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Abstract

Two classes of regular Cayley maps, balanced and antibalanced,
have long been understood, see [12,11]. A recent generalization is
that of an e-balanced map, see [7,2,5,8]. These maps can be described
using the power function introduced in [4]; e-balanced maps are the
ones with constant power functions on the generating set. In this
paper we examine a further generalization to the situation where the
power function alternates between two values.

1 Introduction

The first steps toward the classification of regular Cayley maps appear in the
book of Nathan Biggs and Arthur White [1]. The work of Josef Sirai and
Martin Skoviera [12,11] gave complete descriptions of two classes of inverse
distributions of regular Cayley maps, namely balanced and antibalanced
maps. For a balanced map either all the generators are involutions or

ARS COMBINATORIA 85(2007), pp. 369-383



each dart labeled with a generator is symmetric across the vertex from the
dart labeled with its inverse. In an antibalanced map the darts labels and
their inverses are symmetric across a line through the vertex. A recent
generalization of these maps is an e-balanced map. They are introduced
in the paper by the first author, Michelle Schultz, and Martin Skoviera [7]
and also appear in the papers [2,5,8]. In particular the inverse distributions
of e-balanced maps are discussed in [5, 8]. A balanced map is a 1-balanced
map and an antibalanced map is a (—1)-balanced map.

In [4], Robert Jajcay and Josef Siréi introduce the concepts of skew-
morphisms and power functions to unify the study of regular Cayley maps.
An e-balanced map is one where the power function is constant on the
generating set. In this paper we examine the situation where the power
function alternates between two values on the generating set. Section 2
contains preliminary definitions. In Section 3 we introduce a necessary
and sufficient condition for the power function to repeat. Section 4 studies
the automorphism groups of regular Cayley maps with alternating power
functions. Finally Section 5 describes their inverse distributions.

Most of the results presented herein originally appeared in the second
author’s dissertiaton [13].

2 Preliminaries

Intuitively a map of a graph is a “drawing” of the graph onto an orientable,
closed surface so that edges intersect only at their vertices. We follow
the theoretical background and terminology of Nedela and Skoviera, set
forth in [9]. A graph is a quadruple K = (D, V; 8, L), where the dart set
D = D(K) and the vertez set V = V(K) are disjoint nonempty finite sets,
the function S : D — V assigns to each dart its initial vertex, and L is a
permutation on D of order 2 that determines the edges of the graph (dart
6 and L(J) together correspond to one and the same edge of the graph; the
dart L(0) is the reverse of §). Under this definition, there are three possible
kinds of edges: links, loops, and semiedges. Links are incident with two
distinct vertices (SL(d) # S(d)). Loops and semiedges are incident with a
single vertex (SL(8) = S(J)); when L(8) = §, the dart § corresponds to a
semiedge, and when L(d) # 4, the dart § corresponds to a loop. Thus a
link or loop of a graph gives rise to two darts, while a semi-edge gives rise
to only one dart.

An oriented map M is a 2-cell embedding of a graph K in an oriented
surface; all maps in this paper will be oriented. Specifically, M is an ordered
triple (D; R, L), where D is the set of darts, L is the permutation of D of
order 2 that determines the edges of the graph, and R is a permutation of
D that specifies the cyclic ordering (as induced by the orientation of the
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surface) of darts at each initial vertex, i.e., S(R(d)) = S(9), for all § € D.
The cycles of R determine the vertices of the graph, and the cycles of RL
constitute the region boundaries.

An automorphism of the map M = (D; R, L) is a bijection © : D —
D that commutes, under the operation of composition, with R and L,
i.e,, R = RO and 6L = LO. By this definition, a map automorphism
preserves a map’s vertices, edges, and oriented boundary regions. The set of
all map automorphisms of M forms the automorphism group of M, which
is denoted by Aut M. Since an automorphism of M is uniquely determined
by specifying the image of one dart, [Aut M| < |D|. When |Aut M| = |D|,
the map M has the largest possible automorphism group and is called a
regular map. Recently, certain classes of regular maps have become known
[3, 7, 11, 1] through the study of Cayley maps.

To define Cayley graphs and Cayley maps, we turn to the terminology
of Richter, Sirdi, Jajcay, Tucker, and Watkins, set forth in [10]. Let G be
a group and X be a finite sequence (z;,s,...,zk) of elements of G that
generate G and is closed under inverses; it is possible that z; = z; though
i # J, and it is possible that X includes e, the identity element of G. Let
A ={1,2,...,k}, and let 7 : A — A be an involution with the property
that z,(;) = ! for each i € A. The Cayley graph CG(G, X, 7) has vertex
set G, and for each g € G and i € A thereis a dart (g, ¢) incident from vertex
g. The reverse of dart (g,%) is L(g,%) = (9zi, 7(7)). Aside from semi-edges,
when z; = e and 7(?) = 4, the dart pair (g,7) and L(g, ) together determine
one and the same undirected edge; thus the Cayley graph CG(G, X, 7) is
an undirected graph (possibly with semi-edges) whose darts are labeled by
A. The group G is the Cayley group, and the involution 7 is the inverse
distribution. The dart set of the Cayley graph is G x A, and the initial
vertex function S is defined by S(g,%) = g. Since a Cayley graph is a
connected graph, S is a surjection.

The ordering of the sequence X determines a rotation scheme on the
darts. Let 0 = (1,2,...,k) € Si. The rotation defined for all g and 4 by
the formula (g,7) = (g,0(i)) determines a embedding of CG(G, X, 7) into
a closed, orientable surface. Thus the sequence X yields not only a Cayley
graph, but a Cayley map CM(G, X,7) = M(Gx A; R, L). The Cayley map
M =CM(G, X,7) = M(Gx A; R, L) is the 2-cell embedding of the Cayley
graph CG(G, X, 7) with R(g,1) = (g,0(?)). Again, an automorphism of M
is a bijection © : G x A — G x A such that ©R = RO and ©L = L®©, and
M is regular if |Aut M| = |G||A].

A map automorphism of a regular Cayley map that we consider in
particular is translation by an element of the group. Ife,g € G and i € X,
with e the identity element of G, then the map automorphism Ag: D(M) —
D(M) is defined as, for every h € G,i € A, Ay(h,i) = (gh,%), and in
particular, Ag(e,?) = (g,7). This is a left G-action on D(M): Ae(h,i) =
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(eh,i) = (h,i) and Ag,q,(h,2) = (9192h,%) = Aq,(g2h,%) = Ag, Ag,(h,7).
Hence the function ® : G — Aut M, defined by ®(g) = Ay, is an injective
group homomorphism, and shows that G is isomorphic to a subgroup of
Aut M, or, loosely speaking, G < Aut M.

Another map automorphism of a regular Cayley map is the first rotary
automorphism. The first rotary automorphism is the automorphism of M
defined on the neighborhood of the identity by ¢ : G x A — G x A, where

$(e,3) = (e,0(1)-

Consider (e, ), a specific but arbitrary dart incident from the identity
vertex e. Since a map automorphism is determined by where it sends (e, ¢),
we can take the dart (e, %) to dart (g, j) by first rotating dart (e, i) to (e, 7)
by means of ¢7~%, then send that dart to (g, j) by means of Ay. Hence, we
see that G and ¢ together generate all of Aut M, that is, any automorphism
of M can be uniquely written as Aj¢™ for some g € G and m € A, i.e.,
Aut M = G(¢).

The following theorem was discovered independently by the two groups
Richter, Siraf, Jajcay, Tucker, and Watkms, and the first author, Schultz,
and Skoviera.

Theorem 2.1 ([10], [7]). Let M = CM(G, X, 7) be a regular Cayley map
with k = | X|. Then there is a right Aut M-action on the set A.

Since Aut M is the group G{(¢), for any @ € Aut M and i € A, there
is some h € G and j € A such that (¢')a = Ar¢’. Consequently, we may
define the action of & on A by (i)a = j.

The action of the automorphisms on A induces a homomorphism

A Aut M — Sg.

The image of Aut M under ) is generated by o and 7, Im A = (o, 7) [10].

In [4], Jajcay and Sirii show that a Cayley map is regular if and only if
there exists a skew-morphism p : G — G and a power functionn : G — A
such that the first rotary automorphism is given by

#(g,4) = (u(g), 0™ (3))
and for g,h € G, 1 € A,
p(gh) = p(g)u™ @ (h),

(i) = Zo(s)s

and
w(g)-1

n(gh) = D m(u'(h)),

i=0
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where the sum is taken in Zx. Hence the first rotary automorphism, skew-
morphism, and power function are all determined by the values of the power
function on X. Note since ¢ commutes with R, the power function is
evaluated on z;, not on 1.

Consequently, for i € A,

7(0()) = 6" (r(3)), (1)

since L¢ = ¢L.
Finally in [6] (and implicit in [10]) is the following theorem.

Theorem 2.2 ([6]). A group A is the automorphism group of a reqular
Cayley map if and only if both A = (s,t), t an involution, and there is a
subgroup G < A such that A= {gs'| g € G} and GN (s) = 1.

The regular Cayley map is constructed from the group A in the following
manner. The vertex set is the group G. Let s have order k. For each
1<i<k, s't=g;s! for some g; € G and some 1 < j < k. The set X =
{91,92,--.,9x} generates G and is the set of dart labels. Furthermore, g; =
97!, and A is the automorphism group of the Cayley map CM (G, X,7),
where 7(?) = j.

3 Power Functions with Repeated Blocks

Since o and 7 generate the image of Aut M under A we are interested in
the relationship between ¢ and 7. Equation 1 tells us this is determined by
the power function 7 on X. If for each i, 7(z;) = a;, we will write

T=0Qa1,Q2,y...,0k.

We begin our analysis by observing that the values of 7 on X are in fact
determined by 7.

Proposition 3.1. Let CM(G, X, 7) be a regular Cayley map with power
function w, then forie A,

m(zi) =7(i +1) - 7(3),

where the difference is in Z;,.
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Proof. Since 6™ (i) = 7(i) + m(z:) and 7(0(4)) = 7(i + 1), we see from
Equation (1) that, for each i, 7(z;) = 7(i + 1) — 7(3). O

Hence the power function is determined by the image of Aut M under
Ain Sk.

We are particularly interested in power functions that exhibit a repeated
pattern or block when written in the above manner, i.e.,

T =01,82,+..,0d,81,82,.+-,8dy+-,81,02,...,084.

Clearly d divides k.
The existence of such a repeated pattern is easily identifiable by the
group structure of the image of Aut M under A.

Theorem 3.2. Let CM(G,X,7) be a regular Cayley map such that k =
|Al is a multiple of some d; let A = {o,7) = A(Aut M). Then (o) is
normal in A if and only if the power function m has the repeated pattern
ay, ap, ..., a4, a1, az, ..., a4, ..., a1, @2, ..., @4d.

Proof. (=)

Letl = £. If (09)aA = (0,7), then 7(¢?)7~! = 0% forsomec,1 < c < L.
For every dart 7 in the dart rotation o, 7(i + 1) = n(z;) + 7(¢), where n(z;)
comes from Zg, and so (i + d) = 7(z;) + 7(zi41) + - - - + 7(Zita—1) + 7().
But 7(i + d) = 76%(3) = 0%7(3) = 7(4) + dc, so

7I‘.(a:i) + 7|'(.'Bi+1) +---+ 7f($§+d_1) =dc

forevery i,1 < i < k. Thus in particular, m(zi41) +7(Zis2)+- - +7(Tita) =
de, and so 7(Zi+q) — m(z;) = dec — dc = 0 mod k, or

m(Tivd) = 7(z;), for every i.

Thus we see that every dth element of 7 repeats. Let m(z;) = a; for 1 <
i < d; then 7 = ay,49,...,a4,01, 2, ...,44, ...,01, 02, ...,a4. In particular,
a1+ a2+ ...+ a4 =dec

(«=)

Let 7 = a3, a2,...,a4,01,02,...,04,-...,01,03, .. ., G4 be the power func-
tion for a regular Cayley map. Then by Proposition 3.1 7( + d) = 7(¢) +
a1 + az + - - - + ag. Consequently, 7(¢ + k) = 7(3) + l(a1 + a2 + - - - + aq).
Thus I{e; + az +--- + ag) = 0 mod & and so

a+ap+---+aeg=dec (2)
for some c. Therefore,

ro?(i) = (6 + d) = 7(i) + dc = o%°7(3),
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for every i € A. Hence

et =o%r = 70t =0% € (09), (3)

it follows that (o) is normal in A. o

The above result is closely related to the following.

Theorem 3.3 ([6]). Let M = CM(G,X,7) be a regular Cayley map
with first rotary automorphism ¢ and valence k. Then the Cayley graph
CG(G, X,

7) has 5 multiple edges between any two vertices if and only if (¢%) is
a normal subgroup of Aut M, where d is a divisor of k.

Consequently, if the power function for a regular Cayley map M has a
repeated block, then the Cayley map M/K obtained by identifying vertices
in the same right coset of K = Ker A has multiple edges. Note K < G <
Aut M [7].

(1 1)
6
) ;
(135) N
Xi... /
4
4'X1‘ : by
XN{153) 2 R
3
X (b)
(1) {1)
(a)
Figure 1:

Example 3.4. If A = ((1,2,3,4,5,6),(1,2)(3,4)(5,6)), then Theorem 2.2
produces a regular Cayley map M = CM(G, X, 1), where G = {(1), (135),
(153)} = Z3, X = ((153), (135), (153), (135), (153), (135)), 7 = (1,2)(3,4)
(5,6), the power function = = 1,3,1,3,1,3, and Aut M = A =2 Z3 x D;
(see Theorem 4.2 below). In this case K = Ker A = 1, since A is already
a subgroup of Sg. The map M = M/K embeds into a torus, and is shown
in Figure 1(a). Notice the multiple edges between the vertices. Figure 1(b)
shows the dart retation at each of the three vertices.
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4 The Image of Aut M under ) for Alternat-
ing Pairs

In this section we concern ourselves with the image of A : Aut M — S,
for power functions with an alternating pattern of = = @, b,a,b,...,a,b. A
regular Cayley map is e-balanced if and only if # = e,e,...,e, and in this
case the image is found in [7]. (The regular Cayley maps called “balanced”
are those for which e = 1, and the ones called “anti-balanced” are those for
which e = ~1.)

Theorem 4.1 ([7]). Let M = CM(G, X, ) be a regular Cayley map of
valence k. Then M is e-balanced if and only if Im )\, the image of Aut M
under A, is isomorphic to either Zy, fore =1 or Zi x Zs, fore # 1.

In the latter case where Im \ & Z; x Z,, the Zj-action is to raise the
generator of Z; to the eth power.

Recall that by Proposition 3.1 #(z;) = (i + 1) — 7(¢). Thus the power
function is determined by the inverse distribution 7 and 7 € Im A. There-
fore, the power function can be recovered from Im .

From now on we will restrict ourselves to the situation that a # b in the
power function.

Theorem 4.2. Let M = CM(G, X, ) be a regular Cayley map of valence
k = 2l with power function # = a,b,a,b,...,a,b, a # b. Then there is a
short exact sequence

1-Z;—»ImA—- D, =1,

where Dy, is the dihedral group of order 2m.
Furthermore, if | is odd, then the short ezact sequence splits, i.e.,

Im A =2 Zy » Dy,

Note we consider Z; x Z; to be D,. We postpone the proof until later
to assemble the necessary lemmas.

Remark 4.3. By equation 2, a+ b = 2¢ mod k, and in the above semidi-
rect product if Z; = (2) and D,, = (z,y), where z and y are both involu-
tions, then the action of D,, on Z; is given by 712z = z and y~ 2y = 2°.

Remark 4.4. When [ is even the short exact sequence need not split. In
particular, it does not split for the group in Example 5.5.

In the special case where a + & = 2 mod k the short exact sequence
will split whether [ is even or odd, and m = I. Thus Im X\ & Z; x D; =
(Zix Zy) ¥ Zy = Z;1Zy. This observation along with the one that the image
of Aut M under )\ determines 7 yields the result:
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Theorem 4.5. Let M = CM (G, X, ) be a regular Cayley map of valence
k = 2l. The map M has the power function # = a,b,a,b,...,a,b, a # b,
a+b=2 mod k if and only if Im A = Zj 1 Z,.

The proof of this theorem will be given after that of Theorém 4.2,

‘We now assemble necessary lemmas for the proofs of the main theorems.

Lemma 4.6. Let M = CM(G, X,7) be a reqular Cayley map of valence
k = 21, where |l is an odd, positive integer, and with power function © =
a,b,a,b,...,a,b where a,b € Z; are each nonzero. Let ¢ € Sy where o =
(1,2,...,k). Then (e®>)N{(c*,7) =1.

Proof. Since o' and 7 are both involutions, {¢*,7) is a dihedral group. An
element of a dihedral group is either a rotation (7¢*)¢ or a flip (ro)*r for
some exponent 1.

Suppose (02) € (0?) N {o!,7). All flips are of order 2 and since the
order of (02)7 is odd, (¢2)’ is a rotation. Thus for some i,

(6?) = (r0') = (r0')i 7o,

Therefore, 02/~! = (7¢*)*~!7 is a flip and hence of order 2. Thus 2j — I =
mod k,s02j =2/ =0 mod kand j =0 mod . O

Lemma 4.7. Let M = CM(G, X,7) be a regular Cayley map of valence

k = 2l, where |l is an odd positive integer, and with power function m =

a,b,a,b, ...,a,b where a,b € Zy, are each nonzero. The permutation To?T =
2c

o,

Proof. This is an immediate corollary of Theorem 3.2; note that a +b = 2¢
mod k, and see equations 2 and 3 in the proof of Theorem 3.2. 0

Lemma 4.8. Let M = CM(G, X,7) be a regular Cayley map of valence
k = 21, and with power function = = a,b,0a,b,...,a,b where a,b € Z;. are
each nonzero and a + b= 2 mod k. Then (10,07} X Z; x Z;.

Proof. 1t follows immediately that 7o and o7 commute by Lemma 4.7. We
need only determine the orders of 7o and o7. Suppose the order of 7o is
m and the order of o7 is n. Since (o7)(70) = o2, | is the least common
multiple of m and n. Observe that (ro)"*! = 7(07)"0 = 70 or (10)" =1,
so m divides n. Similarly n divides m. Thus m = n and they are both
equal to I. ]

We are now ready to prove the main theorems.
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Proof of Theorem 4.2. 1t is easily verified by direct computation that in
order for r = a,b,a,b,...,a,b, a # b to occur we must have k > 6. Let
A=1Im A Define ¢; : Z; — A as ¢,(¢) = (02)%; $1(Z;) = (02) C A. Since,
by Theorem 3.2, (02) is normal in A, there is an induced homomorphism
with (0?) as the kernel that sends A to A/(0?). Define ¢, as this quotient
homomorphism.

The element ¢2(0) is an involution in ¢2(A), since (#2(c))? = ¢2(0?) =
1; the element ¢2(7) is an involution because 7 is an involution. Hence,
¢2(A) is generated by two involutions. Thus ¢2(A) is a dihedral group.
Therefore, we have the short exact sequence.

When [ is odd, ¢2(0') = ¢2(0), and ¢2(A) = (¢2(c), $2(7)); by Lemma
4.6, (0®) N {o',7) = 1. Since (0?) = ¢1(Z;) is a direct summand of A, the
sequence splits. Let £ = ¢!, y = 7, and z = 0%. The action of = on z
is 0=4(0%)o' = o and the action of y on z is 7(¢%)7 = (02)° by Lemma
4.7. O

Proof of Theorem 4.5. As before we have k > 6. We will use the presenta-
tion
2 Z; = (z,y,2 | o = y' = Zz,xy = YT, 232 = Y).

(=)

Let # = a,b,a,b,...,a,b with a # b. By Lemma 4.8, {o7,70) &£ Z; x Z;.
Furthermore, since 7(o7)7 = 70, we have Im A = (0, 7) = Z; 1 Zs.

(«<)

Assume that f : Im A — Z{1Z, is an isomorphism. An arbitrary element
of Z; 1Z; is of the form z'y’z¢, where 0 < 4,5 < !—1and e = 0 or 1. Since
o has order k, it follows f(o) = z'y’z for some choice of i and j. Thus
f(o?) = 2"y +i | from whence it follows, since o2 has order , that f(o2)
generates the diagonal of Z; x Z;, which is the center of Z; ! Z,. Therefore,
(0?) <« Im A

Theorem 3.2 now implies that

T =a,ba,b,...,a,b.

O

5 Inverse Distributions for Alternating Pairs

Let M = CM(G, X, 1) be a Cayley map with X = (z1,z3,...,2x). Recall
X is a sequence of generators for G, z,4) = =7 ! and X determines a rota-
tion and hence a embedding into a closed, orientable surface. We will call
the induced rotation p = (z1,%s2,...,%x). In the accompanying examples,
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we will use certain letters in p to emphasize the relation between z; and
Zr(s). If 7(¢) # 4, then we will replace x; with a letter from the end of the
alphabet, e.g., y, and z,(;) with its inverse, y~!. When 7(i) = ¢ we will
replace x; with a letter from the beginning of the alphabet, e.g., a. Thus,
if k = 6 and 7 = (1,4)(3,5), then p = (z,a,y,27 1,571, b). We will also call
a rotation p of a map of valence k a k-rotation. For the discussion in this
section we number the darts emanating from a vertex with 1 through & in
the counterclockwise direction. Recall from Section 2 that these numbers
are the dart labels.

If the power function 7 = a,b,a,b,...,a,b, then k is even and the ele-
ments of Zy, naturally bifurcate into even and odd elements. By Proposition
3.1,

7(i + 1) = 7(3) + w(z;).

Then by induction and since a + b = 2¢ (equation 2) if 7(1) = v, then

7(2) = v+ 2¢(i — 1) +a, 4
7(20 4+ 1) =v + 2¢i,

where 1 <4 < &,
Before we can continue our analysis we need the following proposition.

Proposition 5.1. Let M = CM(G, X, 1) be a Cayley map with power
function * = a,b,a,b,...,a,b. Then both a and b are odd.

Proof. Let (1) =v. If v = 2i for some i, then 1 = 7(v) = v+2c(i — 1) +a.
.Since both v and 2¢(i — 1) are even, a must be odd, and since a + b = 2¢,
b must also be odd.

On the other hand, suppose v is odd. By equation 4, 7(2) = v+a. Ifa
is even, then v+a is odd. Let v+a=2j+1. Then 2 =7(v+a) =v+2cj
and v + 2¢j is odd, and this is a contradiction. Therefore, a is odd and
hence b is also odd. O

If v = 7(1) is odd, then 7 preserves parity by equation 4, otherwise 7
switches parity. We will divide our analysis into two cases depending on
the parity of 7(1). As we will see the inverse distribution is an amalgam of
two e-balanced inverse distributions. We refer the reader to [5] and [8] for
the inverse distributions of e-balanced Cayley maps.

Case 1: 7(1) odd.
We first consider the simpler case of 7(1) being odd.

379



Theorem 5.2. Let M = CM(G, X, 1) be a regular Cayley map with power
function # = a,b,a,b,...,0,b, k = |X|, and 7(1) odd. Ifa+b = 2
mod k, then the inverse distribution is an overlay of two c-balanced inverse
distributions: one for the odd dart labels and the other for the even dart
labels.

Proof. The permutation o2 = (1,3,5,...,k — 1)(2,4,86, ..., k) consists of two
cycles, o, = (1,3,5,...,k - 1) and 0. = (2,4,6,...,k). By Lemma 4.7,
r0?r = (0%), so

(T0oT)(T0eT) = TOo0.T = To?T = (0,0¢)° = (0,)°(0e)".
Since 7 preserves parity,

70T = (0,)° and o, = (0.)°.

Therefore, the even dart labels have a c-balanced inverse distribution and
the odd dart labels also have a ¢-balanced inverse distribution. a

A iy NX
X v [
4 5
1 9 Repeated Block Rotation
4

oY
5
(-1)-balanced for 5 darts (-1)-balanced for 5 darts

Figure 2:

Example 5.3. In Figure 2, we show a k-rotation such that 7(1) is odd. Set
k=10,c=-1,7(1) = 3; 7 = (1,3)(2,4)(5,9)(6,10), r = 1,7,1,7,1,7, 1,7,
1,7, p = (w,z,w™l,z7,y,2,a,b,y~1,271), and Im A = Zg x Dyg. The
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transpositions of the k-rotation separate easily into the permutations 7. =
(2,4)(6,10) and 7, = (1,3)(5,9); both of which describe a (—1)-balanced
inverse distribution for 5 darts. A regular Cayley map exists with this Im A
by Theorem 2.2.

Case 2: 7(1) even. We now turn to the more complicated case of 7(1)
even.

Theorem 5.4. Let M = CM(G, X, 7) be a regular Cayley map with power
Junction m# = a,b,a,b,...,a,b, k = |X|, and 7(1) even. The inverse dis-
tribution forms a c-balanced inverse distribution if the dart label 1 + 2i is
identified with the dart label T(1) + 2i.

Proof. Let v =7(1). As in the proof of Theorem 5.2
70,7 = (0¢)° and 7o.T = (0,)°%,

except that the parity is reversed. Thus we have a c-balanced inverse dis-
tribution after the identification.

We still need to show that the inverse distribution is well defined after
the identification, i.e., 7(1 + 2i) is identified with r(v + 2¢). An odd dart
label d is identified with the even dart label d+(v—1) mod k. By equation
4 7(r +2) = 7(r) + 2ci. So (1 +2¢) = v+ 2ci and 7(v + 2i) = 1 + 2ci.
Hence 7(1 + 2¢) — 7(v + 2i) = v — 1, so the dart labels are identified. 0O

Example 5.5. Figure 3 shows a k-rotation such that 7(1) is even. Set k =
16, ¢ = 3, and 7(1) = 2; then 7 = (1,2)(3, 8)(4, 7)(5, 14)(6, 13)(9, 10)(11, 16)
(12,15), = = 15,7,15,7,15,7,15,7,15,7,15,7,15,7,15,7,and p = (a,a~ !, z;,
a:z,yl,yz,z:;l,:cl'l,b,b'l,zl,zg,yé'l,yl'l,z{l,zl'l). Note 7(1) -1 = 1. For
0 < i <1-1, relabeling {2i + 1,2 + 2} as i + 1, we get the distribution
7 = (2,4)(3,7)(6,8), which is a 3-balanced inverse distribution for 8 darts,
and the rotation 3 = (a,z,y,z71,b,2,971,21). Again a regular Cayley
map exists with this Im A by Theorem 2.2.
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