m-edge-neighbor-connected if A(G) = m.

Let G be a connected graph. The edge-neighbor-scattering number of G,

ENS(G), is defined as ENS(G) = séng.(wé){w(G/S) — |S|}, where S is any

edge-cut-strategy of G, and w(G/S) is the number of the components of
G/S. We call S* C E(G) a ENS—set of G if ENS(G) = w(G/S*) — |S*|.
Example 1: Let DS(n;,n3) be a double star with {n,,n,} end-vertices,
where n; > 1 and nz > 1, and a common edge [u,v], as shown in Figure 1.
ENS(DS(TI],'ILQ)) =n;+ny—1.

n; edges ng edges

AN

Figurel : DS(ni,ng)

In this paper, we give edge-neighbor-scattering number of several spe-
cific classes of graphs in section 2, and then discuss the bounds and other
properties of the parameter in section 3 and section 4.

We use Bondy and Merty|6] for terminology and notation not defined
here and consider only finite simple connected graphs. Throughout this
paper, [z] stands for the smallest integer greater than or equal to z, and
|z] stands for the greatest integer less than or equal to z.

2 Edge-neighbor-scattering number of Sev-
eral Specific Classes of Graphs

Theorem 1. Let P, be a path with order n(> 2). Then

-1, if n=2;
ENS(P)=<¢ 0, if n=3;
1, if n>4.

Proof. The case n = 2,3 is trivial. So we assume n > 4.
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For any S C E(P,), w(P,/S) < |S| + 1. Thus we have
ENS(P,) = s {w (Pu/S) =18} < IS]+ 1~ 5] =1.

On the other hand, let e = (z,y) be an edge in P, such that d(z) =
d(y) = 2. Then w(P,/{e}) = 2. So we have

ENS(P,) = s&a2x {w(Pn/S) 51} 2 w(Pn/{e}) — [{e}| =2-1=1.

Therefore ENS(P,) = 1, and we complete the proof. (]

Theorem 2. Let C, be a cycle with order n(> 3). Then

ENS(Cu)_{ 0’ Zf n=301"n26.

Proof. n = 3,4,5 is trivial. So we assume n > 6.
For any e € E(C,,),|N(e)| = 2, Cn/{e} is a path with order n — 2(> 4).
Thus for any S C E(C,), w(C,/S) < |S| and

ENS(Ch) = jmax {w(Cn/5) - |81} < 18] - 15| =

On the other hand, there must exist two edges e, f in C, such that
w(Cr/{e, f}) = 2, so we have

ENS(Cy) = S&%n){w(cn/s)—lsl} 2 w(Cu/{e, fH—He fH=2-2=0.

Therefore ENS(C,,) = 0, and the proof is completed. O

Theorem 3. Let K,, be a complete graph with order n(> 3). Then ENS(K,,)
-1-13)
Proof. Observe that for any e € F(K,), Kp/{e} = Kn_3. From A(K,) =

L5])(see[7)), if Sis an edge—cut-strategy of K, then |S| > %], and for any
s'c E(K,), w(K,/8) < 1. So ENS(K,) = sQ02x | {w(K./S) =18} <

1- (%]

Olejthe other hand, if n is even, assume M = {(uy,v), (u2,v2),"
(u§,v§)} is a maximum matching in K,. Replace (u;,v;) by (u;,vs),
denote M = M —{(uy,v;)}U{(u1,v2)}. Then K,,/M" = v,. Thus we have
ENS(K,) = max {w(Kn/S) IS} = w(Kn/M)—|M|>1-% =1-[%].

Ifnis odd then there is a maximum matching M in K, such that
IM | = 21 and K,/M is an isolated vertex. So we have ENS(K,) =
SCE(K ){W(Kvt/s)_ IS1} = w(Kn/M) - M| 21~ i_l =1-|3] too.

Therefore ENS(K,)=1- |%]. O
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Theorem 4. Let K,,, be a complete bipartite graph with a bipartition
(M,N), where |M| =m,|N| =n. Then ENS(K, ) = |m —n| — 1.

Proof. Assume m > n. Let S be any edge-cut strategy of K,y n. By the
structure of K, 5, |S| > n and if V(K,,n/S) N M # ¢, then (K, n/S) N
N = ¢, vice versa. This implies w(K,,»/S) < max{m,n} —1=m—1. So
ENS(Kpnn)<m—-n-1.

On the other hand, let v be any vertex in M, X be the edge set of all
edges incident with v in Ky ,. Then |X| = n and (K n/X) = m — 1.
Thus ENS(Kjppn) 2m—-n—~1.

Therefore ENS(Kmn) = m — n— 1 when m > n. By symmetry,
when n > m, ENS(Ky;nn) = n— m — 1. Finally, we have ENS(K,, n) =
|m—mn|-1. 0O

Corollary Let S, where n > 1, be a star graph. Then ENS(S;,,,) =
n-—2.

A comet C,, is a graph obtained by identifying one end of a path
Py(t > 2) with the center of a star Sy ,(n > 2). The center of S, is called
the center of C; .

Theorem 5. Let C;,, be a comet, wheret > 3 ,n > 2. Then ENS(C:,) =
n.

Proof. Let V(P,) = {v1, va, ++-, v}, and v; be the center in C; . Ob-
viously, if § is an edge-cut strategy of C;,, then |S| > 1. Moreover, if
|S| =1 and S = {(v1,v2)}, then w(Cy,n/S) =n+1;if S # {(v1,v2)}, then
w(Cin/S) <n+1.

If |S]| > 1, clearly w(C;n/S) <n+1. So ENS(Cin) <n+1-1=n.

On the other hand, since w(Cy,n/{(v1,v2)}) = n+1, we have ENS(C},,,)
2n+l-1=n.

Therefore ENS(C:,n) = n, and we complete the proof. (]

3 Bounds for Edge-Neighbor-Scattering Num-
ber

Theorem 6. For any connected graph G with order n, ENS(G) <n - 3.

Proof. Let S be any edge-cut strategy of G. Then |S| > 1. Notice that the
subversion of an edge from G is equivalent to removing it’s two endpoints
from G, so w(G/S) < n— 2. Thus we have ENS(G) < w(G/S) - |S| =
n—-2-1=n-3. O

Remark 1 The upper bound in Theorem 6 is the best possible. It can be
shown by star or double star graphs.
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Theorem 7. For any connected graph G, ENS(G) < oG) — A(G), where
a(G) and A(G) is the independent number and edge-neighbor-connectivity
of G, respectively.

Proof. For any ENS-set S of G, |S| > A(G), and w(G/S) < a(G), so
ENS(G) =w(G/S) - |S| £ a(G) — A(G). D

Remark 2 The upper bound in Theorem 7 is the best possible. It can be
shown by Cj3,,,(n > 2) or double star graphs.

Theorem 8. Let G be a connected graph with order n. Then ENS(G) >
n —3a (G), where o '(G) is the edge independence number of G.

Proof. Let M be a maximum matching in G. Then |M| = o' (G) and G/M
contains n — 2o (G) isolated vertices. So ENS(GQ) = 321% ){w_(G/S)

IS]} > w(G/M) - |M| =n - 3'(G). O

Remark 3 The lower bound in Theorem 8 is the best possible. It can be
shown by star graphs.

Lemma 1 ([7]). For eny graph G with order n, A(G) < 131

Theorem 9. Let G be a connected graph with order n(> 3). Then ENS(G)
>1-[2).

Proof. Assume S* is a smallest edge-cut strategy of G, then |S*| = A(G).
By Lemma 1, |S*| < | %]. we distinguish two cases.
Case 1. G/S* # ¢. Then w(G/S8*) > 1,50 ENS(G) = Srcnl%){w(G/S) -

ISI} 2 w(G/S*) - 8% 21~ |3].
Case 2. G/S* = ¢. Notice that the subversion of an edge is equivalent to
removing it’s two endpoints from G. Since n > 3, then |S*| > 2. Moreover,
in §*, any edge e is not adjacent to other edges, otherwise, S* — {e} is also
an edge-cut strategy of G, contradicted to the assumption. G is connected,
so for any edge e = (u,v) in §*, it’s one endpoint, without loss of generality,
assume u, is adjacent to at least one vertex in §* except v. Let = be such
one, set §** = (§* — {e}) U {(u,z)}, then G/S** = v, an isolated vertex.
Therefore ENS(G) 2 w(G/5**) - [S**| 21~ A(G) > 1 - |2].

The proof thus is completed. ‘ O

Remark 4 The lower bound in Theorem 9 is the best possible. It can be
shown by Theorem 3.

275



4 Neighbor Stability and Edge
-Neighbor-Scattering Number of Graphs

The stability of a communication network is a prime important factor. As
the network begins losing stations or links, eventually there is a loss in its
effectiveness. Thus many graph theoretical parameters such as connectiv-
ity, edge-connectivity, scattering number, integrity, edge-integrity, tenacity
and tenacity etc. have been introduced to describe the stability of commu-
nication networks. We call them the standard stability parameters.

When we consider the stability of a spy network, one failure station
or link lead to all its neighbors to be useless for the network as a whole.
Thus unlike standard stability parameters, some other parameters such as
neighbor-connectivity, edge- neighbor-connectivity, vertex-neighbor-integrity,
edge-neighbor-integrity, vertex-neighbor-scattering number and edge-
neighbor-scattering number have been introduced to measure the stability
of spy networks. As a generalization of the stability of a spy network, we
call these parameters the neighbor stability parameters. Clearly, stability in
standard and neighbor sense are different. For example, K,,, the complete
graph with order n, x(K,) = n — 1, but K(K,) = 0. That is, K,, is the
most stable in the standard sense, but is the most vulnerable in the neigh-
bor sense. It is shown that measuring the neighbor stability of a network is
more complex than measuring the standard stability of a network( see [5]).
Therefore, only using one parameter to measure the neighbor stability of a
network is not enough.

Example 2: A(S),) = A(DS(n1,n2)) =1, ENI(S1,,) = ENI(DS(ny,n2))
= 2. However, ENS(51,n) = n—2, ENS(DS(n1,n3)) = ny +no— 1. This
shown that ENS does better than A or ENI in measuring the neighbor
stability of networks in some cases.

From the definition of edge-neighbor-scattering number we know that,
in edge-neighbor sense, the smaller the EN S is, the more stable the network
to be. For example, when n > 6, ENS(C,) =0 < ENS(P,) = 1. In fact,
Paths and cycles with same order(> 6), the former are more stable than
the latter in the neighbor sense.

Obviously, ENS has closed relation with A Since ENS considering
not only the difficulty to break the network but also the damage has been
caused, two networks with same A maybe have different EN S( see Example
1). ENS is also independent to VNS. Let L(S),,) be the line graph of star
S1,n. then L(S;,,) = K, and ENS(S1,) =n—2# VNS(L(51,»)) = 1.

Like other neighbor stability parameters, ENS has its defects. For
example, if m = n + 1(n > 4), then ENS(Knn) = 0 = ENS(Cnsn)-
But A(Ky,,n) = min{m,n} =n > A(Cp4n) = 2. In this case, ENS can’t
measure the difference of neighbor stability between K, ;, and Cqn.
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It seems that using several parameters at same time is a good method to
measure the neighbor stability of a network. Unfortunately, it is not always
true. For example, if m = n41(n > 4), then A(K,, ) = min{m,n} =n >
A(Cmin) = 2, but VNS(Kimn) = m—2 > VNS(Cryn) = 0. Which is
actually more stable in neighbor sense?

In order to avoid the difficulty, we divide neighbor stability parameters
into two classes: "”vertex neighbor” such as neighbor-connectivity, vertex-
neighbor-integrity and vertex-neighbor-scattering number and ”” edge neigh-
bor” such as edge-neighbor-connectivity, edge-neighbor-integrity and edge-
neighbor-scattering number. This division is necessary and reasonable,
since the role of vertices or edges in a network are different, we often need
to distinguish them. For example, when measuring the neighbor stability of
a network, we can select parameters from one of the two classes according
to the importance of vertices and edges in the network.
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