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Abstract

The hyper Wiener index of a connected graph G is defined as WW(G) =
3 Liuwicv@) A )+ Th vycvie) 4w, v)?, where d(u, v) is the distance
between vertices u,v € V(G). In this paper we find an exact expression for
hyper Wiener index of HCg[p, g, the zigzag polyhex nanotori.

1 Introduction

A topological index is a real number related to a molecular graph. It
must be a structural invariant, i.e., it must not depend on the labeling
or the pictorial representation of a graph. Many topological indices have
been defined and several of them have found applications as means to model
chemical, pharmaceutical and other properties of molecules [23]. The topo-
logical indices were widely used in obtaining physico-chemical properties,
such as the boiling point, molar refraction, critical pressure, viscosity, chro-
matographic retention, etc., of chemical compounds. In fact it is of interest
to have a theoretical tool, say an equation, that can help one in obtaining
a desired parameter by structure-related calculations.

For a connected graph G, the set of vertices and edges of will be denoted
by V(G) and E(G), respectively. The topological distance between a pair
of vertices u and v of G, denoted by d(u,v), is the the number of edges on
the shortest path, joining u and v. The Wiener and hyper Wiener indices
are the most studied topological indices, both for algebraic aspects and
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Figure 1: HCj[20,40]:Side view; Top view. (The picture is taken form [6])

applications. The Wiener index of G is the half sum of distances between
all vertices of the graph G:

WG = >, du,v)

{u0}CV(G)

The Wiener index is oldest topological indices. In 1947 chemist Harold
Wiener [24] developed the most widely known topological descriptor, the
Wiener index, and used in to determine physical properties of types of
alkanes known as paraffins. Numerous of its chemical applications were
reported and its mathematical properties are well understood (see for ex-
ample [24], [10], [11}).

Randié¢ in [22] introduced an extension of the Wiener index for trees,
and this has come to be known as the hyper-Wiener index. Klein et al.
[20] generalized this extension to cyclic structures as

WWG) = W@ +: Y (dw )2
2 (w2)EV(6)

(see also [4], [12], [19], [21]).

In a series of papers, Diudea and coauthors [5]-[9], [18] studied the struc-
ture and topological indices of some chemical graphs related to nanostruc-
tures. In particular, the Wiener indices of some nanotubes are computed.

In [1)-[3], [26]-[27) Ashrafi and coauthors computed some topological
indices of nanotubes. Also in [13]-[14], [16]-[17] we computed some other
topological indices of nanotubes. In this paper we find an exact expressions
for hyper Wiener index of the polyhex nanotorus (see Figure 1). For this
purpose we choose a coordinate label for vertices of HCg[p,q] as shown
in Figure 2. Throughout this paper G := HCg[p, g, denotes an arbitrary
zig-zag polyhex nanotori in terms of the circumference p and the length g.
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Figure 2: A zig-zag polyhex nanotorus lattice with p = 16 and g = 6.

We notice that p and ¢ must be even. In Figure 3 the distances from zp; to
all vertices are given. Note that the graph is bipartite, or equivalently, the
vertices can be colored with white and black so that adjacent vertices have
different color (see [15, Theorem 2.4]). Since the graph is symmetric respect
to the line joining zg p 41 to z; 2,41, one half of the numbers are shown in
Figure 3. In [14] we have included a MATHEMATICA [25] program to
produce the graph of HCg[p, g]. With this program we are able to compute
the hyper Wiener index of the graph, using the definitions.

2 Hyper Wiener index of polyhex nanotorus

In this section we derive an exact formula for the hyper Wiener index
of G := HCg|p, g]. For a vertex v € V(G) we define

du)= Y d(u,v)

veV(G)

d'w)= Y (d(,v))?
veV(G)

dd(u) = Y [d(u) +d'(u)].
ueV(G)

(If it is necessary we show these quantities by dg(u), d i (u) and ddg(u).)
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Then

WW(G) = }1 d(u)+% Y d'w)
“€V(G) weV(G)
- % Y dd(w).
w€V(G)

Now for u,v € V(G) we define dd(u,v) (or ddg(u,v)), the hyper distance
between u and v, to be

dd(u, v) = d(u,v) + (d(u,v))2.

In the following lemma we give a formula for the hyper distances of one
white (black) vertex of level 0 of the graph G to all vertices on the level
k<2

Lemma 1 In the graph G we have

wwy = Z: dd(zo2, z)
z€ level k<%

> dd(zos,z)

z€ level k<3
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PP+ 3kt + 53+ K Of 0<k<B

and
bby = Z dd(zo1, )

z€ level k<%

= z dd(zo3, z)

z€ level k<§

PP+ 3k’ + H00+ K Of 0<k<

4k?p if £E<k

ProoF: We compute by. It is suffices to consider zg;. For other black
vertices, the argument is similar. At first note that the lattice is symmetric
(with respect to the line joining o3 to z1;). We distinguish three cases:

Case 1: k> % and kiseven. Inthiscaseforalll<j< E+1, we have

2k—1 if j iseven

d(zo1, Txj) =
2k if 7 isodd.

Now by considering these vertices and their symmetric vertices we obtain g
vertices having distance 2k — 1 from zg;, and g vertices having 2k distance

from Zo1- So

Y ld@or,u) + (d(zor, w)?)= Y. [dwor,z5:) + (d(zor, z5:))?] +

u € level k j is even

> [d(zo1,zji) + (d(zo1,z5:))?]

J is odd
= g[(zk — 1)+ (2k - 1)%] + g[(zk) + (2k)?)
—8k2P
=8k 3"
Case 2: k>Z%andkisodd. Inthiscaseforall1<j< £ +1, we have

2k if j iseven

d(zo1,Tk;) =
2k -1 if j isodd.
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Now by considering these vertices and their symmetric vertices we obtain p
vertices having distance 2k — 1 from zq;, and p vertices having 2k distance
from zg;. So

> [dizor,v) + (dmor, W)= D [d(zor,zji) + (d(zor, 25))°] +

u € level k j is even

Z [d(zo1,j:) + (d(zo1,25:))?)

j is odd
=Ei(2k) + (2k)?) + £{(2k — 1)] + (2K ~ 1)
—gk2P
=8k 5
Case 3: k <p—1. Forall j's, such that p+1 < j and j > k+ 1,we have
d(zo1,zxj) =k +3j—1.

Thus the summation of the distances between zo; and zx; (for all j°s such
that p+1 < j and j > k + 1) and their symmetric vertices is

5
S = 2 ) [(k+i-1+(k+5-1)7%+
j=k+2
P p 2
[(k+'2'+1—1)+(k+§+1—1)]
l_Z — 7k2 2 llels_Es
&P 3k+kp Tk +kp+4p +2kp +12P 3k~

Alsoif 1 € j<k+1, then

2k if k—j isodd

d(zo1, Tkj) =
2k -1 if k—j iseven.

Therefore the summation of the distances between zo; and zx; (for all j
such that 1 < j < k + 1) and their symmetric vertices is

Sy = (k+ 1)(2k + (2k)%) + k(2k — 1 + (2k — 1)%) = 2k(2k + 4k + 1).

Hence

bby = S1+85;
= 1 —Zk+kp—7k2+k2 + 12y
= 8773 TP
1, ,, 1 53 14, 2
2kp + 127 3k + 2k(2k + 4k* + 1)
_ 1 1 2 2,12 1, 5 13 10,3
= &P 3k 3k* + kp + kp +4p +2kp +12 +3k‘
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The proof for wwy, is similar. |

Lemma 2 For one white or black vertex zo; of level 0 we have

by = Y dd(zoj,x)
z€ levelg
4 107gqy q - qN\2
-3p— (%) -2(2)p - 8(3)*+
_ @+ 4@ i g<
4(%)%p if £<4%

PRoOF: Since G is symmetric (with respect to the line joining zo; to z11),
it is sufficient to porve the assertion for zg; and zg2. For zo;, the proof is
exactly the proof of Lemma 1. We consider the tori that can be built up
from two halves collapsing at level 0. In the top part o is such as a black
vertex so by the proof of Lemma 1, we obtain that bg. ]

Corollary 3 For each u € V(G) we have
D :=dd(u) = bbo + bby + - + bbg +wwy + -+ +wwy_,.
PROOF: At first note that the lattice is symmetric (with respect to the

leve k). So it is suffices to consider zo; and zg. For other black (white)
vertices the argument is similar. Now we begin with z¢;. Let

Bl={k|05k<%} and Bg={k|%<k§q—l}.

We have
dd(za) = D dd(zor,v)= Y dd(wor,v)+bbg+ > dd(zo1,).
v € V(G) v E B v € By
But
Y. ddzor,v) = Y dd(mo,v)+ Y. dd(mor,v)+-+
vEB v € level 0 v € level 1
> dd(wor,)
v € level §-1

= bbo+bb1+"'+bb§_1.

For computing the last sum we consider the tori that can be built up from
two halves collapsing at level 0. The top part is formed of the lines of Bs
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that zg; is such as a black vertex. So by a changing index and using the
proof of the Lemma 1, we can obtain that

Z dd(mm,v) = Z dd(zo,v) + Z dd(zo1,v) +--- +

v € By v € level g~1 v € level ¢g—2

Z dd(xOI ) ‘U)

v € level §.+1
= ww) + ww +-~+ww§_1

which completes the proof. o

Theorem 1 The hyper Wiener index, WW (G), of G := HCg|p, q] nanotori
is given by

(
ﬁlﬁpqz [ — 16 + 16p — 20q + 4p® + 6p°q+

4pq? + 12p? + 5¢° + 44> + 12pq] if ¢g<p

L T55P%q [3;;3 +4p® - 12p — 6 4+ 16¢° + 24¢° + Sq] if p<q

Proor: We have

1 1 1 1
WW(G) = > dd(w) = i > D= 10 V(@ |= 7D pg.
ueV(G) veV(G)

First suppose that ¢ < p — 2. In this case 2 < &, so by Corollary 3 and
Lemma 1 we have

D=bbo+bb1+-~+bb§+ww1+~-'+ww§_1

5
— 1 1 2 2,149, 1 5 1345 104
_kzzo(sp 3k —3K% +kp+ kp® + 20 + Sk + 5P + 5k ) +

$-1
1 5 1 1 1 10
“p+ ok +5k% + kp + k’p+ -p° + skp® + 5p° + K
§<6p+3 +5k% +kp+Ept+ 2p° +okp" + op + Tk
= (=164 16p — 209 + 4p° + 6p°q + dpg” + 129" + 5¢° + dg” + 12pg).

Hence in this case

1
WW(G) = mpq“)(—16+16p—20q+4p3+6p2q+4pq2+12p2+5q3+4q2+12pq).
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Now suppose that p < ¢—2. In this case £ —1 < € — 1, so by Corollary
3 and Lemma 1 we have

D = bbo+bby +---+bbg +wwy ++- +wwg_,
= bbo+bb1+'”+bb§_1+bb§+"'+bb§+
ww1+---+'ww§_1+ww§+---+ww§_1

£-1
_ 11 2 2,15 1, o 1 5 104
= Z(Gp k= 3k +kp+kp® + 2p° + shp® + 5p° + K ) +

k=0
3
>4k +
k=%
i 1, 10
( P+ = k+5k2+kp+k2p+ -p + 3 kp +=p*+ —ka) +
2 \8 127 73
3-1
> (p(2k +1)%)
A k=8
= 4%])[3}73 +4p% — 12p — 16 + 16¢° + 24¢ + 8q).
Hence
WW(G) = ’;" 4’; L p(3p® + 4p% — 12p — 16 + 16¢% + 24¢% + 8¢)

1
= 192p q(3p +4p —12p—16+16q +24q + 8¢).

Finally if p = ¢, then § —1 = £ — 1 so by Corollary 3 and Lemma 1, for
each u € V(G) we have

D=bbo +bby + -+ + bbg + ww; + -+ +wwg_,
=bbo +bby + - + bbg_; +bbg + wwy + -+ +wwp_,

£-1
1 1
—Z(Sp——k 3k% + kp + kp® + 4p +1kp + —=p* + 3k3)+

12
gy 1 1, 10
2 2 3, V.3
P +Z(6p+3k+5k +kp+Kp+ 0+ kp + 5P+ k)
_P(p—2)(19° +30p +8)
48
Hence
2)(19p2 + 30p + 8
WW(G) = ’Z”’(” X 4”8 p+8) _ 2}) 3(19p° + 28p? — 4p — 16).
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Note that this case is exactly the case 1, when p = gq. ]
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