On Multiplicity of triangles
in 2-edge colouring of graphs

V Vijayalakshmi
Department of Mathematics
Anna University
MIT Campus, Chennai - 600 044, India
e-mail: vijaya.v@hotmail.com

Abstract

We denote by G(n), the graph obtained by removing a Hamilton
cycle from the complete graph K,. In this paper, we calculate the
lower bound for the minimum number of monochromatic triangles
in any 2-edge colouring of G(n) using the weight method; Also,
by explicit constructions, we give an upper bound for the minimum
number of monochromatic triangles in 2-edge colouring of G(n) and
the difference between our lower and upper bound is just two.

1 Introduction and background results

If F and G are graphs, define M(G, F) to be the minimum number of
monochromatic G that occur in any 2-colouring of the edges of F. M (G, F)
is called the multiplicity of G in F. A.W.Goodman (2] has proved that

M(Ks,K.,) = %u(u—l)(u—?) if n=2u
= %u(u—l)(4’u+l) ifn=4u+1

= §u(u+1) (4u—1) ifn=4u+3

where u is a nonnegative integer. A cycle in a graph is said to be a Hamilton
cycle if it contains all the vertices of the graph. We denote by G(n), the
graph obtained by removing a Hamilton cycle from the complete graph K,.
In this paper, we calculate the lower bound for the minimum number of
monochromatic triangles in any 2-edge colouring of G(n) using the weight
method. Also, by explicit constructions, we give an upper bound for the
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minimum number of monochromatic triangles in 2-edge colouring of G(n)
and the difference between our lower and upper bound is just two. The idea
of proof in this paper is similar to the one used in the papers of Goodman
[2] and Sauve [4] but somewhat more complicated due to the fact that we
are not dealing with complete graphs. We follow the method of weights
given in [4). For the basic definitions and notations used in this paper, we
follow [1].

2 Method of Weights

Let G = G(n) . Our aim is to find out the minimal number of monochro-
matic triangles when the edges of G are coloured with two colours. For
this we give weight to each pair of edges at every vertex p of G. Let A(p)
be the set of all pairs of edges at a vertex p in G. Suppose a € A(p). We
define W(a) = 2, if both the edges are of the same colour and W(a) = —1
otherwise. For every vertex p of G we define W (p), the weight at the vertex

pitobe Y  W(a). Let W(G)= ) W(p). where V(G) is the vertex
a€A(p) pEV(G)
set of G. We define the weight of the graph G as W(G).

Let B be the set of all subgraphs of G induced by any three of the
vertices of the graph G. As any pair of edges at a vertex p of the graph G
lies in exactly one subgraph of G induced by three vertices we get W(G) =
Z W (B). These subgraphs in B fall under any one of the following 4 sets.
BeB

1. S), the set of all subgraphs induced by 3 vertices such that the sub-
graphs have 3 edges of the same colour.

2. Sy, the set of all subgraphs induced by 3 vertices such that the sub-
graphs have 3 edges, not of the same colour.

3. Ss, the set of all subgraphs induced by 3 vertices such that the sub-
graphs have 2 edges of the same colour and a nonedge.

4. Sy, the set of all subgraphs induced by 3 vertices such that the sub-
graphs have 2 edges of different colours and a nonedge.

Clearly
W(B) = 6, ifBeS
W(B) = 0, ifBeS;
W(B) = 2 ifBe€S;
W(B) = -1, if Be S,
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Hence
W(G) = 6|S1] + 2|S3| — |S4],

where for any set X, | X| denotes the cardinality of the set X. Thus
1
1] = z (W(G) - 2|Ss| + |S4]).

Let S3(p) be the number of elements of the set S3 where the two edges of
the same colour are incident at p and S4(p) be the number of subgraphs of
the set S4 where the two edges of opposite colours are incident at p. It is
easy to see that |S3| = 2 Ss(p) and |Sy| = Z S4(p). Therefore we

PEV(G) - PEV(G)
get,

|sl|——( Y w-2 Y S+ Y s4(p) (1)
p

€V(G) PEV(G) PEV(G)

Also whatever be the colouring of the graph G, S3(p) + S4(p) is a con-
stant, as this is precisely the number of pairs of edges {pv, pw} such that
vw € E(G), where E(G) is the edge set of G. Therefore at any vertex p,
maximizing Si(p) is equivalent to minimizing Sy(p). From equation (1) the
graph G will have the minimum number of monochromatic triangles if it
satisfies the following two conditions.

(*)1 At every vertex p of G, almost equal number of edges of each colour
are incident with.

(x)2 At every vertex p of G, whenever v;v; is a nonedge, the edges pv;
and pv; are of the same colour.

If a graph G with 2-colouring of the edges has the minimum number of
monochromatic triangles then that colouring of G is said to be a minimal
colouring. From the forgoing discussion we get the following Proposition.

Proposition 2.1 Let G be a graph on finite number of vertices. A two

colouring of the edges of G will be a minimal colouring if the coloring sat-

isfies the conditions (x); and (¥)s.

3 Multiplicity of Triangles in G(n)

Let the vertices of K, be vy, vs,...,v,. Suppose we remove the edges
V1v2, U203, ...; Un—1VUn, Unl1

to get G(n). We shall colour the edges of G(n) with the two colours red
and blue.
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Proposition 3.1 M(K3,G(n)) =0 for all n < 11.

Proof : Note that G(n — 1) is obtained from G(n) by deletion of one
vertex and one edge. It then follows that the restriction of the coloring
of G(n) gives a colouring of G(n — 1). Therefore, it suffices to prove the
statement for G(11) alone. Now we give a construction of G(11) which has
no monochromatic triangles.

Let v1,vs,...,v11 be the vertices of G(11). For 1 < 4,5 <11, vvj is a
red edge only if

j=i+2 i+3, i—2, i3 (mod 11).

To see that there is no monochromatic triangle in this construction, it
suffices to look at the edges incident at v;. v; is adjacent to vs,v4, V10, g
by red edges and between these vertices there is no red edge. Similarly,
there is no triangle of blue colour. So,

M(K3,G(11)) = 0.
Hence, M(K3,G(n)) =0 for all n < 11. u

Hereafter, in all our discussion in this paper, we consider n > 12.

In G(n), the degree of each vertex will be n—3. S3(p)+Sa(p) =n—4at
each vertex p. If condition ()2 is to be satisfied at a vertex p, then all the
edges incident at that vertex should be of the same colour and so condition
(*)1 cannot be satisfied at p. So, if condition (*); is to be satisfied at any
vertex p, then Sy(p) > 1.

Lemma 3.2 Let p be any verter of the graph G(n). The number of mono-
chromatic triangles in any 2-edge colouring of the graph G(n) is more when
Sa(p) is zero than when Sy(p) = 1 and condition (x); is satisfied at p.

Proof : Recall the Weight Equation (1.1),

|s1|=§( > W) -2 ) Ss(p)+ Y. s4(p)).

PEV(G) PEV(G) PEV(G)
Let T(p) = W(p) — 2S3(p) + Sa(p). At any vertex p of G(n),
S3(p) + Sa(p) =n —4.

Case 1 : Let S4(p) = 0. Then all the edges incident at p are of the same
colour. Note that in this case condition (), is far from satisfied. Hence,

n—3

10) = 2(";°) - 2=
(n—3)(n—4)-2(n—4)
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Case 2 : Let (x); be satisfied at p and Sy(p) = 1.

T(P) = 2(;) +2<§4{) —zy—2n-5)+1

where z = y = 253 if n — 3 is even and
z=[252] and y = [25%] if n — 3 is odd.

From the above two cases it is clear that T'(p) in Case 1 is greater than
T(p) in Case 2. Hence, the number of monochromatic triangles is more in
Case 1 than in Case 2. u

Hence, in any minimal colouring of G(n), (x); is satisfied and
Si(p) > 1 at each vertex p. Let p be a vertex of G(n) such that (x); is
satisfied. Then from the Weight Equation (1.1) it is easily seen that the
number of monochromatic triangles in G(n) is less when S4(p) = 1 than
in the case S4(p) > 1. In fact, the number of monochromatic triangles in
G(n) increases by half when S,(p) increases by one at any vertex p.
Notation : We read the subscripts modulo n, i.e.,

v = vg if a=pg (modn).

Definition 3.3 Let n = 2m for some m € N. Two vertices v; and v; are
said to be diagonal vertices in G(n) if i — j = m (mod n).

Proposition 3.4 Consider G(n) where n > 12. Given any 5 vertices in
G(n) then,

(%) there exist three vertices among these five such that any two are adjacent
ifn=2m+1 for some m € N.

() there ezist three vertices among these five such that any two are adjacent
end no two of them are diagonal vertices if n = 2m for some m € N.

Proof: Case 1: n=2m+ 1.

Note that in G(n) every vertex is adjacent to all but two vertices. Let H
be the subgraph induced by the given five vertices. Then each vertex has
degree at least 2 in H. Since n > 12, at least one vertex has degree at least
3. Clearly there is a cycle in H. If it is a 3-cycle, we are done. Otherwise
we have a 5-cycle and since at least one vertex has degree at least 3, we
have a chord of this 5-cycle which produces a triangle.

Case 2 : n =2m.

Using the proof given in Case 1, we get three vertices say v;, v;, v, such that
any two are adjacent. If no two of these three vertices are diagonal vertices,
we are done. Suppose v; and v; are diagonal vertices. Now consider the
other two vertices say, v; and v,,. These two vertices are adjacent to at
least one of v; and v;. Without loss of generality assume that v; (or vy,) is
adjacent to v;.
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Sub-Case (a) : v (or vy,) is adjacent to vg.

(i) v (or v;,) and vy are not diagonal vertices. Then, v;, vk, v (or vm) are
the required vertices.

(ii) v (or vm) and v are diagonal vertices. Then v,, (or v;) lies between
any two of the remaining four vertices. Without loss of generality assume
Um lies between v; and vx. Then v;, v, v are the required vertices.
Sub-Case (b) : v; and v, are both non-adjacent to vy.

Assume without of generality that in the clockwise order we have

Vi, UL, Vky Um, Vj

where v; and vy, are non-adjacent to vx. Since n > 12, one of v;u; or vv;
must be an edge. We then get the triangle v;vjvm, or vjunu;. u

Proposition 3.5 Consider a colouring of G(n) such that (), is satisfied
and Sy(p) = 1 at each vertex p. Then, there are at most 4 vertices p such
that S4(p) = 1 in this colouring.

Proof : Let v;,vs,...v, be the vertices of G(n). The proof is essentially
based on the following idea.
For any vertex v; with Ss(v;) = 1, if we look at the edges vv; incident at
v then we find a band of red(blue) edges on one side (about half as degree
of v;) and a band of blue(red) edges on the other side (as we move on the
Hamilton cycle).
Case 1 : Let n = 2m + 1 for some integer m > 6.
If v; is any vertex of G(n) such that (), is satisfied and S4(v;) = 1, then the
edges 4,2 < t < m are of one colour and the edges viv;—:,2 <t < m
are of the other colour.

Suppose there exist 5 vertices p such that Sy(p) = 1. Then there exist
3 vertices among these 5 say, v;, v;, vk such that any two are adjacent (by
Proposition 3.4). This implies that there exists a vertex € {v;,v;, vk} say
v; such that v;v; and v;vi are of the same colour.

Let v;v;, v;vx be red. Without loss of generality we can assume that

Vj, Vk € {'Ui+g l 2$t5m} and

j—1i(modn) <k—1i(modn).

Now, S4(vk) = 1 and viv; is red implies that vxv; is also red. So, v;v; and
vjv; both are red. This implies, S4(v;) > 1, a contradiction.

Case 2 : Let n = 2m for some integer m > 6.

If v is any vertex of G(n) such that (), is satisfied and S4(v;) = 1,
then the edges vjvi4:,2 < t £ m — 2 are of one colour and the edges
U—t, 2 < t < m — 2 are of the other colour.
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Suppose there exist 5 vertices p such that S4(p) = 1. Then by Propo-
sition 3.4 there exist 3 vertices among these 5 say, v;, v;, v such that any
two are adjacent and

i—j, j—k, k—i#Em-—1 (mod n).

This implies that there exists a vertex € {v;,v;, vk} say v; such that v;v;
and v; v are of the same colour.
Let vivj, v;vx be red. Without loss of generality we can assume that

v,-,vke{v,-+¢|2$t5m-—2}and

j—1i (mod n) < k—1i (mod n).

Now, S4(vx) = 1 and vyv; is red implies that vxv; is also red. So, v;v; and
v;jv both are red. This implies, S4(v;) > 1, a contradiction.
From the above two cases it is clear that S4(p) = 1 in at most 4 vertices. U

From Proposition 3.5, we get the following theorem.

Theorem 3.6 Let a(n) be the number of monochromatic triangles in G(n)
where, (%) is satisfied, S4(p) = 1 at four vertices and S4(p) = 2 at all other
vertices p. Then, M(K3,G(n)) > a(n) where a(n) is equal to

1 (uB-Tu?+16u—6) if n=2u,
1 (8u® -30u2+22u+3) ifn=4u+l,
3 (Bud—18u-2u+6) ifn=4u+3,

and u is a non-negative integer.

Proof : Case 1 : n = 2u where u is a non-negative integer.

The degree of each vertex in G(n) is 2u—3. By Condition (%), the weight of
each vertex is minimum when its degree pair is (u—1,u—2) or (u—2,u—1).
Also, S3(p) + S4(p) = 2u — 4. From the Weight Equation (1.1),

615 > 2u {2 (“'2'1) +2 (“;2)- (w—1)u—2)} +
+(2u—4) {Qu-6)(=2) + 2}

+ 4{(2u—5)(-2) + 1)

2u® — 14u? + 32u — 12

— 15 > %(u3 — 7u? 4+ 16u — 6)

Case 2 : n = 4u + 1 where u is a non-negative integer.
The degree of each vertex in G(n) is 4u — 2. By Condition (*);, the weight
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of each vertex is minimum when its degree pair is (2u—1,2u—1). But since
the number of vertices is odd, all the vertices cannot have odd degree, i.e.
2u — 1. So, to attain the next possible minimum, one vertex should have
degree pair (2u,2u — 2). Also, S3(p) + Si(p) = 4u — 3. From the Weight

Equation (1.1),
tu {2 (21/,2— 1) + 2 (2u2— 1) ~ Qu-1)?%)

+1{2 (2;) + 2 (2u2_ 2) — 2u(2u-2)}

+ (4u - 3) {(4u - 5)(-2) + 2}
+ 4 {(4u—4)(-2) + 1}
1613 — 60u? + 44u + 6

= |5 > %(8u3—30u2+22u+3)

6/51|

v

Case 3 : n = 4u + 3 where u is a non-negative integer.

The degree of each vertex in G(n) is 4u. By Condition (x);, the weight
of each vertex is minimum when its degree pair is (2u,2u). In this case,
S3(p) + Sa(p) = 4u — 1. From the Weight Equation (1.1),

6151 > (du+3) {2 (22“) +2 (22" ) - (2u)?}

+ (4u—1) {(du—-3)(-2) +2}
+ 4 {(4u - 2)(-2) + 1}
16u® — 36u — du + 12

= |S1] > %(su3 — 1842 — 2u 4+ 6)

4 An upper bound for M(Kj3, G(n))

Condition C1 :
A colouring of G(n) is said to satisfy condition C1 if it satisfies condition
(*)1 and S4(p) = 2 for all vertices p of the graph G(n).

Now, using induction we prove that for all n > 12, there exists a colour-
ing of G(n) satisfying Condition C1.
Condition C2 :
Let u be a non-negative integer. A colouring of G(n), where n = 4u, is said
to satisfy condition C2 if 2u 4 2 vertices of G(n) have red degree 2u — 2
and the remaining 2u — 2 vertices have red degree 2u — 1.

We give only the red edges in all the constructions below.
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Lemma 4.1 When n = 12, there ezists a colouring of G(n) such that
conditions C1 and C2 are satisfied.

Proof : Let n = 12, which is of the form 4u, where u = 3.

Let vy,v2,...,v12 be the vertices of the graph G(n). The degree of each
vertex is 9. So, to satisfy condition (), the red degree at each vertex
should be 4 or 5. Consider the construction of G(12) given in Figure 1,
only with the red edges present.

Figure 1:

In this construction, 2u+2 = 8 vertices have degree 4 and the remaining
2u — 2 = 4 vertices have degree 5. Also at each vertex p, S4(p) = 2. So,
both the conditions C1 and C2 are satisfied. u

Lemma 4.2 Let u be a non-negative integer. If there exists a construction
of G(n), where n = 4u and u > 4 such that conditions C1 and C2 are
satisfied, then

(a)There ezists a construction of G(du + 1) satisfying condition C1.
(b)There exists a construction of G(4u + 2) satisfying condition C1.
(c)There exists a construction of G(4u + 3) satisfying condition C1.
(d)There ezists a construction of G(4u + 4) satisfying conditions C! and
C2.
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Proof : Step 0 : Assume that there exists a construction of G(4u), where
u is an integer > 4, satisfying conditions C1 and C2. This implies that
2u + 2 vertices say,

V1,V2y. .0y Vutl and V3u)y V3u+1y- -+ Vdu

have degree 2u — 2 and the remaining 2u — 2 vertices have degree 2u — 1.
Also at each vertex p, Sy(p) = 2.
Stepl:n=4u+1.
The degree at any vertex is 4u — 2 and so to satisfy condition (%);, red
degree at any vertex should be 2u — 1. Since the number of vertices is odd,
all the vertices cannot have red degree 2u—1. So to attain the next possible
minimum let one vertex have red degree 2u or 2u — 2.

Add the vertex v4u41 to the construction obtained in Step 0 and join
the vertices as below.

Join v; and vg,,. Join vg,41 with the vertices

V2,U3,...,Vus1 aNd U3y,...,Vqyu-1.

Now all the vertices except v4.41 have degree 2u — 1 and the vertex
V4y+1 has degree 2u. Also at each vertex p, S4(p) = 2. So, condition C1 is
satisfied.

Step2:n=4u+2.
The degree at any vertex is 4u — 1 and so to satisfy condition (*);, red
degree at any vertex should be 2u — 1 or 2u.

Add the vertex vgy42 to the construction obtained in Step 1 and join
the vertices as below. Join v4,42 with the vertices

V2,03,..-,Vu~1 and VU3u, V3u+1,-- - V4u-
Now the vertices

V2,V3,...,Vu—1 and Vsy,V3u+41,- .. Vdutl

have degree 2u and all the remaining vertices have degree 2u — 1. Also, at
each vertex p, S4(p) = 2. So, condition C1 is satisfied.
Step3:n=4u+3.
The degree at any vertex is 4u and so to satisfy condition (x);, red degree
at any vertex should be 2u.

Add the vertex v4y+3 to the construction obtained in Step 2 and join
the vertices as below. Join v; and vgy42. Join v4y43 With the vertices

Vuy Vutly---yV3u—-1-

Now all the vertices have degree 2u and also at each vertex p, S4(p) = 2.
So, condition C1 is satisfied.
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Step4:n=4u+4.
The degree at any vertex is 4u + 1 and so to satisfy condition (*),, red
degree at any vertex should be 2u or 2u + 1.

Add the vertex vgy4+4 to the construction obtained in Step 3 and join
the vertices as below. Join v4y4+4 With the vertices vy43, Vusq,-- ., V3ur2.
Now the vertices vy+3,Vu+t4,...,v3u+2 have degree 2u + 1 and all other
vertices have degree 2u.

So we have at 2(u + 1) + 2 = 2u + 4 vertices the degree as 2u and
at 2(u + 1) — 2 = 2u vertices the degree as 2u + 1. Also, at each vertex
P, S4(p) = 2. This construction satisfies both the conditions C1 and C2. U

From Lemma 4.1 and Lemma 4.2 and by induction hypothesis, we get
the following result.

Theorem 4.3 For all n > 12, there exists a colouring of G(n) satisfying
Condition C1.

Let §(n) be the number of monochromatic triangles in G(n) when Con-
dition C1 is satisfied. It is easy to see that for any n, 8(n) is exactly two
more than the number a(n) given in Theorem 3.6 (since the number of
monochromatic triangles in G(n) increases by half when S;(p) increases by
one at a vertex p). Hence from Theorems 3.6 and 4.3 we get the following
result.

Theorem 4.4
M(K3,G(n)) =0 for all n < 11 and
B(n) — 2 < M(K3,G(n)) < B(n) for all n > 12

where B(n) is the number of monochromatic triangles in G(n) such that
(*)1 is satisfied and Sy(p) = 2 at all vertices p and B(n) is equal to

3 (3 — 7u? + 16u) if n=2u,
%(16u3-60u2+44u+18) ifn=4u+1,
5 (16u® —36u2 —4u+24) if n=4u+3.
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