ON BLOCKING SETS OF EXTERNAL LINES TO A
QUADRIC IN PG(3,q), ¢ PRIME

PAOLA BIONDI AND PIA MARIA LO RE

ABSTRACT. Minimal blocking sets of class [h, k] with respect to the
external lines to an elliptic quadric of PG(3,9), ¢ > 5 prime, are
characterized.

1. INTRODUCTION

A blocking set in a projective space P = PG(d, q) is & subset of P which
meets every line. Blocking sets have been investigated by several authors,
from many points of view. The reader is referred to [2, 4] and papers cited
there for a survey on this topic.

Now, let 3 be a family of lines of P. A point-set B of IPis a blocking set
with respect to F (briefly, an F-blocking set ) if every line in ¥ is incident
with B. An F-blocking set B is minimal if no proper subset of B is an
J-blocking set. If ¢y,1,...,ts are non-negative integers and, for any L € F,
BN L| € {t1,t2,....,t5}, B is of class [t1,1,..., ts]. Moreover, if B is a
blocking set of class [t, ¢, ...,t5] and, for any i = 1,2, ..., s, there exsists
in ¥ a ti-secant to B, i.e. a line L such that [BN L| = t;, B is of type
(t1,¢2,...,t5). In [1] and [3] blocking sets with respect to the family of the
external lines to a conic in PG(2, ¢) are studied.

In this paper we are interested in blocking sets of PG(3,q) with respect
to the family F of all external lines to an elliptic quadric Q. Obviously, for
any plane 7 of PG(3,g), 7\Q is a minimal F-blocking set. Any line in &
not contained in w\Q meets 7\Q precisely in one point, so 7\Q is of type
(1,g+1) with respect to F. We show that, if ¢ > 5is a prime, this is the only
possibility for a minimal F-blocking set of class [h,k], 1 <h <k < g+ 1,
by proving the following

Theorem 1.1. Let Q be an elliptic quadric of PG(3,q),q > 5 prime. If B
is a minimal blocking set of class [h k], 1 < h <k < q+1, with respect to
the family F of the external lines to Q, then B = 7\Q for some plane 7 of
PG(3,q).
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From now on, we denote by Q an elliptic quadric of PG(3, g), ¢ > 5 prime
and by F the family of the external lines to Q. Moreover, B will denote a
minimal F-blocking set of class [h, k], 1 < h < k < ¢+ 1. Of course, since
B is minimal, no point of Q is in B.

If z and y are distinct points of PG(3, g), the line through = and y will
be denoted by zy.

2. FIRST PROPERTIES

It is useful for the sequel to remaind that :
-the number of the external lines to Q is

2¢.2
+1
-the number of the external lines to Q through a point not in Q is
2
@ +gq
(22) R

Moreover, if 7 is a plane of PG(3,q) and I' is a conic of ,

-the number of the lines in 7 external to I is

g(g —1)
(2.3) —(-'2—;
-the number of the lines in 7 external to ' through a point in #\T is at
least
(2.4) -1

2
Now we prove the following

Proposition 2.1. B is of type (1,k), 2< k< q+1.

Proof. Since B is minimal, for any z € B there exists a line in F meeting
B exactly in z; so h = 1. Now, let B be of type (1). By counting in two
ways the incident point-line pairs (z,L), z € B and L € F, we have, by
(2.1) and (2.2),
2 202
¢“+q _g(g*+1)

It follows that g+1 divides 2, a contradiction. So, the statement follows. O

Proposition 2.2. For any plane m , BN is a blocking set of class [1,k],
2 < k < g+ 1, with respect to the family of the lines in m external to Q .

Proof. 1t immediately follows from Proposition 2.1. a



3. INTERSECTION WITH THE TANGENT PLANES

By Proposition 2.1, B is of type (1,k), 2< k < g+ 1.

Let 7 be a tangent plane to Q. Set {pp} = QN7 and B’ = Bnr. By
Proposition 2.2, B’ is a blocking set of class [1, k] with respect to the family
F of the lines in = not on py.

Proposition 8.1. If B’ is a minimal F'-blocking set, then either
k=gq+1 and B’ is a line in 7 not on pg
or
B’ = I\{po}, L a line in 7 through po.

Proof. Let z' € B’. If a denotes the number of the 1-secants to B’ in
through z’, then

(3.1) |B'| = (g — a)(k — 1)+ |B' N z'py|.

Two cases can occur:
(i) there exists a point y # po in z'po\B’;
(ii) the points distinct from py on the line z'pg all are in B’.
Case (i). If b denotes the number of the 1-secants to B’ in 5’ through y,
then

(3.2) |B'| =b+ (g - b)k+|B’' Nz'po).
From (3.1) and (3.2) it follows that
(3.3) g=(k-1)(b-a).

Since g is prime, (3.3) implies that either k — 1 = 1 and b — @ = g or
k—1=gqgandb—a=1. Since B’ is minimal, a > 1; so the caseb=gqg+a
cannot occur as b < g. Hence, k =g+1andb=a+1. Since k=gq+1
and y ¢ B’, then no line in 3’ through y is k-secant to B’; so, b = g which
implies @ = g — 1. Therefore B’ contains a line L € ¥ through z’ and no
point not on LUpoz’. Since L is an F-blocking set of 7 and B’ is minimal,
then B’ = L.

Case (ii). Since poz’\{po} is an F'-blocking set of 7 and B’ is minimal,
then B’ = poz’\{po}. So, the statement is completely proved. 0

Proposition 3.2. If B’ is a non-minimal F' -blocking set, then either
= 2 and B’ = (L\{po}) U S, where L is a line in 7 through py and
S is a non-empty set of points distinct from po on a line in through po
distinct from L
or
k=gq+1 and B' = B = m\{po}.

Proof. Since B’ is not minimal, there exists a point z’ in B’ such that the
lines of 7 through 2’ and distinct from z’po all intersect B’ in exactly k
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points. Therefore,
(34) |B'| = q(k — 1) + |B' N 'pol.

Two cases can occur:
(i) there exists a point y # po in z'po\B’;
(ii) the points distinct from pg on the line zpy all are in B’'.
Case (i). Denote by a the number of the 1-secants to B’ in ¥ through
y. Since the k-secants to B’ in ¥’ through y are g — a, then

(3.5) |B’| = a+ (g — a)k + |B’ Nz'pol.
From (3.4) and (3.5) it follows that
(36) qg= a(k bl 1).

Since g is prime, (3.6) implies that eithera =1and k—1=gora =g and
k—1=1. Ifa=1and k = g+ 1, then there are ¢ — 1 lines through y
contained in B’, a contradiction since y ¢ B’.
Now, let a = ¢ and k = 2. The lines in ¥’ through z’ all intersect B’\{z'}
precisely in one point. Let z and w be two distinct points in B'\poz’ and let
{t} = poz’ N zw. Since B’ is of class [1,2], then ¢t ¢ B’. On the other hand,
since a = g, the lines in 3’ through a point on pgz’\ B’ all are 1-secants to
B’. Hence, t = pp. It follows that the ¢ points in B’\poz’ all are on a line
L through po.

Case (ii). First, observe that (3.4) implies

(3.7) |B’| = q(k — 1) + q = ¢k.

Since k > 2, there exists a point z € B’\poz’. The lines in ¥’ through 2z all
have at least two points in B’ and so they are k-secants to B’; therefore,
by (3.7), lpoz N B’| = q; so poz\{po} C B’. Now, consider a point w in 7
not on poz’ U ppz. The lines in ¥’ through w all have at least two points
in B’, so they are k-secants to B’. Hence, by (3.7), w € B’ if, and only if,
pow\{po} C B’. It follows that B’ is the union of k lines (2 < k < g+1)
through po but the point po.

Assume 3 < k < q. A plane =’ tangent to Q at a point pgy # po intersects 7
in a line external to Q and k-secant to B. By Proposition 3.1, # N B is a
blocking set of =’ with respect to the family of the lines in 7’ external to Q
which is not minimal. So, the previous argument implies that =’ N B is the
union of k lines through pf, but the point pg. Since any external line to Q
is on a tangent plane to Q, then any external line to Q is a k-secant to B,
a contradiction.

Hence, k = 2or k=q+ 1. If k = g+ 1, then B’ = n\{po}. Since m\{po}
is an F-blocking set of type (1,9 + 1) and B is minimal, then B = 7\ {po}
and the statement is completely proved. O
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4. PROOF OF THEOREM 1.1
First we prove the following
Proposition 4.1. Itisk=gq+1.
Proof. Assume, on the contrary, k < g+ 1.

We divide the proof in several steps.

Step 1. It is k = 2.

Since B is of type (1, k), there exists in F a k-secant to B, say M . Since
a tangent plane to Q through M exists, then the statement follows from
Propositions 3.1 and 3.2.

Step 2. For any plane =, |v N B| < 2q.

If 7 is a tangent plane to Q, the statement follows from Propositions 3.1
and 3.2. Now, let m be a secant plane. Set ' = QN and B’ = BN .
Count in two ways the incident point-line pairs (z, L), z € B’ and L a line
in 7 external to I'. By Step 1, (2.3) and (2.4)

aa—-1 _ .qlg=1)
(4.1) |B| 5 S25 o,

follows, from which |B’| < 2q.

Step 3. If 7 is a secant plane to Q, then B N« does not contain the union
of three tangent lines to = N Q but the points of contact.
It immediately follows from Step 2, as ¢ > 5.

Step 4. There exists a plane o tangent to Q such that |xp N Bl <2¢-1.

Since B is of type (1,k), a 1-secant to B exists in F, say L. Let my be
a tangent plane through L. By Propositions 3.1 and 3.2, the statement
follows.

Step 5. |B| < ¢ +2q - 1.

Let mo be a tangent plane as in Step 4. By Propositions 3.1 and 3.2,
there exists in p a tangent line L such that L\Q C B. By Step 2, for any
plane 7 through L distinct from mo, |7 N B| < 2¢. By counting the points
of B on all planes containing L, the statement follows.

Step 6. There exists a plane 7 secant to Q in a conic I" such that 7N B =
(L1 U L2)\{p1,p2}, where L; and L, are two distinct lines tangent to I at
the points p; and p, respectively.

Since B is of type (1,k), a line L 1-secant to B exists in F. Set {p} =
LN B. Denote by m and m; the tangent planes to Q through L. If {p:} =
mNQ, then, by Propositions 3.1 and 3.2, there exists in ; a line L; through
p tangent to Q such that L;\{p;} C B, i = 1,2. Now, let 7 be the plane
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through L; and Lj. Obviously, 7 is a secant plane to Q. Set xNQ =T
Assume a point z exists in # N B not on L U Lz. Since ¢ 2 5, then, by
(2.4), there exists in 7 an external line to T’ through z meeting Ly U Lz in
two distinct points, a contradiction as, by Step 1, k=2 ..

Now, consider a secant plane = satisfying the condition of Step 6. By
Propositions 3.1 and 3.2, through any point z in Q\7 there exists a line
L tangent to Q such that L\{z} C B. Say L the set of all such lines.
Obviously, any line in £ meets 7 in a point of (L1 U L2)\{p1,p2}. So,
by Step 3, any point in B\ is on at most two lines of L. Therefore, by
counting in two ways the incident point-line pairs (z,L), z € B\rm and
Lel,

(4.2) (¢ — DIL| £ 2|B\7]

follows.
Since || > |Q\n] = ¢* — ¢ and, by Step 5, |B\n| < ¢?, (4.2) implies
g < 3, a contradiction. So, k = ¢+ 1 follows. O

Now, we can prove Theorem 1.1.

By Proposition 4.1, B is of type (1, ¢ + 1); hence, there exists in ¥ a
line L contained in B. Since a line exists in F skew with L, then B\L # 0.
Let z € B\L and let 7 be the plane through L and z. If 7 is tangent to Q,
then, by Propositions 3.1 and 3.2, B = 7\Q; so, the statement follows.

Now, consider the case when 7 is secant to Q in a conic I'. Since g > 5,
by (2.4) a line L’ exists in  through z external to I'. As [BNL’| > 2, then
L' C B. Again, (2.4) and g > 5 imply that through any point p in 7 not on
TULUL' aline exists in 7 external to I" and intersecting both L and L' at
distinct points; such a line is contained in B, so p € B. Hence, m\I' C B.
Since B is minimal, then #\I' = B and the statement is completely proved.
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Abstract

Let G be a graph in which each vertex has been coloured us-
ing one of k colours, say ¢i,¢z,...,¢cc. If an m-cycle C in G has
ni vertices coloured ¢;, i = 1,2,...,k, and |n; — nj| < 1 for any
i, € {1,2,...,k}, then C is equitably k-coloured. An m-cycle de-
composition C of a graph G is equitably k-colourable if the vertices of
G can be coloured so that every m-cycle in C is equitably k-coloured.
For m = 4,5 and 6, we completely settle the existence problem for
equitably 2-colourable m-cycle decompositions of complete graphs
and complete graphs with the edges of a 1-factor removed.

1 Introduction

Let G and H be graphs. A G-decomposition of H is a set G = {G1,Go,...,
Gp} such that G; is isomorphic to G for 1 < i < p and G partitions the
edge set of H. Most commonly, H = K,, the complete graph on v vertices.
Another popular choice for H is K, — F, the complete graph with the edges
of a 1-factor removed. The problem of determining all values of v for which
there exists a G-decomposition of K, is called the spectrum problem for G.

An m-cycle, denoted by (z;,z2,...,Zm), is the graph with vertex set
{21,22,...,2m} and edge set {{z1,22}, {z2,23},..., {Zm,z1}}. The spec-
trum problem for m-cycles has recently been solved; see [3] and [9].

A colouring of an m-cycle decomposition C of a graph G is an assignment
of colours to the vertices of G. A k-colouring of C is a colouring in which
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k distinct colours are used. A k-colouring of an m-cycle decomposition C
induces a colouring of each m-cycle in C. If n; is the number of vertices
coloured ¢; in an m-cycle C € C, then C is equitably k-coloured if |n; —n;| <
1for any i,j € {1,2,...,k} and an m-cycle decomposition C is equitably k-
coloured if every C € C is equitably k-coloured. An m-cycle decomposition
is equitably k-colourable if it can be equitably k-coloured.

A 3-cycle decomposition of K, is just a Steiner triple system of order v.
There is extensive literature on colourings of Steiner triple systems and a
fine survey can be found in [5]. Much of the literature on vertex colourings
of Steiner triple systems has focused on colourings in which each triple is
assigned at least two distinct colours.

In [4], Colbourn, Dinitz and Rosa consider colouring the vertices of a
Steiner triple system using 3, 4 or 5 colours such that, in each triple of
the system, exactly two colours are represented. In (8], Milici, Rosa and
Voloshin consider colouring Steiner triple systems and also Steiner systems
of the form S(2,4,v), with the restriction that the blocks of each design
must have specified colour patterns.

The existence question for equitably 3-colourable m-cycle decomposi-
tions of K, and K, — F, where m € {4,5,6}, has been completely settled
in [2]. Quattrocchi has also considered certain colourings of 4-cycle decom-
positions of K, in [10]. Quattrocchi’s paper differs from both this paper
and [2] as it is a condition that each system must have at least one 4-cycle
with 3 vertices of one colour.

We consider a natural extension of these colouring problems by investi-
gating the existence of equitably 2-colourable m-cycle decompositions. (In
this paper we use colours black and white and, unless otherwise stated, b
and w are used to denote the number of black and white vertices in K,
or K, — F respectively. Futhermore, an edge which connects two black
(white) vertices is said to be a one-coloured black (white) edge, and an
edge which connects two differently coloured vertices is said to be a two-
coloured edge.) A simple counting argument shows that the only equitably
2-colourable Steiner triple system is the trivial system of order 3. More-
over, it is easy to see that for k > 3, there exists an equitably k-colourable
Steiner triple system of order v if and only if v = k and v = 1 or 3 (mod 6).

As we shall see, equitable k-colourings of m-cycle decompositions of K,
and K, — F are no longer trivial when m > 4. This paper is primarily
concerned with equitably 2-colourable m-cycle decompositions of K, and
K,—F form =4, 5 and 6. We make frequent use of the following important
result.

Lemma 1.1 ([3), [9)) An m-cycle decomposition of K, (K, — F) exists for
all admissible v, that is, for all odd (even) v such that 3 <m < v andm
divides the number of edges in K, (K, — F).
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Our main result is the following theorem which completely settles the
existence question for equitably 2-coloured m-cycle decompositions of K,
and K, — F for m = 4, 5 and 6.

Main Theorem

* No equitably 2-colourable m-cycle decomposition of K, exists for m
even.

e For all admissible v, there exists at least one 5-cycle decomposition
of K, which is equitably 2-colourable.

e For all admissible v, v > 5, there exists at least one 5-cycle decompo-
sition of K, which is not equitably 2-colourable.

e There exists an equitably 2-colourable m-cycle decomposition of X, —
F, with m € {4, 5,6}, for all admissible values of v.

Finally, we introduce some notation to be used throughout the paper.
We use K,(,) to denote the multipartite graph with p parts with n vertices
in each part. Let G and H be graphs. The join of G and H, denoted
G V H, is the graph with vertex set V(G) U V(H) and edge set E(G) U
E(H)U {{u,v} | u € ¥(G) and v € V(H)}.

2 Equitably 2-colourable even-length cycle
decompositions of K,

We start with a trivial result.

Lemma 2.1 No equitably 2-colourable m-cycle decomposition of K, exists
for m even.

Proof. Every equitably 2-coloured cycle of even length contains an equal
number of vertices of each colour. Hence, v must be even for an equitably
2-coloured even-length cycle decomposition of K, to exist. However, it is
not possible to decompose a complete graph of even order into cycles as
each vertex is of odd degree and cycles have even degree. o

3 Equitably 2-colourable 4-cycle decomposi-
tions

Every equitably 2-coloured 4-cycle must contain two black and two white
vertices, which may only be arranged in two formations; see Figure 1. From
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the previous section we know that no equitably 2-colourable 4-cycle decom-
position of K, exists. This prompts us to consider instead the decomposi-
tion of K, — F since this graph has the required even number of vertices
and even degree.

Type 4.1 Type 4.2
Figure 1: Possible equitable 2-colourings of 4-cycles.

We prove the following:

Theorem 3.1 There exist equitably 2-colourable 4-cycle decompositions of
K, - F if and only if v=0(mod?2), v > 4.

Proof. From Lemma 1.1, a 4-cycle decomposition of K, — F exists if and
only if v = 0(mod2), v > 4. As v is even, we colour v/2 vertices black
and v/2 vertices white. The proof that these conditions are also sufficient
requires the consideration of two cases. Note that there are 3v(v - 2) 4-
cycles in any 4-cycle decomposition of K, — F.

Case 1: v =0(mod4).

Let the vertex set of K, — F be U {O;, 1.1, %(v - 2);}. Colour the
i=1,2

vertices with subscript 1 black and colour the the vertices with subscript 2
white. Let the edges in F be {jk, (j + g)k} where j = 0,1,..., (v — 4)/4
and k = 1,2. We obtain v/4 cycles of Type 4.2 (see Figure 1) by forming

the 4-cycles
(32 (1+3) . (7+7),)

for j =0,1,...,(v — 4)/4. We generate the remaining v(v — 4)/8 cycles of
Type 4.1 (see Figure 1) by working modulo v/2 and forming the 4-cycles

(jl)(j +l)1’j2a(j +l)2)
forj =0,1,...,(v—2)/2and 1=1,2,...,(v—4)/4.

Case 2: v =2(mod4).
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Label and colour the vertices as for Case 1. Let the edges in F be
{j1,J2}, where j =0,1,..., (v - 2)/2. Working modulo v/2, we obtain
v(v — 2)/8 cycles of Type 4.1 by forming the 4-cycles

(jl:(j + l)lsj2s (] + 1)2)

forj=0,1,...,(v-2)/2and 1 =1,2,...,(v-2)/4 ]

4 Equitably 2-colourable 5-cycle decomposi-
tions

When considering cycles of odd length, if b vertices of a cycle are coloured
black and w white, we cannot have b = w. Instead, each cycle within
the decomposition must satisfy |b~w| = 1. The only ways of equitably
2-colouring a 5-cycle are shown in Figure 2. In this case, as we do not
require equal numbers of black and white vertices, it is feasible to consider
equitably 2-colourable decompositions of K, as well as decompositions of

feieieie

Type 5.1 Type 5.2 Type 5.3 Typc 5.4

Figure 2: Possible equitable 2-colourings of 5-cycles.

4.1 Equitably 2-colourable 5-cycle decompositions of
K,

We begin with some definitions.

Definition A pairwise balanced design of order v, with block sizes in the
set K and index A, denoted PBD(v, K, A), is a pair (V, B). Here V is a set
of elements such that |V| = v and B is a collection of subsets of V, called
blocks, such that for each B € B, |B| € K and any two elements in V occur
together in precisely A blocks.

Definition A group divisible design of order v, with block sizes in the set K ,
group sizes in the set Af and index A, denoted GDD[K, A\, M; ), is a. triple
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(V,T, B). Here V is a set of elements such that |V| =v, ' = {G1,Ga,...}
is a partition of X with each class of the partition called a group, such that
for each G; € T, |G;| € M and B is a collection of subsets of V, called
blocks, such that for each B € B, |B| € K. The triple also satisfies the
following properties:

1. for all 2,y € V belonging to distinct groups, z and y occur together
in precisely A blocks; and

2. for all 2,y € V belonging to the same group, z and y do not occur
together in any blocks.

The following result is well-known, and is useful in proving Theorem 4.8
below.

Lemma 4.1 [6] For all positive integers z there ezxists a PBD(2z +1,3,1)
or a PBD(2z + 1, {3,5%},1).

Corollary 4.2 For all positive integers z there exists a GDD[3,1, 2;2z] or
a GDD[3,1,{2,4*};2z].

Proof: Takea PBD(2z+1,3,1) ora PBD(22+1, {3,5*},1) (see Lemma
4.1), and remove an element e (if there is a block of size 5, remove an element
occuring in this block). The result is a GDD[3,1,2;2z] or a GDD[3,1,
{2, 4*}; 2z] respectively, where the old blocks not containing e are blocks
in the design and the old blocks containing e are now groups within the
design. 1]

We also make use of the following existence results. Most of these and other
designs in this paper were obtained using computational techniques.

Lemma 4.3 There exists an equilably 2-coloured 5-cycle decomposition of
K.

Proof. Let the vertex set of K5 be Zs. Colour the vertices 0, 1 and 2
black and colour the vertices 3 and 4 white. A suitable decomposition of
Ky is given by: (0,1,2,3,4), (0,2,4,1,3). 8]

Lemma 4.4 There exists an equitably 2-coloured 5-cycle decomposition of
Kn.

Proof. Let the vertex set of K;; be Z;;. Colour the vertices 1, 2, 4, 7,
9 and 10 black and colour the remaining vertices white. Working modulo
11, the starter cycle (0,1, 10, 2, 6) generates an equitably 2-coloured 5-cycle
decomposition of Ky,. O
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Lemma 4.5 There exists an equitably 2-coloured 5-cycle decomposition of
IKy.

Proof. Let the vertex set of K»; be U {0i,1;,2;}. Colour the vertices
i=1,...,7

with subscripts 4, 5, 6 and 7 black and colour the remaining vertices white.

Fourteen equitably 2-coloured starter cycles are given by:

(01111)02:04:14)’ (01,02,21,14,08), (01,03104)05715)s (01,13,04,15,06);
(01v23!04)06325)n (01104312124,16)1 (olv2ﬂv03:05)07)! (01v17)02315y27)3
(02: 12105y06)16); (02303,05)27106)a (02»13,08,24,07)1 (02)23’06107127)’
(03!13r07114al7), (03, 15,23, 26, 07).

Each starter cycle is developed modulo 3 such that the subscripts re-
mains fixed, thus ensuring that every cycle is equitably 2-coloured. For
example, the first starter cycle develops to produce:

(01,11,02.04,14), (ll:2l,l2r14)24)1 (21 101,22,24,04).
o

Lemma 4.6 There evists an equitebly 2-coloured 5-cycle decomposition of
K.

Proof. Let the vertex set of Kjy(s) be U {0;,1;,...,4;}, with the ob-
i=1,2,3

vious vertex partition. Colour the vertices 0;, 2; and 4; black for i = 1,2, 3,

and colour the remaining vertices white. A suitable decomposition of K. 3(5)

is given by:

(11,12,01,02,03), (11,32,01,22,23), (11,13,01,42,43), (11,33,0;,03,22),
(31,12,21,02,23), (31,32,23,01,43), (31,13,21,42,03), (31,33,21,23,42),
(12,13,02,43,41), (12,33,22,21,03), (32,13,22,43,21), (32,33,42,4;,03),
(11r42;13t4l)02)v (3l’02:33:4l’22)x (I2)43’32l4ll23)' 0

Lemma 4.7 There exists an equitably 2-coloured 5-cycle decomposition of
K 5(5) -

Proof. Let the vertex set of Ks(s) be U {0;,1;,...,4;}, with the obvi-
i=1,...5

ous vertex partition. Colour the vertices 0;, 2; and 4; black fori = 1,...,5,

and colour the remaining vertices white. A suitable decomposition is given

by developing the following ten starter cycles:

(11,12,23,04,45), (11,32,43,44,25), (34,31,23,45,02), (01,02,13,44,3s5),

(14111123105142)’ (14:31;43)45122)1 (21722,33:14105)) (041011 13!45732))
(31,32,23,44,0s), (24,21,33,15,02).
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Working modulo 5, each starter cycle is developed by incrementing the
subscript by one. So, for example, the first starter cycle develops to produce
the following 5-cycles:

(11,12,23,04,4s), (12, 13,24, 05,41), (13,14, 25,01,42), (14, 15,21,02,43),
(15'11|22;03144)'
0

Theorem 4.8 There exist equitably 2-colourable 5-cycle decompositions of
K, if and only if v = 1,5 (mod 10), v > 5.

Proof. By Lemma 1.1, a 5-cycle decomposition of K, exists if and only
if v =1,5(mod 10), v > 5. We need to consider these two cases separately.

Case 1: v =1(mod10).

Let v = 10z + 1, z > 1. By Corollary 4.2, we can take either a
GDD[3,1,2;2z) or a GDD[3,1,{2,4*};22] and simultaneously construct
the complete graph K, and its equitably 2-coloured 5-cycle decomposition
as follows. Replace each element of the design with five vertices, colour-
ing three vertices black and two vertices white. Adjoin a new vertex oo,
coloured white, which is adjacent to all other vertices.

By Lemma 4.6, we can place an equitably 2-coloured 5-cycle decompo-
sition of K3(s) on each set of vertices arising from a block of the design.
Furthermore, by Lemmas 4.4 and 4.5, we can place an equitably 2-coloured
5-cycle decomposition of K13 or Ka; on {oo} U g for each set of vertices g
arising from a group of the design of size 2 or 4 respectively. It is not difficult
to check that the result is an equitably 2-coloured 5-cycle decomposition of
K,.

Case 2: v = 5(mod10).

Let v = 10z + 5, 2 > 0. By Lemma 4.1, we can take either a PBD(2z +
1,3,1) or a PBD(2z + 1,{3,5},1) and, proceeding as for Case 1, replace
each element of the design with five vertices, colouring three vertices black
and two vertices white.

By Lemma 4.3, we can place an equitably 2-coloured 5-cycle decomposi-
tion of K5 on each set of five new vertices. By Lemmas 4.6 and 4.7, we can
place an equitably 2-coloured 5-cycle decomposition of K35y or Kg(s) on
each set of vertices arising from a block of the design of size 3 or 5 respec-
tively. It is not difficult to check that the result is an equitably 2-coloured
5-cycle decomposition of K. 0
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4.2 Equitably 2-colourable 5-cycle decompositions of
K,-F

When proving Theorem 4.13, we again make use of Corollary 4.2 as well as
the existence results in Lemma 4.6 and Lemmas 4.9 to 4.12.

Lemma 4.9 There exists an equitably 2-coloured 5-cycle decomposition of
Ko~ F.

Proof. Let the vertex set of K jo—F be Z,o. Colour the vertices 0,1,...,5
black and colour the vertices 6, 7, 8 and 9 white. Let the edges in F be
{0,1}, {2, 3}, {4,5}, {6,7} and {8,9}. A suitable decomposition of Ko — F
is given by:

4,0,3,6,8), (0,2,4,6,9), (1,3,4,
5,2,6,0, ) (5 3,7, )l (5) ()

0

Lemma 4.10 There ezists an equitably 2-coloured 5-cycle decomposition
Of 1(12 - F.

Proof. Let the vertex set of K2 —F be Z,;s. Colour the vertices 0,1,...,5
black and colour the remaining vertices white. Let the edges in F be {0,1},
{2,3}, {4,5}, {6,7}, {8,9} and {10,11}. A suitable decomposition of K2 —
F is given by:

(0,2,1,8,6), (3,0,4,9,10), (1,5,0,7,10), (11,8,10,2,4), (9,7,11,2,5),
(9,6,11,5,3), (1,3,8,0,9), (3,4,10,0,11), (4,1,6,2,8),  (11,9,2,7,1),
(8,7,3.6,5), (10,6,4,7,5).

0

Lemma 4.11 There ezists an equitably 2-coloured 5-cycle decomposition
Of I{go - F.

Proof. Let the vertex set of Kag — F be Zag. Colour the vertices 0,1,...,
11 black and colour the vertices 12,13,...,19 white. Let the edges in F be
{0,1}, {2,3}, {4,5}, {6,7}, {8,9}, {10,11}, {12,13}, {14, 15}, {16,17} and
{18,19}. A suitable decomposition of Kap — F is given by:

(12,14,3,1,2), (13,15,0,4,6), (16,18,5,7,8), (17,19,10,9,11),
(12,15,1,4,3), (13,14,0,2,5), (16,19,6,8,10), (17,18,11,7,9),
(12,16,0,3,5),  (13,17,1,6,9), (14,18,2,7,10), (15,19,4,8,11),
(12,17,0,5,1),  (13,16,2,6,10), (14,19,7,4,11), (15,18,8,3,9),
(12,18,0,6,11), (13,19,1,7,3), (14,16,4,2,9), (15,17,8,5, 10),
(12,19,2,10,4), (13,18,3,11,1), (14,17,7,0,8), (15,16,9,5,6),
(12,6,14,1,10), (13,7,18,9,0), (15,4,17,2,8), (17,6,18,10,3),
(12,7,14,4,9), (13,2,15,5,11), (16,3,19,9,1), (17,5,19,0, 10),
(12,8,19,11,0), (13,4,18,1,8), (14,5,16,11,2), (15,7,16,86,3).
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0

Lemma 4.12 There ezists an equitably 2-coloured 5-cycle decomposition
Of K22 - F,

Proof. Let the vertex set of Kaa — F be Zag. Colour the vertices 0,1, ...,
11 black and colour the vertices 12,13,...,21 white. Let the edges in F
be {0,1}, {2,3}, {4,5}, {6, 7}, {8,9}, {10,11}, {12,13}, {14,15}, {16,17},
{18,19} and {20, 21} A suitable decomposition of K2; — F is given by:

(12,14,13,0,2), (12,1

13 5,13,1,3), (12,16,13,2,1), (12,17,13,3,0),
(12,18,13,4,6), (12,19
15 8

13
13,5,7), (12,21,13,7,4), (14,16,15,0,4),
15

(14,17,15,1,5), (14,18,15,2,6), (14,19,15,3,7), (14,20,0,5,2),
(14,21,0,6,1), (15,20,1,4,8),  (15,21,1,7,9), (16,18,0,7,2),
(16,19,0,8,1),  (16,20,2,4,3),  (16,21,2,8,5), (17,18,1,9,0),
(17,19,1,10,2), (17,20,3,5,9),  (17,21,3,6,8),  (18,20,4,9,2),
(18,21,4,10,3), (19,20,5,10,6), (19,21,5,11,2), (12,8,13,9,10),
(12,9,14,0,11), (13,10,14,3,11), (14,8,16,4,11), (15,4,17,1,11),
(15,5,17,7,10), (15,6,16,11,7), (16,7,18,8,10), (16,9,18,10,0),
(17,6,20,8,3), (17,10,19,8,11), (18,4,19,9,11), (18,5,19,11,6),
(19,7,21,9,3), (20,10,21,6,9), (20,11,21,8,7).

o

Theorefn 4.13 There ezist equitably 2-colourable 5-cycle decompositions
of K, — F if and only if v= 0,2 (1nod 10), v > 10.

Proof. By Lemma 1.1, a 5-cycle decomposition of K, — F exists if and
only if v = 0,2(mod 10), v > 10. We need to consider these two cases
separately.

Case 1: v =0(mod 10).

Let v = 10z, = > 1. By Corollary 4.2, we can take either a GDDI[3,1,2;
2z) or a GDD[3,1,{2,4"};22] and simultaneously construct K, — F and
its equitably 2-coloured 5-cycle decomposition as follows. Replace each
element of the design with five vertices, colouring three vertices black and
two vertices white. Within each set of vertices arising from a group of
the design of size 2, let there be three one-coloured black edges and two
one-coloured white edges in F. Similarly, within any set of vertices arising
from a group of size 4, let there be six one-coloured black edges and four
one-coloured white edges in F.

By Lemma 4.6, we can place an equitably 2-coloured 5-cycle decompo-
sition of K5 on each set of vertices arising from a block of the design.
Furthermore, by Lemmas 4.9 and 4.11, we can place an equitably 2-coloured
5-cycle decomposition of K19 — F or K29 — F on g for each set of vertices g
arising from a group of the design of size 2 or 4 respectively. It is not difficult
to check that the result is an equitably 2-coloured 5-cycle decomposition of
K,-F.
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Case 2: v =2(mod10).

Let v = 102 + 2, z > 1. Proceeding as for Case 1, we replace each ele-
ment of either a GDD(3, 1,2; 2z] or GDD[3, 1, {2,4*}; 2z] with five vertices,
colouring three vertices black and two vertices white. Let the edges in F
be as described in Case 1. Adjoin two new independent vertices oo; and
002, both coloured white, such that co; and co, are adjacent to all other
vertices except each other; that is, {001,002} is an edge of F.

We can again place an equitably 2-coloured 5-cycle decomposition of
K35) on each set of vertices arising from a block of the design. Furthermore,
by Lemmas 4.10 and 4.12, we can place an equitably 2-coloured 5-cycle
decomposition of K2 — F or K32 — IF on {00;,002} U g for each set of
vertices g arising from a group of the design of size 2 or 4 respectively. It
is not difficult to check that the result is an equitably 2-coloured 5-cycle
decomposition of X, — F. 1]

5 Equitably 2-colourable 6-cycle decomposi-
tions

For 6-cycles, we proceed in much the same manner as for 4-cycles. In
this case, the only possible equitable 2-colourings of a 6-cycle are shown in
Figure 3.

Type 6.1 Type 6.2 Type 6.3

Figure 3: Possible equitable 2-colourings of 6-cycles.

We use the following existence results when proving Theorem 5.4.

Lemma 5.1 There ezists an equitably 2-coloured 6-cycle decomposition of
K¢ - F.

Proof. Let the vertex set of Kg — F be Zg. Colour the vertices 0, 1 and
2 black and colour the vertices 3, 4 and 5 white. Let the edges in F' be
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{0,4}, {1,5} and {2,3}. A suitable decomposition of K¢ — F is given by:
(0,1,2,5,4,3), (0,2,4,1,3,5). 0

Lemma 5.2 There exists an equitably 2-coloured 6-cycle decomposition of
Kg—F.

Proof. Let the vertex set of Kg — F be Zg. Colour the vertices 0, 1, 2
and 3 black and colour the vertices 4, 5, 6 and 7 white. Let the edges in F
be {i,i+4}, for i =0,1,2,3. A suitable decomposition of Kg — F is given
by: (0,1,3,4,5,7), (1,2,3,5,6,7), (2,0,6,1,4,7), (3,0,5,2,4,6). o

Lemma 5.3 There exists an equitably 2-coloured 6-cycle decomposition of
1{6,6-

Proof. Let the vertex set of Kg ¢ be U {0s,1;,...,5;}, with the obvious
i=1,2

vertex partition. Colour the vertices 0;, 2; and 4; black, for i = 1,2, and

colour the remaining vertices white. A suitable decomposition of K¢, is

given by:

(0|‘02,41,52,11,32), (21,22101’]2131y52)y (41,42121132)51112),
(41'22;llo02,31132)y (0!)42)31’22151t52)1 (2l|02151)42)lln12)'

We prove the following:

Theorem 5.4 There exist equitably 2-colourable 6-cycle decompositions of
K, - F if end only if v=0,2(mod6), v > 6.

Proof. By Lemma 1.1, a 6-cycle decomposition of K, — F exists if and
only if v = 0,2(mod6), v > 6. We need to consider these two cases
separately.

Case 1: v =0(mod8§).

Let v = 62, 2 > 1. Let the vertex set of K, — F be U V;, where V; =

i=1,..,%

{0;,1;,...,5;}. Colour the vertices 0;, 1; and 2; black for ¢ = 1,2,...,z,
and colour the remaining vertices white. Let the edges in F be {0;,3;},
{1;,4;} and {2;,5;},fori =1,2,...,2.

By Lemma 5.3 we can place an equitably 2-coloured 6-cycle decomposi-
tion of Ke,g on V; VVj;, for 1 < i< j < 2. By Lemma 5.1, we can place an
equitably 2-coloured 6-cycle decomposition of Kg —F on V; for 1 < i < z.

Case 2: v = 2(mmod6).
Let v = 6z+2, 2 > 1. Label and colour the vertices of a copy of K¢z —F
as for Case 1. Also, let the edges in F be as described for Case 1. Create the
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graph Kez4.2 — F by adjoining two new independent vertices, co;, coloured
black, and ooz, coloured white, such that 0oy and oo, are adjacent to all
other vertices except each other; that is, {o0;,00,} is an edge in F.

By Lemma 5.3 we can place an equitably 2-coloured 6-cycle decompo-
sition of Kgg on V;VV;, for 1 £ i < j € z. By Lemma 5.2, we can place
an equitably 2-coloured 6-cycle decomposition of Kg — F on V; U {003, 002}
for1<i<z. 1]

6 Equitably 2-colourable 2-perfect cycle de-
compositions

In the previous sections, we have shown how to construct equitably 2-
coloured m-cycle decompositions for m = 4, 5 and 6. In this section, we
show that not every cycle decomposition which satisfies the obvious neces-
sary conditions can be equitably 2-coloured. That is, we show that there
exist cycle decompositions which are not equitably 2-colourable.

If C is a cycle of length m, the distance i graph of C, denoted C(3),
is formed by connecting the vertices in C that are at distance i. If C
= {C1,C3,...,Cp} forms a cycle decomposition of G, and the collection
of graphs {C1(z), C2(3),...,Cn(i)} also forms a decomposition of G, then
we say that C is an i-perfect cycle decomposition of G. The spectrum
problem for i-perfect m-cycle systems has been considered for a number of
cycle lengths; see [1]. We proceed by briefly considering the existence of
2-perfect, equitably 2-coloured m-cycle systems for m = 5 and 7.

Theorem 6.1 (7] There exisls a 2-perfect 5-cycle decomposition of K, if
and only if
v =1,5(mod10), v > 5 and v # 15.

Theorem 6.2 No 2-perfect 5-cycle system of order v > 5 can be equitably
2-coloured.

Proof. Consider the four possible equitable 2-colourings of a 5-cycle us-
ing two colours as shown in Figure 2. Suppose that the vertices of K,
are coloured with a total of b black and w white vertices, and that there
exists a 2-perfect 5-cycle decomposition of K, which contains: a 5-cycles
of Type 5.1; 8 of Type 5.2; ¥ of Type 5.3; and & of Type 5.4. We now
establish equations relating the number of vertices of each colour in K, to
the required number of 5-cycles of each Lype.

The number of one-coloured white edges in K, is w(w — 1). Since 5-
cycles of Types 5.1 and 5.4 each contain one one-coloured white edge, those
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of Type 5.2 contain two such edges and those of Type 5.3 contain none, we
deduce that:

a+2ﬁ+6=lw(w—1). (1)

Since every vertex in K, appears in .,(-v — 1) 5-cycles of the decompo-
sition the cycles in the decomposition contain a total of (v — 1)b black
vertlc&s and 1(v — 1)w white vertices. Noting that our decomposition has

Hu(v-1) 5-cycles, let 2 denote the number of 5-cycles with three white ver-
t.m&s (Types 5.2 and 5.4) and y denote the number with two white vertices
(Types 5.1 and 5.3). Then

1
r4+y= -1-6v(v —1), and
z4+2y= —;—(v = 1w.
Solving the system for 2 and y, we find that

m=l@—Dﬁw—mﬂ=ﬂ+&mm )

y= 10(1)--1)(31)—-5111)—az+'y 3)

Taking the distance 2 graph of a §-cycle we again obtain a 5-cycle.
Clearly, the distance 2 graph of a cycle of Type 5.1 is a cycle of Type 5.3
and vice versa, and the distance 2 graph of a cycle of Type 5.2 is a cycle
of Type 5.4 and vice versa. As the system is 2-perfect, the collection of
distance 2 graphs must also be a 5-cycle decomposition of K, this time
containing: 7 5-cycles of Type 5.1; & of Type 5.2; a of Type 5.3; and 8
of Type 5.4. Based on the distance 2 decomposition, we can derive a new
equation by following the reasoning used to derive Equation 1. We have

7+%+ﬁ=%Mw—U. (4)
Adding Equations (1) and (4), we obtain
ww-1) = (a+7) +3(B +9). (5)

Substituting our expressions for (a++) and (8+46) as given by Equations
2 and 3, we can manipulate equation Equation 5 to give

w® —vw + 1—%11(1) -1)= (6)

This is a quadratic equation in w. For a real solution to this quadratic to
exist, it is required that v(6 — v) > 0, which implies that v < 6. Combining
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this result with Theorem 4.8, we deduce that no 2-perfect 5-cycle system
of order v > 5 can be equitably 2-coloured. o

Lemma 6.3 There ezists a 5-cycle decomposition of K5 which is not eg-
uitably 2-colourable.

Proof. Let the vertex set of K5 be Z;5. A computational search has
shown that the following 5-cycle decomposition of K5 cannot be equitably
2-coloured.

(14,4,12,13,8), (9,2,5,4,6), (6,5,12,7,3), (13,9,0,4,2),
(10181 116)0)! (3,4,]],8,0), (O! 1!2!315)$ (0)2)6l7111))
(0,7,1,3,12),  (0,13,1,5,14), (1,4,7,2,10), (1,9,3,8,12),

(1,11,2,12,14), (2,8,4,9,14),  (3,10,4,13,11), (3,13,5,7,14),
(5,8,6,10,9),  (5,10,13,6,11), (6,12,11,10,14), (7,8,9,12,10),
(7,9,11, 14, 13).

0

Theorem 6.4 For allv = 1,5(mod 10), v > 5, there exists a 5-cycle de-
composition of K, which is not equitably 2-colourable.

Proof. This follows immediately from Theorem 6.2 and Lemma 6.3. O

However, Theorem 6.2 does not generalise to all 2-perfect m-cycle de-
compositions for m > 5; see the following example.

Example 6.5 There exists a 2-perfect 7-cycle decomposition of K 15 which
can be equitably 2-coloured.

Proof. Let the vertex set of K5 be Z;5. Colour the vertices 0,1, 3,5,
7,9, 11 and 13 black and colour the remaining vertices white. Then the
starter cycle (0,1,3,10,7,2,6) can be developed modulo 15 to produce a
2-perfect 7-cycle decomposition. It is easy to check that the decomposition
is equitably 2-coloured. 0
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