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Abstract

A simple, undirected 2-connected graph G of order n belongs to the class
B(n6), 0 > 0if 2(d(z) + d(y) + d(2)) > 3(n — 1 — 8) holds for all
independent triples {x,y, 2} of vertices. It is known (Bondy’s theorem for
2-connected graphs) that G is hamiltonian if § = 0. In this paper we give
a full characterization of graphs G in B(n,0), & < 2 in terms of their dual
hamiltonian closure.

Keywords : Hamiltonian Cycle, Dual Closure.

1 Introduction

We consider throughout only simple 2-connected graphs G = (V, E). We let
a(G), v(G), w(G) denote respectively the independence number, the matching
number and the number of components of the graph G. A graph G is 1-tough if
|S| 2 w(G — S) is true for any subset S C V with w(G - S) > 1. Fork < oG)
we set o 10 be the minimum of ) _d(z) taken over all k—stables S. We use the

zES
term stable to mean independent set. A 2-connected graph G of order n belongs

to the class B(n, §), 6 > 0if 3(n — 6) > 203 > 3(n — 1 — §). By this definition
B(n,0)NB(n,0+j) = @ whenever j # 0. A graph G of order n belongs to class
O(n,p), v 2 0if 02 = n — . As we shall see later, a strong link exists between
the class B(n, 6) and the class O(n,p), ¢ = 0 of graphs. It is well known that G
is hamiltonian if G € O(n,0) ([15]) or G € B(n,0) ([8]). Jung ([10]) proved that
a 1-tough graph G € O(n, ) is hamiltonian if ¢ < 4 and n > 11. FagBbinder
([9]) generalized this result by proving that a 1-tough graph of order n > 13

ARS COMBINATORIA 85(2007), pp. 385-393



and satisfying the condition 203 > 3n — 14 is hamiltonian. In our terminology,
Fafbinder’result states that any 1-tough graph in B(n, ) is hamiltonian if § < 4
and n > 13. However, assuming G to be 1-tough is a strong condition which is
not easy to verify since recognizing tough graphs is NP-Hard ([12]). Using the
concept of dual-closure we proved in [6) that H = K, if G € B(n,0). In this
paper we go a step further by studying graphs in B(n,8), # < 2. At the same
time, we provide a method for considering larger values of 6.

2 Preliminary results

A vertex of degree n — 1 is a dominating vertex and  will denote the set of
dominating vertices. If D C V, we shall say that z € V\D (resp. X C V\D)
is D-dominated if Np(z) = D (resp. each vertex of X is D-dominated). The
circumference ¢(G) of G is the length of its longest cycle. For u € V(G), let
Ny (u) denote the set and dy (u) the number of neighbors of » in H, a subgraph
of G. If H = G we will write simply N(u) for N¢(u) and d(u) for dg(u). For
convenience, we extend this notation as follows. Given a subset S C V, we define
the degree of a vertex = with respect to S as dg(z) to be the number of vertices
of S adjacentto z. For X C V, put N(X) = UyexN(u). If X,Y C V, let
E(X,Y) denote the set of edges joining vertices of X to vertices of Y. As we
need very often to refer to a presence or not of an edge, we write Ty to mean that
zy € Eand Ty to mean xy ¢ E For each pair (a, b) of nonadjacent vertices we
associate

Gab i= G = N(a) UN(B), 7ab = [N(@) U N(B)|, A i= [N(a) A N(b)|
Tap :==V\(N[e]UN [B), tap = |Tab], Tab =2+ tap = |V (Gas)]
dap :=min{d(z) | z € Tup} if Top # B, A}y 1= max {Ag — 2,0}
836 = di e, @ab = &(Cab), Vab = V(Gap), w(Tab) = w(C [Tup)).

In this paper there is a specially chosen pair (a,b) of vertices. To remain
simple, we omit the reference to a, b for all parameters defined above. Moreover
we understand T as the set, the graph induced by its vertices and its edge set.
Our proofs are all based on the concept of the hamiltonian closure ([13], [1], [2]).
These two conditions are both generalizations of Bondy-Chvatal’s closure. To
state the condition under which our closure is based we define a binary variable
€qp associated with (a, b).

Definition 2.1 Let e, € {0, 1} be a binary variable, associated with a pair (a, b)
of nonadjacent vertices. We set €, = 0 if and only if

1. @ 5 T and all vertices of T have the same degree 1 + t. Moreover Agp < 1
if N(T)\T € N(a) & N(b) (where A denotes the symmetric difference).

2. one of the following two local configurations holds
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(@ T is a clique (possibly with one element), A;p < 2 and there exist
u,v ¢ T suchthatT C N(u) N N(v).

(b) T is an independent set (with at least two elements), Aqp < 1 +£ and
either N(T') C D or there exists a vertex u € N(a) A N(b) such that
|N7(u)| > |T| — max (Mg — 1,0) . Moreover T is a clique in G2, the
square of G.

Lemma 2.2 (the main closure condition) Let G be a 2—connected graph and
let (a, b) be a pair of nonadjacent vertices satisfying the condition

Tap < max {Agp + Vab, Jab + eab} (ncc)
Then c(G) = pifandonly if (G + ab) =p,p < n.

The 0-dual neighborhood closure ncj(G) (the 0—dual closure for short) is
the graph obtained from G by successively joining (a, b) satisfying the condition
(ncc) until no such pair remains. Throughout we denote ncj(G) by H.

The first condition of (ncc) is a relaxation of the condition aap < max {Aqs, 2}
given in [1]. Since by definition &, is the order of G, it follows that agp <
Tap- AS agp iS NOt easy to compute we developed many upper bounds of g,
computable in polynomial time ([5]) . One of these upper bounds is precisely
Vap. It is known that for any graph H, a(H) + v(H) < n(H). We note that
vepb = v(Gap) = v(T) since a,b are isolated vertices in Ggap, we see that
Tab — Vap < agp and hence agp < Agp implies Tpp < Agp + Vob. We note that
Qab < Aab + Vgp i stronger than Bondy-Chvatal’s hamiltonian closure condition
([13]) since d(a) + d(b) > n & @ < Aab. The second part of the condi-
tion (ncc) is a relaxation of a strongest one given in [2], improved in ([4]) .The
condition @, < 8ab + Eab, especially with the addition of the term e, will
prove to be a most useful tool in obtaining the main properties of the dual clo-
sure of any graph G € B(n,2). The condition @,p < Aap + Vap is Only used in
very particular cases. Note that Gop < dab + Eab € Yab + Oab + €ap 2 1 and
Tap < Aab + Vab ¢ d(a) + d(b) + vab 2 7.

All closures based on the above conditions are well defined. Moreover, it is
shown in ([5], [4]) that it takes a polynomial time to construct A and to exhibit a
longest cycle in G whenever a longest cycle is known in H.

As a direct consequence of Lemma 2.2 we have.

Corollary 2.3 Let G be a 2-connected graph. Then G is hamiltonian if and only
if H is complete.
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3 Results
Theorem 3.1 Let G € B(n,0),60 = 1,2 andlet H := ncy(G). If H # K, then
@ H=m+1)K1+Kpn,m>2

(i) H=(K;UK,UK,)+ Kz,1<7<s<p,1<r<9<p<30and
5<n<10.

Gii) H =(m+2) Ky + K, m 2 2
(iv) H=(mKiUK3)+ Kn,m>3
(v) H=(K1iUK,U2K>)+ K3,1 <s<2
(vi) H= (K1 UK,UP3)+ K2,1<s<2.

Proof. By Lemma 4.3, § < ¢ < 30 with § = 1, 2. Choose (a, b) as specified
in section 4. If €4 = 0 then combining Lemma 5.2 and Lemma 4.4 we get (i) and
(ii). If qp = 1 then ¢ = 2, 3 by Proposition 5.1. If ¢ = 2 we have (iii) and (iv)
by Lemma 5.3 and if ¢» = 3 we have (v) and (vi) by Lemma 5.4. m

Corollary 3.2 Let G € B(n,0),6 = 1,2.Then

(i) G is nonhamiltonian if and only if w(H — Q) > ||

(i) G is hamiltonianif and only if H = K,,.

Corollary 3.3 Let G € B(n,0), 6 = 1,2 be 1-tough. Then H = K.

Corollary 3.4 IfG € B(n,1)and H # Knthen(i)p =land H = (m + 1) K1+
Kmnym22,(i))p=2and H=(KiUK;UK3)+ K2,1<s<2,(iii)p=3
and H = (2K, U K3) + K.

Corollary 3.5 IfG € B(n,2) is 3-connectedand H # K then (i) H = (m + 2) K+
Km,m 23, (i) H= (mK,U K3) + K, withm > 3.

Corollary 3.6 IfG € B(n,0),and H # K, then ¢(G) > n—2and c(G) = n—1
ifn>9.

4 General Lemmas

Throughout we assume G € B(n,0), 60 > 0, H # K, and all neighborhood
sets and degrees are understood under H, unless otherwise stated. With each pair

(a, b) we adopt the following decomposition of V' by setting A := N(a)\N(b),
At := AU {a}, B := N(b)\N(a), B* := BU {b}, D := N(a) N N(b),
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T := T,, wheret = |T'|. For most of cases ¢ < 3 and therefore we referto z, y, 2
as possible vertices of T in that case. Also we set T; := {z € T | dr(z) = i},
i > 0. We point out that T # @ by (ncc) whenever H # K, since H is 2-
connected. For an ordered pair (z, y) of nonadjacent vertices we set N(z,y) :=
N(z)\N(y) and n(z, y) := |N(z,y)| . We shall say that H # K, is well-shaped
if BLAUB,TYUE(A,B)=2and2 = D.

Throughout, a, b are chosen as follows:

(i) aband d(a) + d(b) = o2 =n — ¢,

(ii) z € T is chosen so that d(a) + d(b) + d(z) = o3

(iii) subject to (i), Aqp is minimum.

Moreover we always assume d(a) < d(b) < d(z) for any z € T. This choice
implies immediately:

Lemmad4.l [3]IfH # K, andp > 1 then

(L1) 24+t =Dap+ .

(L2) Vp,q € V, 77 = max {n(p,q),n(q,P)} + &pg < -

(L3) |A| < |Bl < ¢ —€as.

(L4) T = UJ'€='01T,-. Furthermore either Ty, = @ or E(AUB,T)UE(A, B) =
.

(L5) ifu € Athen daur(u) + €y < @ — 2 + d(a) — Opy. Similarly ifv € B
then dpur(v) + €ay < ¢ — 2+ d(b) — bqv.

(L6) f AUB =@ thenTg =@ = dr(z) + dr(y) + vzy < @forallz,y €T

The following constraints involving @ and ¢ will be useful to study the links
between the classes B(n, 8) and O(n, ).

Lemma 4.2 If H # K, then

(L7) 3(n—1—0) +2¢ < 20ap <n — 30 + 2,

(L8) n — 30+ 2e45 < 2Xabs

(L9) €ab=1=>|A|+|B|+ ¢+ 2(t — dap) < 30— 2.

Proof. (L7) This is a consequence of the fact that 3(n — 1 — 8) < 203 <
3(n — 6) by definition of B(n, 6) and 03 = 1 — ¢ + dgp.

(L8) Since ab, we have v, +d(z) + €46 < n—1 by (nce). This is equivalent
1003 +€gp Sn—14X5.Thus3(n—=1—-0) <2(n =1+ Agp — €ap)-

(L9) Clearly d(a) + d(b) = n— ¢ = | A| +|B| + 2Xz». Combining with (L1),
we obtain |A| + |B|+2t =n+ 9 —-4.By (L7)3(n—1 — ) + 20 < 26p.
Combining the two results we get (L9). m
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Lemma 4.3 If H # K, then 0 < ¢ < 30. Moreover |A| < 6.

Proof. If 6 > o then d(a) + d(b) = n — ¢ > n — § + 1. Similarly d(a) +
d(z) 2 n—0+1and d(b) + d(z) > n — 6 + 1. Adding these inequalities we get
203 > 3(n — 0) + 3, a contradiction to the definition of B(n,8). If ¢ > 30 + 1
then d(a) + d(b) = n — p < n — 36 — 1. Moreover d(b) + d(z) < n — 1 and
d(z) + d(a) < n — 1. Summing the inequalities we get 203 < 3(rn — 1 — 6),
another contradiction. By (L3) , we have |A| < | B] < ¢ — &qp. To prove |A| < 6,
suppose by contradiction |A| > 6. Then d(a) + d(b) + d(z) = o3 > 3(Aap + 6).
By (L8), 2Aap > n — 30. Therefore o3 > n+ Ay < Yap + d(z) > n and hence
ab by (ncc). The proof is now complete. ®

Lemmad4 If H £ K,,, E(AU B,T) = @ and €,5 = 0 then either (i) H =
(m+ 1)Ky + Km, m 2 2, in which case H € B(n,1) N O(n,1) or (ii) H =
(KrUK,UK,)+ Ky, 1 <7 <0, 7 < s <, inwhichcase H € B(n,8) N
On,p),0 <9 <30and30+2<n<30+4.

Proof. Since €45 = 0 then either T is a clique or a stable. Suppose first that T
is a clique. Then there exist two vertices, e, f say such that e, f € N(a) U N(b)
andT C N(e)N N(f). Since E(AU B,T) = @ thene, f € D.Foranyz € T,
we have @,x = |{a, b, z}| + |B| = 3 + d(b) — Asp. Moreover &, = d(b) by the
choice of a, b. By (ncc), d(b) < @,z and hence Aoy < 2. Therefore D = {e, f}
and any vertex v € {b} U B satisfies the condition N [v] = N [b]. Similarly
any vertex u € {a} U A satisfies the condition N [u] = N [a]. Clearly ef since
Ty = 2and H = (K, UK,UK,) + K. By (L1), t = ¢ and by Lemma
43,1 <r < 8 Alsol <r £ s < ¢ by the choice of a,b. Moreover H €
B(n,8) N O(n,p), 8 < ¢ < 36. It remains to prove that 3¢ + 2 < n < 360 + 4.
Asoz3 =n—p+d(x) =n—1+ A, wederiveos = n+ 1. As H € B(n, 6)
and by definition 3(n — 1 — §) < 2(n + 1) < 3n + 36. Rearranging, we obtain
the required bounds of n.

Suppose next that T is a stable. Then d(z) = 1+t and N(z) C Dforallz €
T. It follows that N(w) = D for all w € V\ D by the choice of a, b, z. Moreover
IVAD| =2 +¢,|D| =1+ tand hence |D| = 251, By (L1) we get @ = 1 and
by (ncc) we easily check that D is a clique. Therefore H = (m + 1)K + Kpm,
m 2 2 withm = A4 and H € B(n, 1) N O(n, 1). The proof is now complete. m
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5 Application to graphs in B(n,6), 6 < 2

Throughout we shall assume H # K.

Proposition 5.1 [f @ < 2 and eqp = 1 then 8 = 2 and dap = t. Furthermore
either p =2and AUB=@orp=3,A=@and B C {v}.

Proof. By contradiction suppose H € B(n,1) and €45 = 1. Then dap < t. By
(L9), |A| + |B| + ¢ + 2(t — 6,5) < 1. By Lemma4.3,1 < ¢ < 3. Therefore
@ =138 =1t and Agp = 1+ ¢ by (L1). This is a contradiction since then
d(a) = Agp > 8gp. Thus @ = 2 and ¢ > 2 by Lemma 4.3. Next we prove that
8.5 = t. Because ab and eo, = 1, we have 8,5 < ¢ by (ncc). By contradiction
suppose 6,5 <t — 1. By (L9), |A| +|Bl+¢ < 2andhencep =2,AUB = 2.
By (L1), t = Ags, a contradiction since then d(a) = Agp =t > ap. Therefore
da5 = ¢ as claimed and the remaining follows by (L9). m

Lemma 5.2 If 0 < 2 then H is (a, b)—well-shaped.

Proof. If \;p = O then n < 6 by (L8) and it is not difficult to see that
H = Kg. For the following we assume Aqp 2> 1. We need to consider two cases.

Casel. €a=0

By Lemma 4.4, it suffices to prove that £(A U B, T) = . Suppose by con-
tradiction vz for some (v,z) € B x T. Then n(v,a) > 2 and hence ¢ > 3 for
otherwise we contradict (L2). By (L1) and Proposition 5.1, = Agp + ¢ — 2 2>
@ — 1. If T is a clique then N(v) D T and n(v,a) > (t—-1)+1 > ¢, a
contradiction to (L2). Suppose next that T is a stable. By Definition 2.1(2.b),
dr(v) > t—(Aap—1) = t+1—Asp = —1 by (L1). It follows that n(v, a) > ¢
since vb. This is a contradiction. The same contradiction arises if ux for some
(u,z) e AxT.

Case2. eqp=1

By Proposition 5.1, 6,5 = ¢, ¢ € {2,3} and E(AU B,T)U E(A,B) =
@ unless ¢ = 3, B = {v} and vz for some z € T. Then Nr(v) = {z} for
otherwise n(v,a) > ¢ = 3. Moreover t = Agp + @ — 2 > ¢ and hence Ty, =
T\ {z} contains at least two vertices. Since n(v,a) =2 = ¢ — 1then g, =0
and Ty, is either a stable or a clique. If Tg, is a stable then N(y) = D U {z}
and N(z) = DU {z} for y,z € T2, since d(y) = d(z) > d(b). This is a
contradiction since now n(z,a) > 3 = . If T,, is a clique then there exist
e,f € D such that N(e) N N(f) D Ta». Moreover N(z) = D U {v} since
d(z) > db). Asd(z) = dy) = dap+ 1 =tan+1 =t wegetAyy =t =
¢ — 1 = 2. Now choosing (a, ) instead of (a,b) we see easily that H is (a,y)-
well-shaped, a contradiction to our choice of (a,b). To complete the proof, we
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assume E(AU B,T) U E(A, B) = @ and we show that @ = D. If ¢ = 2 then
Np(z) = D is true for all z € D since n(e,z) > |{a,b}| = . Moreover D is
a clique by (ncc) . It remains to assume ¢ = 3. If B = {v} then Np(v) = D
by the choice of (a, b) and the fact that N7(v) = 2. Suppose, by contradiction
€z for some (e,z) € D x T. If B = {v} we have a contradiction since then
n(e,z) > 3 = ¢. So we assume AU B = @. Since 8,5 = ¢ then a5 = Agp + 1
by (L1). Now @ez <t + Agp — d(z) < Aap — 1 < 8z — 1, a contradiction by
(ncc). Finally we note that D is a clique by (ncc) and = D as claimed. =

LemmaS3 If0 = 2, o =2andea, = 1then (i) H = (m+2) Ky + K,
m 22, (i) H=(mK,UK3)+ Km,m > 3.

Proof. As a first step we prove that H is (a, b)—well-shaped. By (L2), E(AU
B,T) = o for if, for instance vz, (v,z) € B x T thenn(v,a) > 2 = ¢, a
contradiction. Moreover E(A, B) = & for if uv, (u,v) € A x B then n(u,z) >
2 = . Also Np(z) = D is true for all z € D since n(e,z) > |{a,b}| = ¢
holds for all z € D. It is now easy to see that D is a clique by (ncc) and Q = D.
Therefore H is (a, b)—well-shaped. as claimed. Furthermore vap < 1 by (ncc). If
vab=0then H = (m 4+ 2) Ky + K, m = Agp 2 25sincet = Agp = m by (L1).
If vap = 1and ¢ > 2 then (ii) holds. If vop = land t =2then gy =3 =t + 1,2
contradiction to our assuption g, = 1. ®

Lemma 54 If0 =2, =3andesp = 1then (i) H = (K, U K; U2K>3) + K3,
1<s<2,(ii))H=(K\UK;UP3)+ K3,1<s<2.

Proof. By Proposition 5.1, A = &, B C {v} and 8,5 = ¢. By (L1), ¢t =
Aab + 1 and hence Tp = @. By Lemma 5.2, H is (a, b)—well-shaped and hence
dab > d(a) = Agp and Q = D. This implies T = T, UT; by (L4). Let us consider
two cases.

Casel. To=2
Thus T = pK3,2p =t > 3 since obviously A,y > 2. By (ncc) , vy < 2 and

hence p < 2. It follows thatp = 2and H = (K1 U K,U2K>5) + K3,1 <5< 2,
sincet=4= Agp =m = 3.

Case2. T # @

Choose z € Ty, set N(z) = {z,y} and suppose first T\ {z,y, 2} # @.
Considering (a, z) we may write @,. = |{a,b}| + |B| +t — dr(2) = |B| + t.
If B = @ then §,; = d(b) = t — 1. Therefore az by (ncc) since d(w) > ¢
forall w € T,.\ {b} . With this contradiction, assume B = {v}, in which case
Qoz = 1+ ¢ with §5, = ¢. It follows that eo, = 0 and Ty, must be a clique
(av is an edge of T,;). This is a contradiction since w(T,,) > 2. Therefore
T = {z,y,2} and A\sp = t — 1 = 2. Moreover if zy then T = T, and hence
ab = t + 1. This means 45, = 0, a contradiction to our assumption. We have just
provedthatT = Psand H = (K1UK,UP3)+ K3,1 <s=|BU{b}| < 2. m
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