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Abstract

We use a computer to show that the crossing number of generalized
Petersen graph P(10,3) is six.

1 Introduction

Fiorini made the first substantial attempt to compute the crossing numbers
of the generalized Petersen graphs P(n,k) [2]. He identified cr(P(3n,3)) and
cr(P(3n +2,3)) as being n and n + 2, respectively. Left open was the crossing
number cr(P(3n 4 1,3)). Correcting an error in [2], Richter and Salazar proved
Fiorini’s results and showed cr(P(3n+1,3)) = n+3 [4]. However, the induction
required the base case ¢r(P(10, 3)) = 6.

At the time, the claim had been made that this was established using a
computer. No article has since appeared to support that claim.

The purpose of this note is to describe how we used a computer to establish
er(P(10,3)) = 6. Our method seems to be effective for graphs with 30 or so
edges, a relatively large automorphism group, and crossing number at most 6.
Without the symmetry, it seems that the method would take too long. It would
be interesting to have a method that will be effective on asymmetric graphs
with roughly these parameters.

We are extremely grateful to John Boyer for providing us with his planarity
testing code. This efficient program made everything else possible. We also
used Brendan McKay’s “nauty” package to compute generators for the auto-
morphism group of P(10, 3).
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Ficure 1. P = P(10,3).

2 Method

In this section, we describe how we verified cr(P(10,3)) = 6. We begin with
some simple concepts.

Definition 1 The skewness u(G) of a graph G the smallest number of edges
whose removal from G results in a planar graph.

It is a completely trivial matter to check, by removing all possible sets of
three or four edges, that u(P(10,3)) = 4. We did not try to prove by hand that
u(P(10,3)) > 3.

In studying crossing numbers, we are interested in “drawings” of graphs in
the plane. It is well-known that it suffices to consider drawings in which:

1. vertices are mapped to distinct points of the plane;

2. each edge is represented by a piecewise linear arc joining the points rep-
resenting the ends of the edge and otherwise disjoint from the vertices;

3. any two edges have at most one intersection, which is either a common
end or a crossing; and

4. no three edges are concurrent at a point.

Definition 2 For a drawing ¢ of a graph G, the skewness u(¢) of ¢ is the
minimum number of edges that can be deleted from ¢ to make the drawing free
of crossings.
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Henceforth, let P denote the generalised Petersen Graph P(10,3). Since
#(P) = 4, the following is trivial.

Lemma 3 For any drawing ¢ of P, u(¢) = 4.
The following was proved in [3).
Theorem 4 cr(P) > 5.
Figure 2 proves the upper bound.
Theorem 5 cr(P) < 6.

FIGURE 2. cr(P) < 6.

We use the computer to show that there is no drawing of P with five cross-
ings. To do this, we assume that ¢ is a drawing of P with five crossings. Because
p(#) > 4, there are only a handful of configurations that could contain all the
crossings. For example, if some edge e crossed three or more others in ¢, then
deleting e and at most two other edges would result in a planar drawing of some
subgraph of P, violating Lemma 3. Thus, every edge crosses at most two others.

A simple way to account for the possibilities is the following. For the drawing
¢, we create an auxiliary graph Ay, whose vertices are the edges of P and two
vertices are adjacent in Ay if the corresponding edges of P cross each other in ¢.
The assumption that ¢ has five crossings translates into A, has five edges. The
value of u(¢) is the covering number c(A4) of Ay, i.e., the minimum number of
vertices whose deletion leaves an edgeless graph.

Thus, we are interested in all graphs on five edges with covering number at
least four. It is easy to use nauty to produce all such graphs; it is also easy to
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produce them by hand. The earlier example becomes the assertion that, in such
a graph, no vertex has degree three. We see equally easily that there is no path
of length four or more, and no cycle of length four or more. There are only four
possibilities; these are shown in Figures 3-6.

+ 4+ 4+ + +

FIGURE 3. Configuration 1.

FICURE 4. Configuration 2.

+ + X

FiGURE 5. Configuration 3.

+ + X

FIGURE 6. Configuration 4.

We note that crossing edges do not have common ends, but that other edges
in these configurations may have common ends.

Our first goal was to find all possible sets, up to automorphisms, of three
pairs of edges; these would be three pairs, each pair giving a different one of the
five crossings. Thus, we want the two edges in each pair to have no common
ends. We began by finding all different pairs; there are 5 of these. Then we
extended each of these in all possible ways, up to automorphisms, to sets of two
pairs; there are 309 of these. Finally, each of these was extended in all possible
ways, up to automorphisms, to sets of three pairs; there are 24, 321 of these.

So now we tried to find a drawing with five crossings for all of the configu-
rations.

For the first configuration, if {{e1, 2}, {es, €4}, {€5,e6}} is one of the 24,321
sets of three pairs of edges, we found all pairs of additional edges e; and eg so
that the two sets {e), e3, es,e7,es} and {ez, €4, €q, €7, €3} have the property that
deleting the edges from either of these sets results in a planar subgraph of P.
(In principle, we could have checked that eight subgraphs - all ways of choosing
one of the two from each pair from the original set of three pairs — are all planar;
in fact, we checked only three. More checking here might reduce the number of
possibilities, but this did not turn out to be important.)
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This gives a list of pairs of edges. Picking two disjoint pairs, say er,eg and
€9, €10, We obtain a candidate for Configuration 1 with the hypothesized crossing
pairs {e1, ez}, {es,ea}, {es,es}, {er, €0}, and {es, e10}. We also have to check
the five pairs {e;, e}, {es, €4}, {es, €6}, {er, €10}, and {es,e0}.

With the given hypothesized crossing pairs, we constructed a new graph by
deleting the 10 edges, and, for each of the five pairs, introduced a new vertex
adjacent to the four ends of the two edges in the pair. If there were a drawing
of P with five crossings occurring as in Configuration 1, then, for one such
selection, the new graph would be planar. Since, for none of the possibilities is
the result planar, we deduce that there is no drawing of P having five crossings
occurring as in Configuration 1.

We proceed similarly for the remaining three configurations. We do not
explain them in such full detail.

For Configuration 2, again we began with one of the 24,321 sets of three
pairs of edges, say {{ei,es},{es,eq},{es,es}}. In this case, we found both all
the single edges e and all the pairs e7,es for which all of P — {e1, 3, e5,¢€},
P- {62: €4, €6, e}a P- {61,83, €s, €7, 83}, and P— {62’8413&37:68} are planar
Then we have the three single crossing pairs {e;, ez}, {e3,e4}, {es, es}, together
with e crossing e; and eg (there are two possibilities here for the order of the
crossings on e). Trying all the possibilities, we found that there is no drawing
of P with five crossings occurring as in Configuration 2.

For the third and fourth configuration we considered each of the 309 sets of
two pairs {{e1, ez}, {es,e4}} as the two single crossings. For each such pair, we
found all sets of two edges whose deletion, once together with e, es and once
together with ez, e4, yield a planar subgraph. For Configuration 3, we take two
pairs of these and make the new graph by insertion of vertices of degree 4 at the
crossing points (there are four possibilities). For Configuration 3, we take each
pair and any other edge to make the configuration (there are eight ways to do
the ordering of crossings). In every possibility, the resulting graph is not planar,
so we conclude that no drawing of P exists having five crossings occurring as in
Configurations 3 or 4.

Since we eliminated all possibilities, there is no drawing of P having five
crossings.

These deliberations and computations combine with Theorems 4 and 5 to
prove the following.

Theorem 6 cr(P) = 6.

Our confidence in our program was boosted by the following two trials.
When we ran our program looking for drawings having six crossings, in certain
configurations we found many different examples of drawings with six cross-
ings. Therefore, our program did not simply always produce a negative answer.
Furthermore, it confirmed the result of (1] that a certain 5-regular graph on
10 vertices also has crossing number six. The algorithm in [1] was completely
different from the one used here.
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