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Abstract

The projection of binary linear block codes of length 4m on FJ*
is considered. Three types of projections, namely projections SE, E,
and O are introduced. The BCH codes, Golay codes, Reed-Muller
codes, and the quadratic residue code ¢3; are examined.

1 Introduction

A binary linear [n,k] code C is a k-dimensional vector subspace of F3,
where F, is the finite field of two elements. The rate of a linear [n, k] code
C is defined as k/n. The elements of C are called codewords. The Hamming
weight wt(x) of a codeword x is the number of non-zero coordinates. The
minimum weight of C is the smallest weight among all non-zero codewords
of C. An [n,k,d] code is an [n, k] code with minimum weight d.

The concept of projecting a binary linear code onto a larger field pro-
vides a foundation for the construction of larger codes from shorter ones,
and the reduction of the decoding complexity by applying a two-level de-
coding algorithm (3, 8, 9, 10]. The projection of binary linear codes onto
larger fields, in particular Fy, has been considered in [1, 4, 5, 6, 7, 8, 10]. Let
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Fy = {0,1,w,® = w?} be the finite field with four elements. The Fy-linear
map Proj from Fj to Fy is defined by

Proj(z172Z3zy4) :=< 1,%2, %3, %4 >< 0,1,w,& >= 710 + 221 + Z3w + 24®.

This mapping is a 4 to 1 projection, that is for each a € Fy there are four
distinct length 4 binary strings that are mapped to a. Two of these strings
have odd Hamming weight and are referred to as the odd interpretations
of a, while the other two are called even interpretations.

Let v be a vector in F§™ where m is a positive integer. The vector
v is represented by a 4 x m array, denoted A, = [a; ], where a;; is the
{4(j — 1) + i}th component of v. The array A, will be referred to as the
array of v. Applying the mapping Proj to the columns of Ay, the mapping
is extended to F3™, and F4™ is projected onto Fj*.

The parity of a finite length binary string s is defined as the mod 2
addition of the components of s; that is the parity is 0 (resp. 1) if s has
even (resp. odd) Hamming weight.

Let C; be an additive code of length m over Fy and let C; be a set of
binary vectors of length 4m. Then according to [4, 7, 8, 10], it is said that
C2 has projection O (resp. E) onto C4 if C3 is the largest set of binary
vectors ¢ of length 4m satisfying conditions T1, T2, and T3 (resp. T3'):
T1. Proj(c) € Cs.

T2. The column parities of the array A are either all even or all odd.
T3. The parity of the first row of A, is the same as the column parity of
the array.

T3’. Regardless of the column parity, the parity of the first row of A is
even.

For instance, the binary [24, 12, 8] Golay code has projection O onto the
(6,3, 4] quaternary code (hexacode) (8]. As another example, let M be the
generator matrix of the extended [32,16,8] BCH code obtained from the
generator matrix of the cyclic [31,16,7) BCH code by adding an overall
parity check bit. Applying the permutation

3 30 8 10 18 20 1 2 21 5 6 15 19 29 9 4
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
17 23 11 24 13 22 28 7 27 16 31 26 12 32 14 26

(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)
=

on matrix M and using elementary row operations results in the matrix
M’ given below. The projection of this code under the mapping Proj is the
quaternary [8, 4, 4] code with generator matrix Gp. It is known that this is
an E projection 1, 6]. The first eight rows of M’ form the kernel of this
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mapping.

11111111000000000000000000000000
00001111111100000000000000000000
00000000111111110000000000000000
00000000000011111111060000000000
00000000000000001111111100000000
00000000000000000000111111110000

00000000000000000000000011111111 1 0 0 0 @ w 0 1

M = 10001000100010001000100010001000 G, = 01 0 0 0 @ 1 w
~ 01010000011010101100000000000000 ® <10 0 1 0 w 1 w 0 |-

00110000010100110110000000000000 0 0 01 @ 0 @ 1

00000101111116011010110000000000
00000011000010101100011000000000
00000000011000001100011011600000
00000000001100001010001110100000
000000000000010111000060000111010
000060000000000110110000010011100

(1)

Consider now the matrices M and M4 given below.

1111 1111 0000 0CCO _

p— | o0 o0 :s::,] Ma=[5 32 2]

1000 0111 1011 1101
Any row of matrix M, and hence any linear combination of them, satisfies
conditions T1, T2 and T3, and the binary code C with generator matrix
M is projected onto the additive quaternary code C4 introduced by matrix
M4. This code, however, is not the largest one with these properties, and
hence based on the given definition it does not have projection O onto Cy4.

The only implication of considering the largest set C satisfying condi-
tions T1, T2, and T3 (resp. T3'), is that such a set C contains E,, ® Ry,
where E,, is the [m,m — 1,2] even weight code, R4 is the [4,1,4] repeti-
tion code and ® denotes Kronecker product. This property allows one to
consider an inverse function Proj~! from F, to F} such that the strings
Proj~!(z), = € Fy, have even parity and their first components are the
same. Though this uniformity of Proj~! has a very limited impact on the
reduction of decoding complexity, it imposes a strict bound on the size
of the class of projectable codes and their minimum distances. Since these
codes contain E,, ® R4, their minimum distances do not exceed 8 and hence
asymptotically they are poor. Therefore, it seems there does not exist con-
vincing reasons behind putting strong restrictions such as being the largest
set on the definition of projections E and O. From both the theoretical and
application perspectives, it is natural to relax the definition slightly so that
it can be applied to a much larger set of codes.

In this paper we generalise the definition of projection by removing the
largeness constraint considered previously, in particular in [7], and distin-
guish three types of projections, namely projections SE, E and O. The codes
considered in this paper can have an arbitrarily large minimum distance.

In Section 2, we introduce the three types of projections and characterise
the corresponding classes of codes. The given criteria are quite different
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from those given in [7], and enable one to easily recognise a code belong-
ing to any of these three classes. In Section 3, we consider Reed-Muller
codes and the (32,16, 8] quadratic residue code. We show that only the
second-order RM codes and their subcodes have projection E. It is shown
that although the [32,16,8] quadratic residue code has none of the three
projections, it contains a 14-dimensional subcode having projection E.

2 Projections SE, E and O

In this section, we introduce three types of projections and completely de-
termine the codes that have these projections. Several examples illustrating
the projections are provided. The examples also explain how such codes
can be constructed.

Definition 1 A vector v € F4™ is said to be column-uniform if the columns
of A, are either all odd or all even. In addition, v is even (resp. odd) if
the first row and the columns of A, have even (resp. odd) parity. If A, is
column-uniform with odd column parity, but the first row of A, has even
parity, then v is called a weakly-odd vector. A linear binary code C is called
column-uniform if any codeword ¢ € C is column-uniform.

Definition 2 Let C be a linear binary code of length 4m and let C4 be a
quaternary additive code of length m. The code C is said to have a strong
E projection (SE projection) onto Cy if it satisfies conditions P1 and P2:
P1 Proj(C) := {Proj(c)| c € C} =Cs.
P2 All codewords in C are even.

We say C has projection E onto C4 if it satisfies conditions P1 and P2':
P2’ Any codeword ¢ € C is either even or weakly-odd.

We say that C has projection O onto Cy4 if it satisfies conditions P1,
P2"” and P3:
P2” Any codeword c € C is either even or odd.
P3 C contains at least one odd codeword.

It follows from the above definition that a code with projection SE also
has projection E, but the converse is not true. According to the definition,
if C has any of the three projections SE, E and O onto Proj(C) then it is
column-uniform, and that under conditions P2” and P3, precisely half of
the codewords in C are odd.

Lemma 1 A linear binary code C is column-uniform if and only if the dual
code C* contains the code [m,m — 1,2} ® [4,1, 4], denoted E,, ® Rq4.

Proof Suppose C is column-uniform and ¢ € C. Consider a word w €
E,. ® R4. Each column of A, has weight either 0 or 4, and the number of
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weight-4 columns in A, is even. If ¢ is even then obviously the Fp-inner
product of each column of A, with its corresponding column in A,, is zero
and hence w- ¢ = 0. If ¢ is odd then the inner product of each weight-4
column of A,, with its corresponding column in A. is 1, and hence, as the
number of nonzero columns in Ay, is even, we have w - ¢ = 0. Therefore,
E.® Ry CC*L.

Conversely, suppose E,, ® R4 C C and consider a codeword c € C. We
show that c is either odd or even. Without loss of generality, assume the
first two columns in A, have different parities. Then the inner product of
w = 1111 1111 0000...0000, a word in E,, ® R4, with ¢ is 1, which is a
contradiction. m

Corollary 1 A linear binary code C having any of the three projections
SE, E and O satisfies E,, ® Ry C CL.

Lemma 2 All codewords in C € F#™ are column-uniform with even col-
umn parity if and only if I,, ® R4 C Ct, where I,, is the universal code of
length m.

Proof Consider a codeword ¢ € C with array A.. Suppose all columns in
Ac have even parity. Then the vector 1111 is orthogonal to each column
of Ac, and hence any word in I,, ® R4 is orthogonal to c. This proves the
forward implication.

Conversely, suppose I,, ® R4 C C and let ¢ be a codeword in C with
array Ac. For each i, 1 < i < m, there is a unique word w; in I, ® R4 whose
array Ay, has four nonzero entries in its ith column and is zero elsewhere.
Thus w; - ¢ = 0, implying that the ith column of A; has even parity. m

Lemma 3 Given a linear binary code C of length 4m, the parity of the first
row of all A, ¢ € C, is even if and only if the vector f, := 1000 1000 - - - 1000,
the nonzero vector of [m, 1, m] ® [1000], is in CL.

Proof The first row of Ay, is the nonzero codeword of the repetition code
R,, = [m,1,m], and so f. - ¢ = 0 if and only if the all-one vector of length
m is orthogonal to the first row of A., that is if and only if the parity of
the first row of A, is even. m

Proposition 1 A linear binary code C C F;™ has projection SE onto
Proj(C) if and only if I,, ® R4 + Rm ® [1000] C CL.

Proof By definition, C has projection SE onto Proj(C) if and only if all
codewords in C are even, that is the first row and the columns of any array
A, ¢ € C, have even parity. Thus the result follows from Lemma 2 and
Lemma 3. m
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Proposition 2 A linear binary code C C F4™ has projection E onto
Proj(C) if and only if E;n ® Ry + Rm ®[1000] C C*; in particular a self-dual
code C has projection E onto Proj(C) if and only if E,,, ® R4+ R, ®[1000] C
C.

Proof By definition, C has projection E onto Proj(C) if and only if any
codeword ¢ € C is either even or weakly-odd, that is C is column-uniform
and the first row of any c € C is always even. Therefore, the result follows
from Lemma 1 and Lemma 3.m

Example 1 (BCH codes) The extended (32, 16, 8] BCH code with gener-
ator matrix (1) is self-dual and contains Eg® R4+ Rg®[1000] (the first eight
rows of M’), implying that it has projection E. The extended (32,11, 12]
BCH code, with generator matrix M3ss.11.12 given below, is the intersection
of the [32,16,8) BCH and [32, 16, 8) QR codes. Therefore, it has projection
E as its dual, a [32,21, 6] code, contains the [32,16,8] BCH code and hence
includes Eg ® Ry + Rg ® [1000].

- 1111 0000 1111 1111 1111 0000 0000 0000 -
0000 1111 0000 1111 1111 1111 0000 0000
0000 0000 1111 0000 1111 1111 1111 00CO
0000 0000 0000 1111 1111 0000 1111 1111
0110 1111 1100 0110 0101 0000 0000 0000
Mag 1112 = | 0011 1100 0101 1001 0101 0110 00CO GO0
0000 0110 1001 1100 1010 0011 110 00CO
0000 0011 1100 1001 0000 1010 0011 1100
0000 00CO 0101 1111 1001 0101 0110 0G0
0000 0CCO 0000 0101 0011 1111 €011 1010
[ 0001 1101 1000 1000 0010 0111 0010 1000

Consider the vector f, := 1000 1000 - - - 0111 of length 4m and weight m+
2. It can be shown that a linear binary code C C F4™ has projection O
onto Proj(C) if and only if E,, ® Ry +f, C C* and f. ¢ C*. From the code
construction perspective, however, this criteria is not very useful and hence
we prefer the following characterisation for the class of odd codes.

Proposition 3 A linear binary code C C F#™ has projection O onto
Proj(C) if and only if C = C’ + w for some odd vector w and a linear
code C’ that has projection SE.

Proof The sum of two even (odd) words is even while the sum of an odd
word with an even word is odd. This together with the fact that a linear
code C having projection O contains at least one odd codeword completes
the proof. m

Corollary 2 It follows from Proposition 1 that the minimum distance of a
self-dual code C with projection SE satisfies d(C) < {m, 4}. Proposition 2
implies that a self-dual code C with projection E satisfies d(C) < {m, 8}.
Based on the results in the paragraph preceding Proposition 3, for a self-
dual code C with projection O, we have d(C) < {8,m + 2}.
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The last two statements of this corollary were already known (the first part
of Proposition 4.3 in (7]). Note however that based on our approach, these
bounds hold only for self-dual projectable codes, while they apply to all
codes considered in [7]. Our approach allows one to construct codes with
arbitrarily large d (which would necessarily differ from the codes in [7] if
d > 8).

The (32,11, 12] BCH code considered in Example 1 is an instance of a
code that has projection E and minimum distance larger than 8. In fact,
the approach presented in this paper allows one to construct projectable
codes with arbitrary large minimum distance.

Example 2 (Binary Golay codes) Consider the [24,12,8] Golay code
go4 With generator matrix

[ 1111 1111 G000 00C0 0000 G000 T
0000 1111 1111 0CCO GOCO ©OCCO
0000 0000 1111 1111 0000 0©CCO
0000 0000 0000 1111 1111 0000
0000 0000 00CO 0000 1111 1111
1160 ©000 0000 1100 1010 1010
0000 1100 0000 1010 1100 1010
00CO0 €000 1100 1010 1010 1100
1010 0000 0000 1010 1001 1001
C000 1010 0000 1001 1010 1001
¢000 0000 1010 1001 1001 1010
0111 1000 1060 1000 1000 1000

As mentioned previously, this code has projection O onto the [6, 3, 4] hexa-
code. This can be easily verified by examining the rows of the matrix. Re-
moving the last row of the matrix (the only odd row), we obtain a generator
for the (24,11, 8] half-Golay code ha4. All codewords of hyg are even and
hence hg4 has projection SE onto the hexacode. If the last row of the above
matrix is replaced by the weakly-odd word 100010001000100010001000, we
obtain the [24,12, 6] Type I code, known as the odd Golay code hZ,. This
is a self-dual code containing Eg ® R4 + Rs ® [1000], implying that hJ, has
projection E onto the hexacode.

According to Proposition 1, if a code B includes I';, ® Ry + R, ® [1000]
then the dual code BL has projection SE, and any code with projection SE
can be constructed in this way. Thus the largest and smallest codes that
have projection SE are {I,, ® R4 + Rm ® [1000]}* and the trivial code 0,
respectively.

Note that I'), ® R4 + R, ® [1000] is of length 4m and dimension m + 1,
and hence an immediate consequence of this result is that the number
of even words in F§™ is 23™~!  which is the number of codewords in
{In ® R4 + Rrm ® [1000]}*.

As the sum of two odd or two even words is even, and the sum of an odd
word with an even word is odd, it follows that the number of odd words in
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Fj™ is also 23™~1. Similarly, it follows from Proposition 2 that the dual of
any code B containing E,,® R4+ R,,®[1000] has projection E, and any code
having projection E can be obtained in this way. Therefore, the largest and
smallest codes that have projection E are {Em ® Ry + Ry, ® [1000]} and
the trivial code 0, respectively. The code Ep, ® R4+ Ry ® [1000] has length
4m and dimension m, and hence the dual code {E ® Rs + R ® [1000]}*
consists of 23™ codewords. This implies that the number of weakly-odd
words in Fg™ is 23m — 23m-1 = 93m~1_ Therefore we have the following
corollary.

Corollary 3 The number of odd, even, and weakly-even vectors in the
vector space F4™ are the same and equal to 23™~1,

3 Reed-Muller Codes and the [32, 16, 8] Quadrat;
Residue Code

3.1 Reed-Muller codes

Let a = (aj,az,...,a,) and b = (b1,bo,...,b,) be two n-tuples. The
Boolean product of a and b is defined as ab := (a3by,...,a,b,). The
product of i n-tuples is referred to as a Boolean product of degree i. Given
a positive integer m, consider the 2™ — tuples vy, vy, ..., and v, such that
vo has Hamming weight 2™, and v;, 1 < i < m, is the concatenation of
2™—1 jdentical blocks of length 2¢, each of which is divided into 2 sub-blocks
of length 2:~! such that the first sub-block is the string of all ones, and the
second sub-block is the string of all zeros.

Let 0 < r < m, and S be the set consisting of vo and all the Boolean
products of the elements of D = {v;,Vs,...,Vn} up to degree r. The
subspace of F§ , generated by S is defined as the r** order Reed-Muller
(RM) code of length 2™, and is denoted by R(r,m). The set S is a linearly
independent set of vectors. Therefore, R(r,m) is a [2™,3 1, (7),2™7]
code with a generator matrix G}, whose rows are precisely the elements of
S. For example, R(2,4), has the following generator matrix

- vo - 1111 1111 1111 1111 -
va 1111 1111 ©COO 0000
va 1111 0000 1111 0000
va 1100 1100 1100 1100
vi 1010 1010 1010 1010
G2 = |Vevs | = |TTII1 0000 0000 G000
veva 1100 1100 0000 00CO
Vavi 1010 1010 0000 G0CO
vava 1100 0000 1160 GCGO
vavi t 1010 0000 1010 0000
[ vavy J 1000 1000 1000 1000

The first five rows of this matrix represent the first-order RM code R(1,4).
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Thus R(1,4) has projection SE onto the additive code [ prit ] In

fact, the first-order RM code R(1,m) has projection SE onto the additive
code R, ® [ ! ] [1]).

The generator matrix G2 shows that R(2,4) has projection E onto
R(1,2) + wR(1,2). Examining the generator matrix of R(2,m), it is clear
that for any m this code has projection E onto R(1,m —2) +wR(1,m —2).

The code R(r, m) has projection E if and only if the dual code R(r, m)* =
R(m —r —1,m) contains E,, ® R4 + Rm ® [1000]. Obviously, for any t > 2,
the code R(t,m) includes R, ® [1000] = vyv,. On the other hand, it fol-
lows from Y% (™;2) = 2™~2 — 1 that the smallest integer ¢ for which
R(t,m) contains E,, ® R4 is m —3. Setting m —3 = m —r —1, we conclude
that only the second-order RM codes and their subcodes have projection
E.

3.2 The [32,16,8] quadratic residue code

It is known that out of five Type II [32,16,8] codes, exactly three codes
2916, 8f1, and r32 have projection E, and hence the quadratic residue (QR)
code g3z does not have this property [7]. In this section we show that gsp
contains a 14-dimensional subcode having projection E and therefore it may
be referred to as a code with

semi-E projection.

Proposition 4 The [32, 16, 8] QR code contains a 14-dimensional subcode
with projection E.

Proof A generator matrix for the uniformly efficient permutation of the
[32,16, 8] QR code in [2] is given by

11111111000000000000000000C00000
111060010111100000000000000000000
10111000110011000000000000C00000
1010011001001011600000000000C000
00000000000000000000000011111111
00000000000000000000111101010101
0000000000000000001100110111¢010
M= 00000000000000001101011100000110
— 000111101110600100101000001000001
01100110010000000000010001000010
00100010011000160001000001000100
160010001000100000010100010010600
00111100010000100000000001010000
11100010011010160100010001100000
01100000011000000101010100000060
00110000100010000101011000000000
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Applying the following permutation 7 and a few elementary row operations
to this matrix, we obtain the matrix M,, given below.

1 2 3 4 5 6 v 8 9 10 11 12 13 14 15 16

2 3 4 8 6 7 1 5 9 11 10 12 13 15 14 16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ’
18 20 17 19 21 23 22 24 30 26 31 28 32 25 29 27

- 1111 1111 0000 0000 0000 (0000 0000 0GO0
0000 1111 1111 0000 0000 0000 0000 0000
0000 ©0COO0 1111 1111 1111 1111 0000 QOGO
0000 0CO0 0000 0©0CO0 0000 1111 1111 0000
0000 0000 ©CG00 0000 0000 G000 1111 1111
0111 0111 0111 0111 0111 0111 0111 0111

M, 5 1010 1010 1010 1010 O©0C0O 0000 0000 COCO

M. = M. — 6C00 0000 0000 00CO 1010 1010 1010 1010
932 — 9 - 0110 1001 0000 1111 0011 0110 GGCO 0000
Mz 0c0O 0110 0101 0110 0101 1100 1100 OCCO

0000 0011 1010 1100 0101 0000 0000 0COO
0000 0000 1001 1001 0101 0101 0000 0000
0000 ©00CO 0011 0011 1001 1100 0110 O0l1
0000 0000 0000 0101 1001 1010 0110 0000
0000 0000 0011 1101 0100 1010 0000 0000

| 0000 00CO0 0000 0000 0111 0111 0111 0111

By inspection one can easily verify that among the first 14 rows of M,,,
the sixth row is weakly-odd and the rest are even, and hence g3; contains
a 14-dimensional subcode with projection E onto the (8,28,4) quaternary
additive code C4(ga2) with generator matrix

M, = (2)

coococotiot
coo~BEBOE
o~BEEOOE
L N - NN
CBEEEEOEO
E~LoOo~EBEO
too=0Of O
o~0O0O0OE ©

Note that under the mapping Proj, the last row in M,, is projected onto
0 € F$, and hence a 15-dimensional subcode of g3 is projected onto C4(g32).
This projection, however, is not one of the three projections SE, E and O,
as the last row of Mg, is not column-uniform. =

Consider ri4 + ris, the sum of the 14th and 15th rows of M,,,. The
quaternary vector Proj(r;4 + rjs) has Hamming weight 3. Therefore, by
the mapping Proj, this presentation of g3 is projected onto an additive
(8,29, 3) quaternary code and the mapping has a 7-dimensional kernel with
basis consisting of the first six plus the last rows of matrix M,,. Note that
this is just one dimension less than the kernel of the three Type II [32, 16, §
codes, including the BCH code introduced by (1), that have projection
E [7]. From perspective of the size of the kernel of Proj, to the best of
our knowledge, this presentation of g3z is better than any given in the
literature. We conjecture that, under the mapping Proj, the kernel of any
representation of g3z has dimension at most 7.
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