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Abstract

Deza and Grishukhin studied 3-valent maps Mn(p,q) consisting
of a ring of n g-gons whose inner and outer domains are filled by p-
gons. They described the conditions for n,p, ¢ under which such map
may exist and presented several infinite families of them. We extend
their results by presenting several new maps concerning mainly large
values of n and q.

1 Introduction

Throughout this paper, we consider connected plane graphs without loops
or multiple edges. We use, however, more specialized notation: A config-
uration C = (V(C), E(C)) consists of a vertex set V(C) and an edge set
E(C). Every edge of E(C) has two ends and every end may or may not
be incident to a vertex of V(C) (however, an edge not incident with any
vertex is not permitted). An edge with an end not incident to a vertex of
V(C) is called a half-edge. Thus, the configuration without half-edges is a
graph (cf. also [2]).

The configurations we consider are embedded in the plane without cross-
ing the edges; moreover, in the embedding, all half-edges are contained in
the unbounded region of the plane. As for plane graphs, we also call this
unbounded region the outerface of a plane configuration.
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In [1], Deza and Grishukhin introduced the special kind of plane maps:
given integers n,p,q, My (p,q) is a plane cubic graph having only p-gonal
and g-gonal faces such that the g-gonal faces form a ring R, of n g-gons
(thus, the dual of My(p,q) is a plane triangulation consisting of vertices
of degrees p and ¢ such that all g-valent vertices form an induced cy-
cle); the parts of M,(p,q) that consist of the inner and outer domains
of R, (with the common boundary of R,) are denoted by I, and O,.
The authors studied the existence of M,(p,q) according to the values of
n,p,q; they resolved the case ¢ = 4 (it gives n = p with the unique
Mpy(p,4)) and partially the case ¢ > 5 (it implies p < 7 and if p > 6
then ¢ = 5); in the latter case, the maps that are completely described
are M28(7i 5): M12(6a 5)’ M6(5’5)s M5(5,5), M5(5’ 6)’ M6(516)’ M8(5’6)1
M10(5,6), M4(5,7), Myo(5, 7), Mao(5,7), M12(5, 7), Mis(5,7), Ma(5,10),
M;3(5,8), Ma(5,9), ¢ = 2,3 (mod 5),q # 9 and M,(4, 8), M3(4,6), Ms(4,q),
M(3,6). The open cases are, in particular, M,(7,5) with n > 28 and
M,(5,7) for 17 < n < 19 and M,(5,q) for ¢ > 8 not listed above.
Hajduk and Sotdk ([3]) showed that there exist maps M,(7,5) for n =
30, 32, 36, 42; they also constructed examples of M, (7, 5) with large ring of
7-gons, namely, for n = 28 + 12k, 48 + 8k, 52 + 20k, 56 -+ 28k, k > 0.

The aim of this paper is to show the existence of M, (5,q) for several
new values of n and ¢ (including also graphs when n or q is large). We
prove

Theorem 1.1 The graph M,(5,q) ezists for the following particular val-
ues:

a) n=6, ¢g=0,1,4 (mod 5), ¢ >5, ¢+#9,

b) n=28, ¢=1,4 (mod 5), q>5,

¢) n=10, ¢ =0 (mod 10), q > 20,

d) n=12+4k, k>0,¢=2,3 (mod 5), ¢ > 13,
e) n=14+4k, k>0, ¢=10.

Together with the results of [1}, it gives that for each even n there exists
an integer g such that at least one map M, (5, q) exists.
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2 The proof

In each of the cases below, the proof is based on the following argument:
we consider certain plane configuration S (whose inner faces are pentagons)
having n half-edges incident with its outerface. Assume that the vertices
incident with these half-edges divide the boundary of the outerface of S
into n parts containing (in the cyclical ordering) ny,na, ..., n, vertices (the
vertices incident with the half-edges are not counted). Assume further
that there exists an integer i € {1,...,n} and an sequence n{nj...n}, of
length n such that either for each j € {1,...,n}, n} = n;4; or, for each
j €{1,...,n}, nj = np_;_; (thus niny...n;, is just an shifted sequence
created from niny...n, or from its reverse n,n,—;...n;)) and that, for
each j € {1,...,n}, n} +n; = c. Then it is possible to join the half-edges
of two copies of S in such a way that the resulting plane graph is cubic
having only pentagons and (c+4)-gons that form a ring of n faces. Thus, it
shows that M,,(5, c + 4) exists. Instead of two copies of a configuration S,
we may use two configurations Sp, Sz that are joined in the way described
above to form the suitable graph; these configurations are chosen in such a
way that adding their asociated sequences (involving shifting of reversing)
results in a sequence consisting of the same numbers.

The configurations used for this construction are built from certain
smaller configurations by succesive concatenations. First, we define five
basic configurations:

Consider a dodecahedron D and let ajazasasas be a 5-cycle bounding
its outerface. The configuration A is obtained from D by splitting the edges
a1az,azaq into four half-edges e,,, €q,, €qs,€q, (see Fig. 1,4). The half-
edges €,,, €4, in the configuration A are called input half-edges (where e,,
is the upper and e,, the lower input half-edge), the half-edges eq,, €., are
called output half-edges (where e,, is the upper and e,, is the lower one).

For r > 1, the configuration B, is obtained in the following way: take
two paths bozbibs...b. and cpcica...cr—1yc, and r independent edges
w121, W22, ..., Wr2,. Next, add new edges bow , zr¢, c;w;yq fori € {0,...,
r—1}, bizi fori € {1,...,r} and z;w;41 fori € {1,...,r—1}; finally, add the
edges boco, brc, zy and split them into six half-edges ey, €cy, €0, €c,.s €25 €y
(see Fig. 1,B,). In this configuration, the half-edge e, is the upper input,
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€c, is the lower input, e, is the upper output and e, is the lower output
half-edge.

The configuration H consists of the single edge gh and the four half-
edges eg, €y, en, €},; €, is the upper input, ey, is the lower input, e, is the
upper output and e}, is the lower output half-edge (see Fig. 1,H).

The configuration P consists of the 5-cycle p p2papsps and the five half-
edges ep,, 7 = 1,...,5 incident with p;; ep, is the upper input, €p, is the
lower input, ep, is the upper output and e,, is the lower output half-edge
(see Fig. 1,P).

The configuration K is obtained from the configuration A by deleting
three vertices a;,a4,a5 and attaching three new half-edges to all vertices
of degree 2 in the resulting configuration (see Fig. 1,K). The output half-
edges of K are the original output edges of A4, the upper input half-edge is
e, the lower input half-edge is ¢’.

H P K

Figure 1: The configurations A, B, H,P and K

Next, we define the operation ® (the concatenation) and the unary
operation * (the mirror image) on a subset of plane configurations.
The operation ® is defined in the following way: let M, N be two

398



plane configurations such that e, e are declared as input half-edges of

X € {M,N} (with e the upper and ef the lower one), fX, f are the
corresponding output half-edges (again with fX the upper and fX the
lower one). Then the configuration M ® N is obtained from M,N by
joining the half-edge fM with e and fM with e’ in the way that all
inner faces of the resulting configuration are pentagons and all half-edges
which were not joined lie in the outerface (so, for example, A® P,A® H or
B, ® A are not allowed). Thus, the input half-edges of M ® N are eM, eM
and the output half-edges are f, fN.

Suppose that a configuration X, X € {A,B,H,P,K} is embedded
in the plane in the fixed way. Then the mirror image X* of X is the
configuration obtained from X by the (geometric) reflection by the axis
which crosses the output half-edges. According to this transformation, the
input and output half-edges of X* are exchanged comparing to X. The
mirror image of a concatenation is defined by (M @ N)* = N*® M*.

We will use the notation rX for the succesive concatenation of » > 0
copies of X; 0X results in the empty configuration.

Case a) For n = 6, ¢ = 1 (mod 5), ¢ > 5 choose non-negative integers
7, s such that ¢ = 5r + 5s + 6. Then Mg(5, q) is constructed from

S1=HO®TA® B5420rA*® H
Sy =H® sA® Bs,429 sA*® H.
The corresponding sequences for Sy, So are
(0(57 + 1)(57 + 55 + 2))? and ((57 + 5s + 2)(5s + 1)0)>.

Figure 2 illustrates the cases g = 6, 11.
For n = 6, ¢ = 4 (mod 5), ¢ > 5 choose integers » > 1,s > 1 such that
¢ = 57 + 5s + 4. Then Ms(5, q) is constructed from

S] =7A® B{,s ® rA*
S =35A® B;, © sA™.

The corresponding sequences for Sp, S, are

(1(57)(57 + 5s — 1))? and ((57 + 5s — 1)(5s)1)>.
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Figure 2: The maps Mg(5,6) and Mg(5,11)

Forn =6, ¢=0 (mod 5), ¢ > 5 choose non-negative integers r, s and put
g =57+ 55 + 5. Then Mg(5, q) is constructed from

Si=7rA® Bs, ., ® HO 1A
Sy =5A® Bsy1 ® HO sA
whose corresponding sequences are
1(57)(57 +55+41)0(57 4 1)(57+5s) and (5r+5s)(5s+1)0(57 + 5s+1)(5s)1.

In all cases above, if 7 # s, then I, # O,; observe that for some q we
can construct maps with I,, = O, as well as the ones with I, # O,.

Case b) Forn =8, ¢ =1 (mod 5), q > 6, put g = 57 + 6. Then M;(5,q)
is constructed from

S=P®rA® B, ®rA*® P*
and the corresponding sequences are
(02(57 + 2)%)% and ((5r + 2)20%).

For n = 8,¢ = 4 (mod 5), ¢ > 9 put ¢ = 57 + 9. Then M3(5,q) is
constructed from
S=K®rA® B9 rA*® K*

and the corresponding sequences are

(1%3(57 + 4)%)? and ((5r + 4)%1%)%
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Case c) For n = 10, ¢ = 0 (mod 10), ¢ > 20, put ¢ = 10r + 20. Then
Mio(5, q) is constructed from

S=H®(r+2)A® B5, 1 ® HOTA® B3 ® H® Bg® H® (2r +2)A
and the corresponding sequences are
0(57 + 11)(10r + 8)5(10r + 16)0(10r + 11)8(5r + 5)(10r + 16)
and

(10r + 16)(5r + 5)8(10r + 11)0(10r + 16)5(10r + 8)(5r + 11)0.

Case d) In all subcases of this case, we consider
I=apA® k(Bs® H® B,® H® aA)® Bs® H® B,
I'=B®H® By ® k(H® aA® B,® H® Bg)® apA”
where o, ag, 3, are specified separately.

For n = 12 + 8k,q = 3 (mod 5),q > 13, put ¢ = 56 + 8,6 > 1. Then
M, (5, q) is constructed from

S=IeH®JA® [
with 8 =2,7=3,6 = ap = o + 1 > 1; the corresponding sequences are
(1(56)(4(568))*4(56 + 3)3((56 — 1)5)%(56 + 1))?

and
((568 + 3)4((58)4)*(58)(56 + 1)(5(56 — 1))*3)?

For n = 12 + 8k,q = 2 (mod 5),q = 17, we take ¢ =5 + 7,6 > 2 and
S=HOo o HOJABI'® H
with 8 =5,vy=4,0 = ag+1 = a+2 > 2; the corresponding sequences are
(0(58 — 4)(7(56 — 4))F7(55 + 3)3((56 — 3)6)*(54))*

and
((56 + 3)7((56 — 4)7)%(56 — 4)0(56)(6(56 — 3))¥3)2.
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For n =164+ 8k,q = 3 (mod 5),q > 13, we take g =55 + 8,6 > 1 and
S=K®&|®oHO®A® B, ®/A*ODHOI'® K*
with 8 =3,7v=2,0 = ap+1 = a+1 > 1; the corresponding sequences are
(12(56 — 1)(5(56 — 1))*5(56 + 3)23((56)4)* (56 + 1))?

and
((56 + 3)?5((56 — 1)5)*(56 — 1)12(56 + 1)(4(56))*3)2.

For n =16 4+ 8k,¢ =2 (mod 5),q > 17, we take ¢ =56 + 7,6 > 2 and
S=PO]®H®/A® B ®jA"0HOI'® P*
with 8 =4,7v=5,0 = ap+1 = a+2 > 2; the corresponding sequences are
(0%(50 — 3)(6(56 — 3))*6(56 + 3)23((58 — 4)7)*(56))>

and
((56 + 3)%6((56 — 3)6)* (58 — 3)02(58)(7(58 — 4))*3)2.

Case e) For n =14+ 4k, k >0, q = 10, we take
S=H®(k+1)(B1®H)® B3 ® H® B,® H® B3 ® (k+1)(H® B,)® H;
the corresponding sequences are

(013**'56531)* and (653°*11013%5)>.

3 Concluding remarks

While it is proved that M, (5, q) exists for all even n, no example is known
for n odd. Also, it would be desirable to find M, (5, q) for infinitely many
q if n = 14 + 4k as well as to show the existence of M,(5, q) for other even
n and the corresponding remaining residual classes modulo 5.
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