ADDING EVIDENCE TO THE ERDOS-FABER-LOVASZ
CONJECTURE

DaviD ROMERO! and ABDON SANCHEZ-ARROYO?

Abstract. A hypergraph is linear if no two distinct edges intersect in
more than one vertex. A long standing conjecture of Erdés, Faber and
Lovész states that if a linear hypergraph has n edges, each of size n, then
its vertices can be properly colored with n colors. We prove the correctness
of the conjecture for a new, infinite class of linear hypergraphs.

1 INTRODUCTION

The aim of this paper is to add evidence to the long standing conjecture of

Erd8s, Faber and Lovisz, originally stated in [4] as:

“Cotf|[Akl=mn,1<k<n and |[AkNAj| L1, fork<j< n, then one

n

can color the elements of the union |J Ax by n colors so that every set has
k=1

elements of all the colors ..."

The correctness of this conjecture has been verified only in a handful of

cases —for a recent survey see [8]—, motivating more than one pessimistic

point of view [5]. However, here we will show that the conjecture is true

in a new, unpublished case. Our discussion will be expressed in terms of

hypergraphs [1].

A hypergraph H = (V3 Ex) consists of a finite set Vi # 0, the vertices of

H, and a finite family £y of non-empty subsets of VH, the edges of H; it is

assumed that each vertex belongs to at least one edge. Thus, a graph is a

hypergraph in which every edge has at most two elements. A hypergraph

is linear if no two distinct edges intersect in more than one vertex, and it

is intersecting if every two edges have a nonempty intersection.

The degree 5(v) of a vertex v € Vy, is the number of edges containing v.

A (proper) k-vertex coloring of H is a surjective map of Vi into a color
set {1,...,k}, such that in every edge of £y all vertices have distinct color.
The (vertex) chromatic number x(H) is the smallest k such that there is a
k-vertex coloring of H.

Thus, in terms of hypergraphs, the original Erdés, Faber and Lovdsz con-
jecture can be stated as (see [8, 9]):
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Conjecture 1 If a linear hypergraph H = (Va, Ex) has n edges, each of
size n, then x(H) =n.

For our approach we find it convenient to coin the n-cluster concept. An
n-cluster is a hypergraph consisting of n edges, each of size n, such that
|EN F| = 1, for every two distinct edges E and F. In other words, an
n-cluster is a linear, intersecting hypergraph with n edges, each of size n.

Conjecture 2 If H is an n-cluster then x(H) = n.
Theorem 3 Conjectures 1 and 2 are equivalent.

Proof. Let H = (Vy,&x) be a linear hypergraph with n edges, each of
size n. Proceeding as follows, we prove that if Conjecture 1 is true for
intersecting hypergraphs, then x(H) = n.

1. For any pair of disjoint edges E, F € £y there are vertices T1,%3 € E,
and y1,y2 € F such that §(z;) = 6(y:) =1 for i = 1,2. This is because,
as H has n edges of size n, edge E (as F) intersects at most n — 2 of the
remaining edges, leaving at least two vertices of degree one. In other words,
no edge in Ey\{E, F} contains a vertez from {z1,Z2,91,¥2}-

9. Define F* = F — y; + z1, and let H' = (Vpyr,Enr), where &y = Ex —
F+F*and Voo =V —11.

3. Any k-vertez coloring (p) of H' can be extended to a k-vertez coloring
of H. This can be done by defining ¥(31) = @(z1) and ¥(z) = p(x) for
£ € Vi — y1. By (1) above, if ¢ is proper then % is also proper. Thus 1 is
a (proper) k-vertex coloring of H. '

4. Construct the sequence of hypergraphs Ho, H, ..., Hr so as:
a. Ho=H.

b. For i = 1,... construct H; by applying the operation defined in
(2) above to H;_1, until an intersecting hypergraph H, is obtained.
Namely, replace edge F; in H;_, with a new edge F! =F;—yi+zito
obtain H;, where vertices y; and z; have, each, degree one in H;—1.

5. The vertices zy,...,Z, all are distinct. On the contrary assume z; = &;
fori#j. Ifi<j thenin H;_, vertex z; has degree greater than one, in
contradiction with (4) above.

6. Now apply (3) above to the sequence Ho,Hy,...,Hr, proceeding back-
wards from ‘H,. Hypergraph M, is intersecting and by assumption Conjec-
ture 1 is true for intersecting hypergraphs, thus H, can be colored with n
colors. Finally, by (3) above we obtain x(Ho) = x(M). This finishes the
proof. ]
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Our approach in Section 3 to the Erdds-Faber-Lovész conjecture through
n-clusters is justified by Theorem 3.

2 PREVIOUSLY SOLVED CASES

Using computer search Hindman [5] verified that Conjecture 1 holds true
for ‘small’ hypergraphs, those having at most ten edges.

The approach of Colbourn and Colbourn [3] was through Steiner systems.
A Steiner system S(2,k,n) can be defined as a linear hypergraph with n
vertices, whose edges all have the same cardinality k. A Steiner system
8(2,k,n) is cyclic if its vertices can be labelled 0,1,...,n — 1, such that
the mapping ¢ — ¢ + 1 mod n is an automorphism.

The dual of a hypergraph H = (Vy,&x), with Vi = {v1,...,v,} and
& = {E,...,En}, is the hypergraph H* := (Vy.,Ex-) whose vertices
Vi = {e1,...,em} are the edges of H, and whose n edges are defined by
the sets: V; = {e; : v; € E; € H}. It follows that (H*)* is isomorphic to
H. Thus, Colbourn and Colbourn [3] established what comes to:

Theorem 4 Let H be an instance of Congecture 1, and let H' be the hy-
pergraph obtained from H by deleting the vertices of degree one. If H' is
the dual hypergraph of a cyclic Steiner system S(2,k,n), then x(H) = n.

Let H = (V1,&x) be a hypergraph, and let & € Vy. The set U is inde-
pendent if it intersects each edge of £y in at most one vertex. Berge and
Hilton (2] proved a result that includes

Theorem 5 Let H be an instance of Conjecture 1, in which each vertex
has degree at most three. If the set of vertices of degree greater than two is
independent, then x(H) =n.

The partial hypergraph of H induced by U is the hypergraph H' = (U, £31/),
where E € &y if and only if E =UNF # O, for some F € £y. Jackson,
Sethuraman and Whitehead [6] obtained

Theorem 6 Let H be an instance of Conjecture 1, and consider H' =
(Vi, Exvr) as the partial hypergraph of M induced by the vertices of degree
at least three. If |E| < 3 for each E € &, and H' can be colored with three
colors, then x(H) = n.

Call a hypergraph H = (Vy,Ex) dense if min{6(v) | v € Vi} > /[€x].

Among the possible examples of dense linear hypergraphs we have all finite
projective planes. Quite recently, Sanchez-Arroyo [9] proved
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Theorem 7 Let H be an instance of Conjecture 1, and let H' be the hy-
pergraph obtained from H by deleting the vertices of degree one. If M’ is
dense, then x(H) = n.

To our knowledge, no other result exists stating the validity of Conjecture 1.

3 MAIN RESULT

Let H = (Vx, Ex) be an n-cluster, with edges numbered from 0 to n — 1.
Let M(H) be an n-by-n matrix whose rows (and columns) are numbered
from 0 to n — 1, and correspond to the edges of H. Denote by M'(H) the
set of cells (,j) of M(H) such that ¢ # j. Finally, let Vi C Vi be the set
of vertices with degree grea.ter than or equal to two. To each v € Vy we
associate the “block” C, = {(i,j) |v€iNj and (i,5) € M'(H)}.

Remark 8 C,, NC,, =0 for any distinct vertices v;,v2 € Vy, because H
is linear.

Remark 9 |J C, = M'(H) because H is intersecting.

vEVNH
For example, consider the 5-cluster H; schematically depicted in Figure 1,
where edges are shown as line segments numbered from 0 to 4, and vertices
in Vyy, are labelled a,...,f. At right, in matrix M(H,) a cell (,j) has
label z € {a,b,¢,d, e, f} if (3,5) € Cz.

0o 1 2 3
0 dle|f|f
1]d el b|e
2 a|e c|e
3 b|c f
4 ele|f
4
M(H,)

Hy

FIGURE 1. A 5-cluster H; and matrix M(H1).

A coloring of the cells of M’(H) —a coloring of M(H), for short— is proper
when for any distinct cells r,s € M'(H):
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a. Ifr and s belong to the same block then they share color.

B. Ifr and s do not belong to the same block but share row or column,
then they have distinct color.

Remark 10 Every proper coloring of M(H) is symmetrical with respect to
its main diagonal.

Conjecture 11 Let H be an n-cluster. Then there is a proper coloring of
M(H) with at most n colors.

Lemma 12 Conjectures 2 and 11 are equivalent.

Proof. Assume first that Conjecture 11 is correct, and let H be an n-
cluster. A proper coloring of M(H) with k < n colors yields a coloring of
the vertices in Vy, which in turn might be trivially extended to a proper
n-vertex coloring of H.

Assume now that Conjecture 2 is correct. From a proper n-vertex col-
oring of H, and considering only the vertices in Vy, one can obtain in a
straightforward manner a proper coloring of M(H) with at most n colors.

[ |

In view of Lemma 12, the challenging Erdds-Faber-Lovész conjecture can
be approached by searching for a proper coloring of M(#) with at most n
colors. Although this route seems as formidable, it allowed us to find out
a new class of hypergraphs for which the conjecture is correct.

Conformal labelling

A nonempty set W of nonnegative integers is compact, if either [W| = 1,
or there is an order (a1,...,aqwy) on W, such that a;y; = a; + 1, for
i=1,...,|W|-1.

Let H = (Vx,Ex) be a hypergraph with n edges. H is edge conformable,
if there is a bijection ¢ : &4 — {0,...,n — 1} —that we call a conformal
labelling— such that for each vertex v € Vi, the set F(v) = {p(e) |v € e €
&x} can be partitioned in two compact sets. See, for example, a conformal

labelling of the 5-cluster A, in Figure 1.

Remark 13 A hypergraph whose vertices have degree at most two is edge
conformable.

We are ready for our main result.
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Theorem 14 Let H = (Vy,Ex) be an n-cluster. If H is edge conformable
then x(H) = n.

Proof. Assume that an n-cluster H = (V, £3) is edge conformable, and let
the edges of H be indexed by a conformal labelling ¢ : €4 — {0,...,n—1}.
In view of Remark 10 we find it convenient to consider in M(H) the set
M°(H) = {(3,7) | 0 < i < j < n— 1}, where we will look for a cell coloring
—that we call proper— which by symmetry could be extended to a proper
coloring of M (H). For clarity’s sake, M (H) and M°(H) will be denoted in
this proof as M and M°, respectively.

A vertex v € Vy and the cells of C, = C, N M° will be called free or tied,
if 6(v) = 2 or §(v) > 3, respectively. If v is free then |C,| = 1; on the other
hand, if v is tied then |C,| > 3 and the cells of C, display in M° one of the
four patterns in Figure 2, which we now proceed to explain.

-

(@) . ®

JE o N D

FIGURE 2. The possible shapes of C,, when §(v) > 3.
Heads and tails are indicated by ® and ¢, respectively.

Let (z1,...,Zs(v)) be an order on F(v) satisfyingz) < z2 <--- < mg(v), and
call the cell (21, Z5(v)) the head (of C,); further, let ¢, € {1,.. —1} be
an index such that both {z1,...,z¢,} and {Z¢,41,.. ,:1:5(,,)} are compact
If z;, + 1 < z¢,41 then the cell (z¢,,z:,+1) Will be called the tail. Two
cases arise:
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e When z;, +1 < 2,41 the set C, looks as in Figure 2 (a), (¢), or (d), if
2<t, <6(v)-2,t,=1,0r t, =6(v)— 1, respectively.

e When z;, +1 =z, 4, theset C, has the staircase shape of Figure 2(b).

For example, observe in Figure 1 that H; has two tied vertices, e and f.
Moreover, C, has shape (d) and C; has shape (c). Cells (0,4) and (1,4)
are heads; cells (0, 3) and (2,4) are tails.

For our purposes we find it convenient to enlarge M° by adding one column
and one row to it, namely, the set of cells P = {(-1,2),(-1,3),...,(~1,n),
(0,n),(1,m),...,(n — 3,n)}. In the sequel the cells of P will also be con-
sidered as free. Let r = (4, 7) and s = (k, £) be distinct cells of the enlarged
Me. Call cell s the immediate successor of r whenever one of the following
four conditions is satisfied.

I. r is a head, and there is a vertex v € Vy such that r, s € C,.
II. 7 is a tail or free, s is freeor ahead, k =i+ 1,and £ =j — 1.
IIL ris a tail or free, (i+1,7), (i+1,7—1) € C, for some v € V3, s & C,,
k=z;,+1,and¢=3;-1.

IV. ris a tail or free, (i,5—1), (6+1,5—1) € &, for some v € Vy, s Cy,
k='t+1, a.ndﬂ:a:tv.,.l—l.

Remark 15 Each head has two or more immediate successors. Each tail
or free cell has at most one immediate successor. The remaining cells have
no immediate successors.

If there is a sequence of cells 7 = ¢;,...,¢, = s, such that c;4; is an
immediate successor of ¢;, for i = 1,...,a — 1, then cell s is a successor of
cell 7, and 7 is a predecessor of s. Clearly, from Remark 8 and Remark 9,
any cell of M° is a successor of at least one cell of the enlarged M°, but it
is a successor of a unique cell of P.

Remark 16 If two distinct successors of a given cell share row or column,
then they belong to the same block.

Remark 17 If cell (i,7) is a successor of cell (k,€), theni >k and £ > j.

Remark 18 If two cells share a predecessor, and neither is a successor of
the other, then at least one of them is tied.

These concepts are exemplified with the (not enlarged) matrices of Figure 3,
where thick lines serve to indicate blocks. The matrix above corresponds to
a 17-cluster with only one tied vertex, where edges 2, 3, 4, 10, 11, 12, and
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13, intersect; the immediate successor of cell 4 is indicated by y=+1; bullets
(o) indicate the other immediate successors of e? (besides €3). Below four
blocks can be distinguished in a 34-by-34 matrix; all successors of cell x
are marked with bullets.

0 1 2 3 4 5 6 7 8 9 1011 12 13 M4 15 16

o

alblc|d]e 1

ole 2le|e]|e®|e2]f 2

° f?lee]e]e]g 3

lg e3lojeolo]|n 4

efb*[c]d%h 5

e° 6

7

8

9

o|le|o 10

e|e 1

® 12

13

2]

15

16
--------------------------------------- X]
S5 olelels
aaan

FIGURE 3. Top: the immediate successor of y* is y=+1.
Bottom: cells marked e are the only successors of cell X.

As ¢ is a conformal labelling, for each tied vertex v € Vy; the cells of C,
display in M° one of the patterns in Figure 2. With this in mind consider

Algorithm A
STEP 1. Assign color (i + j) mod n to every cell (¢,5) € P.
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STEP 2. For every cell of P, assign its color to each of its successors.
STEP 3. By symmetry, extend the coloring of M° to M.

We proceed now to prove that Algorithm A —a couple of examples are
given in the appendix to help understanding it— produces a coloring of M
that

e uses at most n colors, and
e is proper, namely, it satisfies conditions oz and 3 above.

When coloring a cell of M, Algorithm A either explicitly assigns an element
of {0,1,...,n — 1} in Step 1, or it replicates an already existing color in
Step 2 or Step 3; hence the total number of distinct assigned colors never
exceeds 7.

Additionally, by condition I above every tied cell that is not a head inherits
the color of its head in Step 2. This coloring is extended in Step 3, and
condition o —which concerns solely tied cells— is satisfied.

The remaining lines are devoted to proving that condition 3 is indeed satis-
fied. Reasoning by contradiction assume that cells r and s of M share row
—or column, which by symmetry is the same—, belong to distinct blocks,
and receive color w. Let then r = (¢, ) and s = (3, ¢).

In regard to color w, note that in Step 1 of Algorithm A, ifw € {1,...,n-3}
this color is assigned to cells (—1,w + 1) and (w,n) of P, otherwise it is
assigned to only one cell of P. Consider w € {1,...,n — 3}, as the case
w € {0,n — 1,n — 2} could be dealt with similarly.

Assume that one of r and s is in M°, say s € M°. Theni < £ If r € M°
also, then i < j and by Remark 16, one of r and s is a successor of (—1,w)
and the other is a successor of (w,n). But using Remark 17, both these
possibilities lead to a contradiction. We conclude 7 = (j,i) € M° and
hence j < i, giving j < ¢ < £. Again the possibility that s and 7 are the
successors of different cells in P leads to a contradiction by Remark 17. We
can therefore assume they are (1) both successors of (—1,w+1) or (2) both
successors of (w,n).

Case 1 gives 0 < j < ¢ < ¢ < w, with cells 7 and s sharing color w. As by
Remark 17 neither is a successor of the other, then by Remark 18 one of
them is tied. Assume 7 is tied, for the proof also applies when s is tied.
Let T' be the set of head cells that are common predecessors of 7 and s
(clearly, |T'| # @), and let (p,q) € T be such that no element in I is a
successor of (p,q). Consequently, p<j<i<{<gq.

Let v be a vertex such that (p,q) is head in C,. Recall that F(v) =
{¢(e) | v € e € Ex}, and let (z1,...,%5(4)) be an order on F(v) satisfying
p=2z; <22 <.+ < Zsy) = q. As, by assumption, 7 and s belong to
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distinct blocks, then C, does not have the shape as in Figure 2(b). Assume
€, with shape as in Figure 2(a). Now,  is tied and it should belong to C,,
hence p € j < i < z4,. On the other hand z;, <i < ¢ < x4, 41, because
cell s is a successor of the tail in C,. These two last expressions contradict
each other. Thus case 1 follows.

Case 2 gives w+1 < j < i < £ < n—1, and could be dealt with analogously;
therefore condition g is satisfied.

Thus, we have proved that a proper coloring of M with at most n colors
can be found. Therefore, H can be properly vertex colored with n colors,
and hence the theorem. |

4 SKELETONS

Let H = (V,Ex) be a hypergraph. A vertex v € Vy will be called tied
whenever d(v) > 3. An edge of cardinality one is a singleton. Clearly,
Conjecture 2 is correct for n-clusters without tied vertices.

The skeleton of a hypergraph H is the hypergraph H! obtained by first
removing from H its vertices that are not tied, and then the singletons, if
any. Note that if H is an n-cluster, then ! is linear or the null graph.

The skeleton of H! will in turn be denoted H2, and in general, for k > 1,
H*+1 denotes the skeleton of H¥. Assume that the skeleton of the null
graph is still the null graph, and define H° = H. Clearly, if H* = H*+! for
some k, then H! = H**+! for ¢t > k. Hence, let w(H) denote the smallest
integer k such that H* = Hk+1,

Some examples might clarify these concepts. First, a 7-cluster G and its
skeleton G! —which happens to be a graph— are depicted in Figure 4,
with edges shown as line segments. In turn, G2 is identical to G!, thus
G° # G' = G2 and we get w(G) = 1.

(a) (b)
FIGURE 4. A T-cluster G (a) and its skeleton G! (b).
Consider now the 10-cluster X depicted in Figure 5(a), with edges shown

as line segments. Its skeleton K! is clearly composed of a single vertex and
no edges; furthermore, as K? is the null graph we get w(K) = 2. A final
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example comes from the 17-cluster £ sketched in Figure 5(c); its 17 edges
are depicted either as circles or as line segments, and only tied vertices
are shown. By removing from L its vertices that are not tied and then the
singletons we get the graph £!, namely, a pentagon plus one chord. In turn,
L2 is the complete graph on two vertices. Finally, £3 is the null graph and
hence w(L) = 3.

Proposition 19 Let H = (Vi,Ex) be a hypergraph. If its skeleton H! #
H is either an edge conformable hypergraph or the null graph, then H is
edge conformable.

Proof. Consider first that H! is an edge conformable hypergraph, with a
conformal labelling £ of H! at hand. Let F be the set of edges removed
from H to obtain its skeleton H!. Assume |F| > 1 as otherwise we get
a triviality. To derive from ¢ a conformal labelling of H, first assign to
every e € Ex\F the label of the corresponding edge in H!, then repeat the
following steps until every edge of H has been labelled.

1. Find an unlabelled edge e € £3. Let V. denote the set of tied vertices

in e. Clearly, |Ve| < 1.

2. If |Ve| = 0 then make ¢(e) = z + 1, where z is the so far maximum
assigned label.

3. Otherwise V., = {v}. If there are at least three labelled edges of
‘H containing v then there are at least two labelled with consecutive
numbers, say a — 1 and a; add one to the label of every edge of H
with label greater than o equal to a, and make £(e) = a. On the other
hand, if there are exactly two labelled edges of H containing v, say
z and y, labelled as ¢(z) = a < b = £(y), then add one to the label
of every edge of H with label greater than o equal to a, and make
¢(e) = a. Finally, if there is one or zero labelled edges of H containing
v, then make ¢(e) = z + 1, where z is the so far maximum assigned
label.

When H! is the null graph, either H does not have tied vertices and by
Remark 13 is edge conformable, or no edge of H contains two or more tied
vertices. In the latter case a conformal labelling of H is obtained in two
steps. First consider the tied vertices of H, one at a time, and for each
assign consecutive numbers to the edges that contain it. In the second step
arbitrarily label the remaining edges (if any) with distinct numbers in the
range (1, |Ex|].

We have shown that, in each case, it is possible to get a conformal labelling,
and hence H is edge conformable. [ |

As a consequence of Proposition 19, finding out if a given n-cluster H is
edge conformable might be somewhat simplified by looking at H*(™). Note
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that if H¥(™) is not the null graph then each of its vertices is tied. We leave
the characterization of edge conformable hypergraphs as an open problem, |
and close this section with two minor results.

Proposition 20 If a hypergraph H = (Vi,Ex) is edge conformable, and
&' C &y then H' = (Vy, E') is also edge conformable.

Proof. It is enough to prove that if H = (V, &%) is edge conformable
then H* = (Vy, Ex\e) is also edge conformable, for any edge e € .

Let H = (V3, Ex) be an edge conformable hypergraph, and let £ be a confor-
mal labelling of £y. Remove any edge e € £y, and let every edge f € Ex\e
(if any) with £(f) > &(e) be re-labelled as £(f) = £(f) — 1. It can be seen
that now £ is a conformal labelling of H* = (V3,Ex\e), and hence H* is -
edge conformable. ]

Corollary 21 If a hypergraph H = (V3,Ex) is not edge conformable, and
En C & then ! = (Vi, E') is not edge conformable.

5 CONCLUSION

In Section 3 we introduced an infinite class of hypergraphs for which the
Conjecture of Erdés-Faber-Lovész holds. This class is not contained in any
of the previously solved cases mentioned in Section 2. To see this consider .
the 7-cluster G of Figure 4(a); although it is edge conformable, it does not '
satisfy the conditions asked for in theorems 4, 5, 6, and 7. Furthermore,
we show now that the case of Berge and Hilton [2] is strictly contained in
the class of edge conformable hypergraphs.

Let hypergraph H = (V3, £x) be an instance of Conjecture 1, in which each
vertex has degree at most three, and the set U = {u;,..., 4y} € Vy of
vertices of degree three is independent. Denote by D(u) C £y the set of
edges containing u € U, then |D(u)| = 3 and D(u) N D(v) = @ for any
distinct u,v € U. Thus, for j = 1,...,|U|, arbitrarily label the edges of
D(u;) with 3j — 3, 3j — 2, and 35 — 1, then arbitrarily label the n — 3|U]|
remaining edges of £y with numbers 3|U|,...,n — 1. It is clear that this
is a conformal labelling of £y, and hence H is edge conformable. Thus,
Theorem 5 is contained in Theorem 14. The hypergraphs K and £ in
Figure 5 are simple examples at hand to see that the contention is strict.

6 APPENDIX. EXAMPLES

We present here two examples of the application of Algorithm A in Sec-
tion 4. Consider first the 10-cluster K in Figure 5(a), which has only one
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tied vertex. A conformal labelling from 0 to 9 has been given to its edges.
Also, a proper coloring with colors 0 to 9 is shown for vertices in V. This
vertex coloring derives from the (proper) coloring of M°(K) in Figure 5(b)
—obtained with Algorithm A— trivially extended to vertices with degree
one in K.

- U ] e
~N O = O | w
e o ~@)a| =
uome’euq
D ~ oY) o «
‘
OetOm
R N

olojo)d w N

&8
e’

7T 8 9 10 11 12 13 14 15 16
7 8 9 10111213 14 15 16
8 9 1011 121616169 0
9 1011 12 0 (1RG0 1
16) 2
3
4

6
7
8
9

s
6
)
7
8

=t
Oy,

10 11 12()(1){9N16X16
(6)X6)111216(1)(1)13 14 15
1216 1 0131415
(65X 5)1314 15 2
X514 3
(6)215 3 4
153 4 6

2
3
4
6
7
De6 785090
5
16

2
3
4
6(5
7(5
8
5
9

LR I R R . L Y

8 10| 1

11 :
161012 1
13| 4

(c) L 14 15

FIGURE 5. (a) and (c): Sketches of K and L, respectively.
(b) and (d): Proper coloring of M°(K) and M°(L), respectively.
Tied cells indicated with circles (heads = thick, tails = double).

Now, consider the 17-cluster £ sketched in Figure 5(c), whose edges —
circles and line segments— have been assigned a conformal labelling. Only
tied vertices are shown; their color (1, 2, 5, 6, and 16) comes directly from
the coloring of matrix M°(L) once Algorithm A has been performed, see
Figure 5(d).
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