Extensions of Bondy's Theorem on Cycles in 2-Connected Graphs.

Ahmed Ainouche
CEREGMIA-GRIMAAG
UAG-Campus de Schoelcher
B.P. 7209
97275 Schoelcher Cedex
Martinique (FRANCE)
a.ainouche@martinique.univ-ag.fr

May 7, 2005

Abstract

A simple, undirected 2-connected graph G of order n belongs to the class $\mathcal{B}(n,\theta), \theta \geq 0$ if $2(d(x)+d(y)+d(z))>3(n-1-\theta)$ holds for all independent triples $\{x,y,z\}$ of vertices. It is known (Bondy's theorem for 2-connected graphs) that G is hamiltonian if $\theta=0$. In this paper we give a full characterization of graphs G in $\mathcal{B}(n,\theta), \theta \leq 2$ in terms of their dual hamiltonian closure.

Keywords: Hamiltonian Cycle, Dual Closure.

1 Introduction

We consider throughout only simple 2-connected graphs G=(V,E). We let $\alpha(G),\ \nu(G),\ \omega(G)$ denote respectively the independence number, the matching number and the number of components of the graph G. A graph G is 1-tough if $|S| \geq \omega(G-S)$ is true for any subset $S \subset V$ with $\omega(G-S) > 1$. For $k \leq \alpha(G)$ we set σ_k to be the minimum of $\sum_{x \in S} d(x)$ taken over all k-stables S. We use the

term stable to mean independent set. A 2-connected graph G of order n belongs to the class $\mathcal{B}(n,\theta),\,\theta\geq 0$ if $3(n-\theta)\geq 2\sigma_3>3(n-1-\theta)$. By this definition $\mathcal{B}(n,\theta)\cap\mathcal{B}(n,\theta+j)=\varnothing$ whenever $j\neq 0$. A graph G of order n belongs to class $\mathcal{O}(n,\varphi),\,\varphi\geq 0$ if $\sigma_2=n-\varphi$. As we shall see later, a strong link exists between the class $\mathcal{B}(n,\theta)$ and the class $\mathcal{O}(n,\varphi),\,\varphi\geq 0$ of graphs. It is well known that G is hamiltonian if $G\in\mathcal{O}(n,0)$ ([15]) or $G\in\mathcal{B}(n,0)$ ([8]). Jung ([10]) proved that a 1-tough graph $G\in\mathcal{O}(n,\varphi)$ is hamiltonian if $\varphi\leq 4$ and $n\geq 11$. Fa β binder ([9]) generalized this result by proving that a 1-tough graph of order $n\geq 13$

and satisfying the condition $2\sigma_3 \geq 3n-14$ is hamiltonian. In our terminology, Fa β binder'result states that any 1-tough graph in $\mathcal{B}(n,\theta)$ is hamiltonian if $\theta \leq 4$ and $n \geq 13$. However, assuming G to be 1-tough is a strong condition which is not easy to verify since recognizing tough graphs is NP-Hard ([12]). Using the concept of dual-closure we proved in [6] that $H = K_n$ if $G \in \mathcal{B}(n,0)$. In this paper we go a step further by studying graphs in $\mathcal{B}(n,\theta)$, $\theta \leq 2$. At the same time, we provide a method for considering larger values of θ .

2 Preliminary results

A vertex of degree n-1 is a dominating vertex and Ω will denote the set of dominating vertices. If $D \subset V$, we shall say that $x \in V \setminus D$ (resp. $X \subset V \setminus D$) is D-dominated if $N_D(x) = D$ (resp. each vertex of X is D-dominated). The circumference c(G) of G is the length of its longest cycle. For $u \in V(G)$, let $N_H(u)$ denote the set and $d_H(u)$ the number of neighbors of u in H, a subgraph of G. If H = G we will write simply N(u) for $N_G(u)$ and d(u) for $d_G(u)$. For convenience, we extend this notation as follows. Given a subset $S \subset V$, we define the degree of a vertex x with respect to S as $d_S(x)$ to be the number of vertices of S adjacent to S. For S is S is S in S i

$$\begin{split} G_{ab} &:= G - N(a) \cup N(b), \ \gamma_{ab} := |N(a) \cup N(b)|, \ \lambda_{ab} := |N(a) \cap N(b)| \\ T_{ab} &:= V \setminus (N\left[a\right] \cup N\left[b\right]), \ t_{ab} := |T_{ab}|, \ \overline{\alpha}_{ab} := 2 + t_{ab} = |V(G_{ab})| \\ \delta_{ab} &:= \min\left\{d(x) \mid x \in T_{ab}\right\} \ \text{if} \ T_{ab} \neq \varnothing, \ \lambda_{ab}^* := \max\left\{\lambda_{ab} - 2, 0\right\} \\ \delta_{ab}^* &:= d_{1 + \lambda_{ab}^*}^T, \alpha_{ab} = \alpha(G_{ab}), \ \nu_{ab} = \nu(G_{ab}), \ \omega(T_{ab}) = \omega(G\left[T_{ab}\right]). \end{split}$$

In this paper there is a specially chosen pair (a, b) of vertices. To remain simple, we omit the reference to a, b for all parameters defined above. Moreover we understand T as the set, the graph induced by its vertices and its edge set. Our proofs are all based on the concept of the hamiltonian closure ([13], [1], [2]). These two conditions are both generalizations of Bondy-Chvàtal's closure. To state the condition under which our closure is based we define a binary variable ε_{ab} associated with (a, b).

Definition 2.1 Let $\varepsilon_{ab} \in \{0, 1\}$ be a binary variable, associated with a pair (a, b) of nonadjacent vertices. We set $\varepsilon_{ab} = 0$ if and only if

- 1. $\emptyset \neq T$ and all vertices of T have the same degree 1 + t. Moreover $\lambda_{ab} \leq 1$ if $N(T) \setminus T \subseteq N(a) \triangle N(b)$ (where \triangle denotes the symmetric difference).
- 2. one of the following two local configurations holds

- (a) T is a clique (possibly with one element), $\lambda_{ab} \leq 2$ and there exist $u, v \notin T$ such that $T \subset N(u) \cap N(v)$.
- (b) T is an independent set (with at least two elements), $\lambda_{ab} \leq 1 + t$ and either $N(T) \subseteq D$ or there exists a vertex $u \in N(a) \triangle N(b)$ such that $|N_T(u)| \geq |T| \max{(\lambda_{ab} 1, 0)}$. Moreover T is a clique in G^2 , the square of G.

Lemma 2.2 (the main closure condition) Let G be a 2-connected graph and let (a, b) be a pair of nonadjacent vertices satisfying the condition

$$\overline{\alpha}_{ab} \le \max\{\lambda_{ab} + \nu_{ab}, \delta_{ab} + \varepsilon_{ab}\}$$
 (ncc)

Then c(G) = p if and only if c(G + ab) = p, $p \le n$.

The 0-dual neighborhood closure $nc_0^*(G)$ (the 0-dual closure for short) is the graph obtained from G by successively joining (a,b) satisfying the condition (ncc) until no such pair remains. Throughout we denote $nc_0^*(G)$ by H.

The first condition of (ncc) is a relaxation of the condition $\alpha_{ab} \leq \max \{\lambda_{ab}, 2\}$ given in [1]. Since by definition $\overline{\alpha}_{ab}$ is the order of G_{ab} , it follows that $\alpha_{ab} \leq \overline{\alpha}_{ab}$. As α_{ab} is not easy to compute we developed many upper bounds of α_{ab} , computable in polynomial time ([5]). One of these upper bounds is precisely ν_{ab} . It is known that for any graph H, $\alpha(H) + \nu(H) \leq n(H)$. We note that $\nu_{ab} = \nu(G_{ab}) = \nu(T)$ since a, b are isolated vertices in G_{ab} , we see that $\overline{\alpha}_{ab} - \nu_{ab} \leq \alpha_{ab}$ and hence $\alpha_{ab} \leq \lambda_{ab}$ implies $\overline{\alpha}_{ab} \leq \lambda_{ab} + \nu_{ab}$. We note that $\overline{\alpha}_{ab} \leq \lambda_{ab} + \nu_{ab}$ is stronger than Bondy-Chvàtal's hamiltonian closure condition ([13]) since $d(a) + d(b) \geq n \Leftrightarrow \overline{\alpha}_{ab} \leq \lambda_{ab}$. The second part of the condition (ncc) is a relaxation of a strongest one given in [2], improved in ([4]). The condition $\overline{\alpha}_{ab} \leq \delta_{ab} + \varepsilon_{ab}$, especially with the addition of the term ε_{ab} will prove to be a most useful tool in obtaining the main properties of the dual closure of any graph $G \in \mathcal{B}(n,2)$. The condition $\overline{\alpha}_{ab} \leq \lambda_{ab} + \nu_{ab}$ is only used in very particular cases. Note that $\overline{\alpha}_{ab} \leq \delta_{ab} + \varepsilon_{ab} \Leftrightarrow \gamma_{ab} + \delta_{ab} + \varepsilon_{ab} \geq n$ and $\overline{\alpha}_{ab} \leq \lambda_{ab} + \nu_{ab} \Leftrightarrow d(a) + d(b) + \nu_{ab} \geq n$.

All closures based on the above conditions are well defined. Moreover, it is shown in ([5], [4]) that it takes a polynomial time to construct H and to exhibit a longest cycle in G whenever a longest cycle is known in H.

As a direct consequence of Lemma 2.2 we have.

Corollary 2.3 Let G be a 2-connected graph. Then G is hamiltonian if and only if H is complete.

3 Results

Theorem 3.1 Let $G \in \mathcal{B}(n,\theta)$, $\theta = 1, 2$ and let $H := nc_0^*(G)$. If $H \neq K_n$ then

(i)
$$H = (m+1)K_1 + K_m, m \ge 2$$

(ii)
$$H = (K_r \cup K_s \cup K_{\varphi}) + K_2$$
, $1 \le r \le s \le \varphi$, $1 \le r \le \theta \le \varphi \le 3\theta$ and $5 \le n \le 10$.

(iii)
$$H = (m+2) K_1 + K_m, m \ge 2$$

(iv)
$$H = (mK_1 \cup K_2) + K_m, m \ge 3$$

(v)
$$H = (K_1 \cup K_s \cup 2K_2) + K_3, 1 \le s \le 2$$

(vi)
$$H = (K_1 \cup K_s \cup P_3) + K_2, 1 \le s \le 2$$
.

Proof. By Lemma 4.3, $\theta \le \varphi \le 3\theta$ with $\theta = 1, 2$. Choose (a, b) as specified in section 4. If $\varepsilon_{ab} = 0$ then combining Lemma 5.2 and Lemma 4.4 we get (i) and (ii). If $\varepsilon_{ab} = 1$ then $\varphi = 2, 3$ by Proposition 5.1. If $\varphi = 2$ we have (iii) and (iv) by Lemma 5.3 and if $\varphi = 3$ we have (v) and (vi) by Lemma 5.4.

Corollary 3.2 Let $G \in \mathcal{B}(n, \theta), \theta = 1, 2$. Then

- (i) G is nonhamiltonian if and only if $\omega(H-\Omega) > |\Omega|$
- (ii) G is hamiltonian if and only if $H = K_n$.

Corollary 3.3 Let $G \in \mathcal{B}(n, \theta)$, $\theta = 1, 2$ be 1-tough. Then $H = K_n$.

Corollary 3.4 If $G \in \mathcal{B}(n,1)$ and $H \neq K_n$ then (i) $\varphi = 1$ and $H = (m+1)K_1 + K_m$, $m \geq 2$, (ii) $\varphi = 2$ and $H = (K_1 \cup K_s \cup K_2) + K_2$, $1 \leq s \leq 2$, (iii) $\varphi = 3$ and $H = (2K_1 \cup K_3) + K_2$.

Corollary 3.5 If $G \in \mathcal{B}(n,2)$ is 3-connected and $H \neq K_n$ then (i) $H = (m+2)K_1 + K_m$, $m \geq 3$, (ii) $H = (mK_1 \cup K_2) + K_m$ with $m \geq 3$.

Corollary 3.6 If $G \in \mathcal{B}(n, \theta)$, and $H \neq K_n$ then $c(G) \geq n-2$ and c(G) = n-1 if $n \geq 9$.

4 General Lemmas

Throughout we assume $G \in \mathcal{B}(n,\theta)$, $\theta \ge 0$, $H \ne K_n$ and all neighborhood sets and degrees are understood under H, unless otherwise stated. With each pair (a,b) we adopt the following decomposition of V by setting $A := N(a) \setminus N(b)$, $A^+ := A \cup \{a\}$, $B := N(b) \setminus N(a)$, $B^+ := B \cup \{b\}$, $D := N(a) \cap N(b)$,

 $T:=T_{ab}$ where t=|T|. For most of cases $t\leq 3$ and therefore we refer to x,y,z as possible vertices of T in that case. Also we set $T_i:=\{x\in T\mid d_T(x)=i\}$, $i\geq 0$. We point out that $T\neq\varnothing$ by (ncc) whenever $H\neq K_n$ since H is 2-connected. For an ordered pair (x,y) of nonadjacent vertices we set $N(x,y):=N(x)\backslash N(y)$ and n(x,y):=|N(x,y)|. We shall say that $H\neq K_n$ is well-shaped if $E(A\cup B,T)\cup E(A,B)=\varnothing$ and $\Omega=D$.

Throughout, a, b are chosen as follows:

- (i) \overline{ab} and $d(a) + d(b) = \sigma_2 = n \varphi$,
- (ii) $x \in T$ is chosen so that $d(a) + d(b) + d(x) = \sigma_3$
- (iii) subject to (i), λ_{ab} is minimum.

Moreover we always assume $d(a) \le d(b) \le d(x)$ for any $x \in T$. This choice implies immediately:

Lemma 4.1 [3] If $H \neq K_n$ and $\varphi \geq 1$ then

- $(L1) \ 2 + t = \lambda_{ab} + \varphi.$
- (L2) $\forall p, q \in V, \overline{pq} \Rightarrow \max\{n(p,q), n(q,p)\} + \varepsilon_{pq} < \varphi$.
- (L3) $|A| \leq |B| < \varphi \varepsilon_{ab}$.
- (L4) $T = \bigcup_{j=0}^{\varphi-1} T_j$. Furthermore either $T_{\varphi-1} = \emptyset$ or $E(A \cup B, T) \cup E(A, B) = \emptyset$.
- (L5) if $u \in A$ then $d_{A \cup T}(u) + \varepsilon_{bu} \leq \varphi 2 + d(a) \delta_{bu}$. Similarly if $v \in B$ then $d_{B \cup T}(v) + \varepsilon_{av} \leq \varphi 2 + d(b) \delta_{av}$.
- (L6) if $A \cup B = \emptyset$ then $\overline{xy} = \emptyset \Rightarrow d_T(x) + d_T(y) + \nu_{xy} < \varphi$ for all $x, y \in T$

The following constraints involving θ and φ will be useful to study the links between the classes $\mathcal{B}(n,\theta)$ and $\mathcal{O}(n,\varphi)$.

Lemma 4.2 If $H \neq K_n$ then

$$(L7) 3(n-1-\theta) + 2\varphi < 2\delta_{ab} \le n - 3\theta + 2\varphi,$$

- (L8) $n-3\theta+2\epsilon_{ab}\leq 2\lambda_{ab}$,
- (L9) $\varepsilon_{ab} = 1 \Rightarrow |A| + |B| + \varphi + 2(t \delta_{ab}) \leq 3\theta 2$.

Proof. (L7) This is a consequence of the fact that $3(n-1-\theta) < 2\sigma_3 \le 3(n-\theta)$ by definition of $\mathcal{B}(n,\theta)$ and $\sigma_3 = n - \varphi + \delta_{ab}$.

(L8) Since \overline{ab} , we have $\gamma_{ab} + d(x) + \varepsilon_{ab} \le n - 1$ by (ncc). This is equivalent to $\sigma_3 + \varepsilon_{ab} \le n - 1 + \lambda_{ab}$. Thus $3(n - 1 - \theta) < 2(n - 1 + \lambda_{ab} - \varepsilon_{ab})$.

(L9) Clearly $d(a)+d(b)=n-\varphi=|A|+|B|+2\lambda_{ab}$. Combining with (L1), we obtain $|A|+|B|+2t=n+\varphi-4$. By (L7) $3(n-1-\theta)+2\varphi<2\delta_{ab}$. Combining the two results we get (L9).

Lemma 4.3 If $H \neq K_n$ then $\theta \leq \varphi \leq 3\theta$. Moreover $|A| < \theta$.

Proof. If $\theta > \varphi$ then $d(a) + d(b) = n - \varphi \ge n - \theta + 1$. Similarly $d(a) + d(x) \ge n - \theta + 1$ and $d(b) + d(x) \ge n - \theta + 1$. Adding these inequalities we get $2\sigma_3 \ge 3(n-\theta) + 3$, a contradiction to the definition of $\mathcal{B}(n,\theta)$. If $\varphi \ge 3\theta + 1$ then $d(a) + d(b) = n - \varphi \le n - 3\theta - 1$. Moreover $d(b) + d(x) \le n - 1$ and $d(x) + d(a) \le n - 1$. Summing the inequalities we get $2\sigma_3 \le 3(n-1-\theta)$, another contradiction. By (L3), we have $|A| \le |B| < \varphi - \varepsilon_{ab}$. To prove $|A| < \theta$, suppose by contradiction $|A| \ge \theta$. Then $d(a) + d(b) + d(x) = \sigma_3 \ge 3(\lambda_{ab} + \theta)$. By (L8), $2\lambda_{ab} \ge n - 3\theta$. Therefore $\sigma_3 \ge n + \lambda_{ab} \Leftrightarrow \gamma_{ab} + d(x) \ge n$ and hence ab by (ncc). The proof is now complete.

Lemma 4.4 If $H \neq K_n$, $E(A \cup B, T) = \emptyset$ and $\varepsilon_{ab} = 0$ then either (i) $H = (m+1)K_1 + K_m$, $m \geq 2$, in which case $H \in \mathcal{B}(n,1) \cap \mathcal{O}(n,1)$ or (ii) $H = (K_r \cup K_s \cup K_{\varphi}) + K_2$, $1 \leq r \leq \theta$, $r \leq s \leq \varphi$, in which case $H \in \mathcal{B}(n,\theta) \cap \mathcal{O}(n,\varphi)$, $\theta \leq \varphi \leq 3\theta$ and $3\theta + 2 \leq n \leq 3\theta + 4$.

Proof. Since $\varepsilon_{ab}=0$ then either T is a clique or a stable. Suppose first that T is a clique. Then there exist two vertices, e, f say such that $e, f \in N(a) \cup N(b)$ and $T \subseteq N(e) \cap N(f)$. Since $E(A \cup B, T) = \emptyset$ then $e, f \in D$. For any $x \in T$, we have $\overline{\alpha}_{ax} = |\{a, b, x\}| + |B| = 3 + d(b) - \lambda_{ab}$. Moreover $\delta_{ax} = d(b)$ by the choice of a, b. By $(ncc), d(b) < \overline{\alpha}_{ax}$ and hence $\lambda_{ab} \le 2$. Therefore $D = \{e, f\}$ and any vertex $v \in \{b\} \cup B$ satisfies the condition N[v] = N[b]. Similarly any vertex $u \in \{a\} \cup A$ satisfies the condition N[u] = N[a]. Clearly ef since $T_{ef} = \emptyset$ and $H = (K_r \cup K_s \cup K_\varphi) + K_2$. By $(L1), t = \varphi$ and by Lemma 4.3, $1 \le r < \theta$. Also $1 \le r \le s \le \varphi$ by the choice of a, b. Moreover $H \in \mathcal{B}(n,\theta) \cap \mathcal{O}(n,\varphi), \theta \le \varphi \le 3\theta$. It remains to prove that $3\theta + 2 \le n \le 3\theta + 4$. As $\sigma_3 = n - \varphi + d(x) = n - 1 + \lambda_{ab}$, we derive $\sigma_3 = n + 1$. As $H \in \mathcal{B}(n,\theta)$ and by definition $3(n-1-\theta) < 2(n+1) \le 3n+3\theta$. Rearranging, we obtain the required bounds of n.

Suppose next that T is a stable. Then d(x)=1+t and $N(x)\subseteq D$ for all $x\in T$. It follows that N(w)=D for all $w\in V\setminus D$ by the choice of a,b,x. Moreover $|V\setminus D|=2+t$, |D|=1+t and hence $|D|=\frac{n-1}{2}$. By (L1) we get $\theta=1$ and by (ncc) we easily check that D is a clique. Therefore $H=(m+1)K_1+K_m$, $m\geq 2$ with $m=\lambda_{ab}$ and $H\in \mathcal{B}(n,1)\cap \mathcal{O}(n,1)$. The proof is now complete.

5 Application to graphs in $\mathcal{B}(n,\theta), \theta \leq 2$

Throughout we shall assume $H \neq K_n$.

Proposition 5.1 If $\theta \leq 2$ and $\varepsilon_{ab} = 1$ then $\theta = 2$ and $\delta_{ab} = t$. Furthermore either $\varphi = 2$ and $A \cup B = \emptyset$ or $\varphi = 3$, $A = \emptyset$ and $B \subseteq \{v\}$.

Proof. By contradiction suppose $H \in \mathcal{B}(n,1)$ and $\varepsilon_{ab} = 1$. Then $\delta_{ab} \leq t$. By (L9), $|A| + |B| + \varphi + 2(t - \delta_{ab}) \leq 1$. By Lemma 4.3, $1 \leq \varphi \leq 3$. Therefore $\varphi = 1$, $\delta_{ab} = t$ and $\lambda_{ab} = 1 + t$ by (L1). This is a contradiction since then $d(a) = \lambda_{ab} > \delta_{ab}$. Thus $\theta = 2$ and $\varphi \geq 2$ by Lemma 4.3. Next we prove that $\delta_{ab} = t$. Because \overline{ab} and $\varepsilon_{ab} = 1$, we have $\delta_{ab} \leq t$ by (ncc). By contradiction suppose $\delta_{ab} \leq t - 1$. By (L9), $|A| + |B| + \varphi \leq 2$ and hence $\varphi = 2$, $A \cup B = \varnothing$. By (L1), $t = \lambda_{ab}$, a contradiction since then $d(a) = \lambda_{ab} = t > \delta_{ab}$. Therefore $\delta_{ab} = t$ as claimed and the remaining follows by (L9).

Lemma 5.2 If $\theta \leq 2$ then H is (a, b)-well-shaped.

Proof. If $\lambda_{ab} = 0$ then $n \le 6$ by (L8) and it is not difficult to see that $H = K_6$. For the following we assume $\lambda_{ab} \ge 1$. We need to consider two cases.

Case 1. $\epsilon_{ab} = 0$

Case 2. $\epsilon_{ab} = 1$

By Proposition 5.1, $\delta_{ab}=t$, $\varphi\in\{2,3\}$ and $E(A\cup B,T)\cup E(A,B)=\varnothing$ unless $\varphi=3$, $B=\{v\}$ and vx for some $x\in T$. Then $N_T(v)=\{x\}$ for otherwise $n(v,a)\geq\varphi=3$. Moreover $t=\lambda_{ab}+\varphi-2\geq\varphi$ and hence $T_{av}=T\setminus\{x\}$ contains at least two vertices. Since $n(v,a)=2=\varphi-1$ then $\varepsilon_{av}=0$ and T_{av} is either a stable or a clique. If T_{av} is a stable then $N(y)=D\cup\{x\}$ and $N(z)=D\cup\{x\}$ for $y,z\in T_{av}^2$ since $d(y)=d(z)\geq d(b)$. This is a contradiction since now $n(x,a)\geq 3=\varphi$. If T_{av} is a clique then there exist $e,f\in D$ such that $N(e)\cap N(f)\supset T_{av}$. Moreover $N(x)=D\cup\{v\}$ since $d(x)\geq d(b)$. As $d(x)=d(y)=\lambda_{ab}+1=t_{av}+1=t$ we get $\lambda_{ab}=t=\varphi-1=2$. Now choosing (a,y) instead of (a,b) we see easily that H is (a,y)-well-shaped, a contradiction to our choice of (a,b). To complete the proof, we

assume $E(A \cup B, T) \cup E(A, B) = \emptyset$ and we show that $\Omega = D$. If $\varphi = 2$ then $N_D(x) = D$ is true for all $x \in D$ since $n(e, x) \geq |\{a, b\}| = \varphi$. Moreover D is a clique by (ncc). It remains to assume $\varphi = 3$. If $B = \{v\}$ then $N_D(v) = D$ by the choice of (a, b) and the fact that $N_T(v) = \emptyset$. Suppose, by contradiction \overline{ex} for some $(e, x) \in D \times T$. If $B = \{v\}$ we have a contradiction since then $n(e, x) \geq 3 = \varphi$. So we assume $A \cup B = \emptyset$. Since $\delta_{ab} = t$ then $\delta_{ab} = \lambda_{ab} + 1$ by (L1). Now $\overline{\alpha}_{ex} \leq t + \lambda_{ab} - d(x) \leq \lambda_{ab} - 1 \leq \delta_{ex} - 1$, a contradiction by (ncc). Finally we note that D is a clique by (ncc) and $\Omega = D$ as claimed.

Lemma 5.3 If $\theta = 2$, $\varphi = 2$ and $\varepsilon_{ab} = 1$ then (i) $H = (m+2)K_1 + K_m$, $m \ge 2$, (ii) $H = (mK_1 \cup K_2) + K_m$, $m \ge 3$.

Proof. As a first step we prove that H is (a,b)-well-shaped. By (L2), $E(A \cup B,T) = \emptyset$ for if, for instance vx, $(v,x) \in B \times T$ then $n(v,a) \geq 2 = \varphi$, a contradiction. Moreover $E(A,B) = \emptyset$ for if uv, $(u,v) \in A \times B$ then $n(u,x) \geq 2 = \varphi$. Also $N_D(x) = D$ is true for all $x \in D$ since $n(e,x) \geq |\{a,b\}| = \varphi$ holds for all $x \in D$. It is now easy to see that D is a clique by (ncc) and $\Omega = D$. Therefore H is (a,b)-well-shaped. as claimed. Furthermore $v_{ab} \leq 1$ by (ncc). If $v_{ab} = 0$ then $H = (m+2)K_1 + K_m$, $m = \lambda_{ab} \geq 2$ since $t = \lambda_{ab} = m$ by (L1). If $v_{ab} = 1$ and t > 2 then (ii) holds. If $v_{ab} = 1$ and t = 2 then $\delta_{ab} = 3 = t + 1$, a contradiction to our assuption $\varepsilon_{ab} = 1$.

Lemma 5.4 If $\theta = 2$, $\varphi = 3$ and $\varepsilon_{ab} = 1$ then (i) $H = (K_1 \cup K_s \cup 2K_2) + K_3$, $1 \le s \le 2$, (ii) $H = (K_1 \cup K_s \cup P_3) + K_2$, $1 \le s \le 2$.

Proof. By Proposition 5.1, $A=\varnothing$, $B\subseteq\{v\}$ and $\delta_{ab}=t$. By (L1), $t=\lambda_{ab}+1$ and hence $T_0=\varnothing$. By Lemma 5.2, H is (a,b)—well-shaped and hence $\delta_{ab}>d(a)=\lambda_{ab}$ and $\Omega=D$. This implies $T=T_1\cup T_2$ by (L4). Let us consider two cases.

Case 1. $T_2 = \emptyset$

Thus $T=pK_2, 2p=t\geq 3$ since obviously $\lambda_{ab}\geq 2$. By (ncc), $\nu_{av}\leq 2$ and hence $p\leq 2$. It follows that p=2 and $H=(K_1\cup K_s\cup 2K_2)+K_3, 1\leq s\leq 2$, since $t=4\Rightarrow \lambda_{ab}=m=3$.

Case 2. $T_2 \neq \emptyset$

Choose $z\in T_2$, set $N(z)=\{x,y\}$ and suppose first $T\setminus\{x,y,z\}\neq\varnothing$. Considering (a,z) we may write $\overline{\alpha}_{az}=|\{a,b\}|+|B|+t-d_T(z)=|B|+t$. If $B=\varnothing$ then $\delta_{\alpha z}=d(b)=t-1$. Therefore az by (ncc) since $d(w)\geq t$ for all $w\in T_{az}\setminus\{b\}$. With this contradiction, assume $B=\{v\}$, in which case $\overline{\alpha}_{az}=1+t$ with $\delta_{\alpha z}=t$. It follows that $\varepsilon_{az}=0$ and T_{az} must be a clique (av is an edge of T_{az}). This is a contradiction since $\omega(T_{az})\geq 2$. Therefore $T=\{x,y,z\}$ and $\lambda_{ab}=t-1=2$. Moreover if xy then $T=T_2$ and hence $\delta_{ab}=t+1$. This means $\varepsilon_{ab}=0$, a contradiction to our assumption. We have just proved that $T=P_3$ and $H=(K_1\cup K_s\cup P_3)+K_2, 1\leq s=|B\cup\{b\}|\leq 2$.

References

- [1] A. Ainouche, N. Christofides: Strong sufficient conditions for the existence of hamiltonian circuits in undirected graphs, J. Comb. Theory (Series B) 31 (1981) 339-343.
- [2] A. Ainouche, N. Christofides: Semi-independence number of a graph and the existence of hamiltonian circuits *Discrete Applied Mathematics* 17 (1987) 213-221.
- [3] A. Ainouche: Relaxations of Ore's condition on cycles, submitted.
- [4] A. Ainouche: Extensions of a closure condition: the β -closure. Working paper, CEREGMIA, 2001.
- [5] A. Ainouche: Extensions of a closure condition: the α -closure. Working paper, CEREGMIA-GRIMAAG, 2002.
- [6] A. Ainouche and I. Schiermeyer: 0-dual closure for several classes of graphs. Graphs and Combinatorics 19, N°3 (2003), 297-307.
- [7] A. Ainouche: Extension of several sufficient conditions for hamiltonian graphs, submitted.
- [8] J. A. Bondy: Longest paths and cycles in graphs of high degree, Research Report CORR 80-16, Dept. of Combinatorics and Optimization, *University* of Waterloo, Ont. Canada.
- [9] B. Faβbender: A sufficient condition on Degree Sums of Independent Triples for Hamiltonian Cycles in 1-Tough Graphs, Ars Combinatoria, Vol 33, June 1992, 300-304.
- [10] H. A. Jung: On maximal circuits in finite graphs, Annals of Discrete Math. 3, 129-144, 1978.
- [11] E. Schmeichel and D. Hayes: Some extensions of Ore's theorem, in Y. Alavi, et al., ed., Graph Theory and applications to Computer Science (Wiley, New York, 1985), 687-695.
- [12] D. Bauer, S.L. Hakimi, E. Schmeichel: Recognizing tough graphs is NP-HARD. Discrete Applied Mathematics 28(1990) 191-195.
- [13] J.A. Bondy and V. Chvàtal: A method in graph theory, Discrete Math. 15 (1976) 111-135.
- [14] I. Schiermeyer: Computation of the 0-dual closure for hamiltonian graphs. Discrete Math. 111 (1993), 455-464.
- [15] O. Ore: Note on Hamiltonian circuits. Am. Math. Monthly 67, (1960) 55.