CORDIALNESS OF CYCLES WITH PARALLEL P_k - CHORDS AND MULTIPLE SUBDIVISION GRAPHS ### A. ELUMALAI*and G. SETHURAMAN† Department of Mathematics Crescent Engineering College, Chennai - 600 048 Email: s_elu@yahoo.com #### Abstract In this paper we prove that the cycle C_n with parallel chords and the cycle C_n with parallel P_k -chords are cordial for any odd positive integer $k \geq 3$ and for all $n \geq 4$ except for n = 4r + 2, $r \geq 1$. Further, we show that every even-multiple subdivision of any graph G is cordial and we show that every graph is a subgraph of a cordial graph. **Key words:** Graph labeling, Cordial labeling, Cycle with parallel chords, Cycle with parallel P_k -chords. AMS subject classification: 05C78. ^{*}Corresponding author. [†]Currently working in the Department of Mathematics, Anna University, Chennai - 600 025. # 1 Introduction Let f be a function from the vertices of G to $\{0,1\}$ and for each edge xy assign the label |f(x) - f(y)|. The function f is called a *cordial labeling* of G if the number of vertices labeled 0 and the number of vertices labeled 1 differ by atmost 1 and the number of edges labeled 0 and the number of edges labeled 1 differ by atmost 1. The notation of a cordial labeling was first introduced by Cahit [1] as a weaker version of graceful labeling. A *chord* of a cycle is an edge joining two non adjacent vertices of the cycle. A graph G is called a cycle with parallel chords if G is obtained from the cycle $C_n: v_0v_1\cdots v_{n-1}v_0 \ (n\geq 4)$ by adding the chords $v_1v_{n-1}, v_2v_{n-2}, \cdots, v_{(\frac{n-2}{2})}v_{(\frac{n+2}{2})}$ or the chords $v_2v_{n-1}, v_3v_{n-2}, \cdots, v_{(\frac{n-1}{2})}v_{(\frac{n+3}{2})}$ depending on the parity of n. A graph G is called a cycle with parallel P_k -chords if G is obtained from the cycle C_n of order $n: v_0v_1\cdots v_{n-1}v_0$ $(n\geq 4)$ by adding disjoint paths $P'_ks(k\geq 3)$ between the pair of vertices $(v_1,v_{n-1}),\ (v_2,v_{n-2}),\ \cdots,\ (v_i,v_{n-i}),\cdots,\ (v_{\lfloor\frac{n}{2}\rfloor-1},v_{\beta})$, where $\beta=\lfloor\frac{n}{2}\rfloor+2$, if n is odd and $\beta=\frac{n}{2}+1$, if n is even. A grap H is said to be even-multiple subdivision of a graph G if H is obtained from G by replacing every edge e of G by a set of pairs of paths (P,Q)'s, with lengths of each of both the paths P and Q either of the form $0 \equiv (mod 4)$ or $2 \equiv (mod 4)$ by merging the origin and terminus of all the pairs of paths (P,Q)'s with the ends of the edge e. Multiple subdivision graph H of C_4 . In this paper we prove that the cycle C_n with parallel chords and the cycle C_n with parallel P_k -chords are cordial for all $n \geq 4$, except for n = 4r + 2, $r \geq 1$ and for any odd positive integer $k \geq 3$. Further, we show that every even-multiple subdivision graph of any graph is cordial and we prove that every graph is a subgraph of a cordial graph. # 2 Cordialness of cycles with parallel P_k -chords In this section we prove that the cycle C_n with parallel P_k -chords is cordial, for all $n \geq 4$, except for n = 4r + 2, for some $r \geq 1$ and for any odd positive integers $k \geq 3$. **Theorem 1**: Cycle C_n with parallel chords is cordial for all $n \geq 4$ except for n = 4r + 2, for some $r \geq 1$. Proof: Let G be a cycle C_n with parallel chords, where $n \geq 4$ and n = 4r + k; $k \in \{0, 1, 3\}$ and $r \geq 1$. Label the vertices of G (i.e., C_n) as $v_0v_1\cdots v_{n-1} (n \geq 4)$ such that $v_1v_{n-1}, v_2v_{n-2}, \cdots, v_{\frac{n-2}{2}}v_{\frac{n+2}{2}},$ are chords when n is even, while n is odd $v_2v_{n-1}, v_3v_{n-2}, \cdots, v_{\frac{n-1}{2}}v_{\frac{n+3}{2}},$ are the chords. Observe that G has n vertices and $\frac{3n-\rho}{2}$ edges, where $\rho=3$, if n is odd or $\rho=2$, if n is even. Arrange the vertices of G as a sequence $v_0v_1\cdots v_{n-1}$. A particular 0-1 sequence of length n for the corresponding termwise matching with the above sequence of vertices of G is given in Table 1. Let V_0 and V_1 respectively, denote the set of vertices (matched with) assigned the label 0 and the set of vertices (matched with) assigned the label 1. From the Table 1, it is clear that when the number of vertices of G is of the form 4r, the number of vertices assigned the label 0 and the number of vertices assigned the label 1 are equal, while the number of vertices of G is of the form 4r + 1 or 4r + 3, the number of vertices assigned the label 0 and the number of vertices assigned the label 1 differ by atmost 1. Let A denote the set of edges $v_0v_1, v_1v_2, \dots, v_{n-1}v_0$ (the cycle edges) of G and B denote the set of chords $\{v_1v_{n-1}, v_2v_{n-2}, \dots, v_{(\frac{n-2}{2})}v_{(\frac{n+2}{2})}\}$, or the set of chords $\{v_2v_{n-1}, v_3v_{n-2} \dots v_{(\frac{n-1}{2})}v_{(\frac{n+3}{2})}\}$, depends on n is even or odd. The edges in the sets A and B get the edge values 0 or 1, the edge values of the edges in the set A and in the set B are arranged as a 0-1 sequences and they are given in the Table 1. Let E_0 and E_1 respectively, denote the set of all edges of G getting the label 0 and the set of all edges of G getting the label 1. From Table 1, it is clear that G is cordial. Table 1. Vertex and edge labeling of cycle with parallel chords. | Nature of | The 0-1 sequence | | The edge labels | | | |-------------------------|------------------------------------|---------------------|----------------------------|-------------------------|---------------------| | the number | for termwise | Relation between | sequence for the set | | Relation between | | of vertices | matching with the | $ V_0 $ and $ V_1 $ | | | $ E_0 $ and $ E_1 $ | | n of G | sequence of | | A | В | | | | vertices of G | | | | | | $n=4r,$ $r\geq 1$ | (0011) ⁿ / ₄ | $ V_0 = V_1 $ | (01) ^{n/2} | $(10)^{\frac{n-4}{4}}1$ | $ E_0 + 1 = E_1 $ | | $n = 4r + 1,$ $r \ge 1$ | $(0011)^{\frac{n-1}{4}} 0$ | $ V_0 +1= V_1 $ | $(01)^{\frac{n-1}{2}} \ 0$ | $(10)^{\frac{n-5}{4}}1$ | $ E_0 = E_1 $ | | $n = 4r + 3,$ $r \ge 1$ | $(0011)^{\frac{n-3}{4}} 001$ | $ V_0 + 1 = V_1 $ | $(01)^{\frac{n-1}{2}}1$ | $(01)^{\frac{n-3}{4}}$ | $ E_0 + 1 = E_1 $ | **Theorem 2**: Cycle C_n with parallel P_k -chords is cordial for all $n \geq 4$, except for n = 4r + 2, $r \geq 1$ and for any odd positive integer $k \geq 3$. Proof: Let G be a cycle C_n with parallel P_k -chords, where $n \geq 4$ and $n = 4r + \ell$; $\ell \in \{0, 1, 3\}$, for $r \geq 1$ and where $k \geq 3$ is any odd positive integer. By definition, G is obtained from the cycle C_n of order $n: v_0v_1\cdots v_{n-1}v_0$ by adding disjoint paths P'_ks between the pair of vertices $(v_1, v_{n-1}), (v_2, v_{n-2}), \cdots, (v_i, v_{n-i}), \cdots, (v_{\lfloor \frac{n}{2} \rfloor - 1}, v_{\beta})$, where $\beta = \lfloor \frac{n}{2} \rfloor + 2$, if n is odd or $\beta = \lfloor \frac{n}{2} \rfloor + 1$, if n is even. Observe that G has $N = \frac{nk - \alpha(k-2)}{2}$ vertices, where $\alpha = 3$, if n is odd or $\alpha = 2$, if n is even and $M = \frac{n(k+1) - \rho(k+1)}{2}$ edges, where $\rho = 3$, if n is odd or $\rho = 2$, if n is even. Let G be a cycle $C_n: u_0u_1\cdots u_{n-1}u_0$ with parallel P_k -chords. We call the P_k -chords joined between the pair (u_i, u_{n-i}) of C_n in G, the i^{th} P_k -chords for $1 \leq i \leq \lfloor \frac{n}{2} \rfloor -1$. Observe that G has a hamiltonian path, starting with u_0 and ending up with u_α of the cycle C_n of G, where $\alpha = \lceil \frac{n}{2} \rceil$, if n is odd or $\alpha = \frac{n}{2}$, if n is even. Let $v_0v_1\cdots v_{N-1}$, where N=|V(G)| be a hamiltonian path in G starting with u_0 of C_n in G and ending up with u_{α} of C_n in G. Arrange the vertices of G as a sequence $v_0v_1\cdots v_{N-1}$. A particular 0-1 sequence of length N for the corresponding termwise matching with the above sequence of vertices of G is given in Table 2. Let V_0 and V_1 respectively, denote the set of vertices assigned the label 0 and the set of vertices assigned the label 1. Table 2. Vertex and edge labeling of cycle with parallel P_k chords, where k is odd. | Nature of the number of vertices | The 0-1 seq. for termwise matching with the seq. of vertices of G | | Relation | The edge labels seq. for the set | | | | Relation | |--|---|---|---------------------|---|----------------------------|---|--------------------------------------|---------------------| | n of G | For $k=4t-1$, | For $k=4t+1$, | between | For $k = 4t - 1, t \ge 1$ For $k = 4t + 1, t \ge 1$ | | $+1, t \ge 1$ | between | | | | $t \ge 1$ | $t \ge 1$ | $ V_0 $ and $ V_1 $ | A | В | Α | В | $ E_0 $ and $ E_1 $ | | $n=4r, r \geq 1$ for r odd for r even | $(0011)^{\frac{N-1}{4}} 0$ $(0011)^{\frac{N-3}{4}} 001$ | $(0011)^{\frac{N-3}{4}} 0$ $(0011)^{\frac{N-1}{4}} 001$ | $ V_0 +1= V_1 $ | (01) ^{N-1} / ₂ | 11(01) = 8 00 | $(01)^{\frac{N-1}{2}}$ | (01) 4 | $ E_0 = E_1 $ | | $n=4r+1, r\geq 1$ for r odd for r even | | $(0011)^{\frac{N}{4}}$ $(0011)^{\frac{N-2}{4}} \ 10$ | $ V_0 = V_1 $ | $(01)^{\frac{N-4}{2}} 001$ $(01)^{\frac{N-2}{2}} 0$ | 11(01) ⁿ⁻⁹ 00 | $(01)^{\frac{N-2}{2}} 0$ $(01)^{\frac{N-4}{2}} 001$ | $(01)^{\frac{n-1}{4}}$ | $ E_0 = E_1 + 1$ | | $n = 4r + 3, r \ge 1$ for r odd for r even | $(0011)^{\frac{N-1}{4}} 0$ $(0011)^{\frac{N-3}{4}} 001$ | $(0011)^{\frac{N-1}{4}} \ 0$ $(0011)^{\frac{N-3}{4}} \ 001$ | $ V_0 + 1 = V_1 $ | $(01)^{\frac{N-1}{2}}$ | $11(01)^{\frac{n-7}{4}}$ 0 | (01) N-1/2 | (01) ⁿ⁻³ / ₄ 1 | $ E_1 = E_0 + 1$ | From the Table 2, it is clear that when the number of vertices of G is of the form 4r or 4r + 3, the number of vertices assigned the label 0 and the number of vertices assigned the label 1 differ by atmost 1, while when the number of vertices of G is of the from 4r + 1, the number of vertices assigned the label 0 and the number of vertices assigned the label 1 are equal. Let A denote the set of edges $\{v_0v_1, v_1v_2, \dots, v_iv_{i+1}, \dots, v_{N-2}v_{N-1}\}$ of the hamiltonian path of G and let B = E(G) - A of G. The edges in the sets A, B get the edge values 0 or 1, the edge values of the edges of the sets A and B are arranged as a 0-1 sequence and they are given in the Table 2. Let E_0 and E_1 respectively, denote the set of all edges of G getting the label 0 and the set of all edges of G getting the label 1. From Table 2, we observe that G is cordial. # 3 Cordialness of even-multiple subdivision graph In this section, we prove that every even-multiple subdivision of any graph G is cordial. Let H be an even-multiple subdivision graph of a graph G. Observe that V(H) can be partitioned into two sets U and W, where U is the set of vertices of H which are originally belong to the graph G and W is the set of vertices of H which are internal vertices of the sets of pairs of paths replacing the edges of G in obtaining H. We call the vertices of the set U the base vertices of H and the vertices of the set W the non base vertices of W. **Note:** From each graph G we can construct a family of even-multiple subdivision graphs H's of G. **Theorem 3**: For every nontrivial graph G, each even-multiple subdivision graph H of G is cordial. Proof: Let G be any nontrivial graph and let H be any even-multiple subdivision graph of G. Let U be the set of base vertices of H (Note that U is precisely the set of vertices of G) and let W be the set of internal vertices of all the paths replacing the edges of G. Partition the set U into $U_0 \cup U_1$ such that $||U_0| - |U_1|| \le 1$. Give label 0 to all the vertices of U_0 and give the label 1 to all the vertices of U_1 and the vertices of W are assigned the label 0 or 1 as described below. Let $x \ v_1 \ v_2 \cdots v_{2k_1-1}y$ and $x \ v_1' \ v_2' \cdots v_{2k_2-1}'y$ be respectively a pair of paths (P_e, P_e') in the set of pairs of paths replacing an edge e of G in obtaining H, then x and y are base vertices of H which have already been assigned label either 0 or 1. For the sequence of internal vertices $v_1v_2 \cdots v_{2k_1-1}$ and $v_1'v_2' \cdots v_{2k_2-1}'$ we match termwise with a particular sequence of 0-1. When k_1 and k_2 are odd, say $k_1 = 2r_1 + 1$ and $k_2 = 2r_2 + 1$, for some $r_1, r_2 \geq 1$, we match the vertices sequence $v_1v_2 \cdots v_{4r_1+1}$ termwise with $(0011)^{r_1}0$ and match the vertices sequence $v_1'v_2' \cdots v_{4r_2+1}'$ termwise with $(1100)^{r_2}1$. Then the edge values of the edges xv_1, v_iv_{i+1} , for $1 \leq i \leq 4r_1$, $v_{4r_1+1}y$ of the path P_e and the edges $xv_1', v_i'v_{i+1}'$, for $1 \leq i \leq 4r_2, v_{4r_2+1}'y$ of the path P_e' are given in the Table 3, as a 0-1 sequence with respect to the above order of the edges. When k_1 and k_2 are even, say $k_1 = 2r_1$ and $k_2 = 2r_2$, for some $r_1, r_2 \geq 1$, we match the vertices sequence $v_1v_2 \cdots v_{4r_1-1}$ termwise with $(0011)^{r_1-1}001$ and match the vertices sequence $v'_1v'_2 \cdots v'_{4r_2-1}$ termwise with $(1100)^{r_2-1}110$. Then the edge values of the edges xv_1, v_iv_{i+1} , for $1 \le i \le 4r_1-2, v_{4r_1-1}y$ of the path P_e and the edges $xv_1', v_i'v_{i+1}'$, for $1 \le i \le 4r_2-2, v_{4r_2-1}'y$ of the path P_e' are given in the Table 3 as a 0-1 sequence with respect to the above order of the edges. Let $V_0(P_e \cup P'_e)$ denotes the set of internal vertices of the paths P_e and P'_e get the label 0 and $V_1(P_e \cup P'_e)$ denotes the set of internal vertices of the paths P_e and P'_e get the label 1. Then $|V_0(P_e \cup P'_e)| = |V_1(P_e \cup P'_e)|$. Let $E_0(P_e \cup P'_e)$ and $E_1(P_e \cup P'_e)$ respectively denote the set of edges of $P_e \cup P'_e$ getting the edge value 0 and the set of edges of $P_e \cup P'_e$ getting the edge value 1. Suppose an edge e has been replaced by t pairs of paths $(P_e^{(1)}, P_e^{(1')})$, $(P_e^{(2)}, P_e^{(2')}), \dots, (P_e^{(t)}, P_e^{(t')})$ in obtaining H. Let S_e denote the set of internal vertices of the pairs of paths $(P_e^{(1)}, P_e^{(1')}), (P_e^{(2)}, P_e^{(2')}) \dots, (P_e^{(t)}, P_e^{(t')})$ and let F_e denote the set of all edges of the pairs of paths $(P_e^{(1)}, P_e^{(t')}), (P_e^{(2)}, P_e^{(2')}), \dots, (P_e^{(t)}, P_e^{(t')})$. From the above argument, $|V_0(S_e)| = |V_1(S_e)|$ and $|E_0(F_e)| = |E_1(F_e)|$. If G has m edges, say e_1, e_2, \dots, e_m in H, then we have $|V_0(S_{e_i})| = |V_1(S_{e_i})|$ and $|E_0(F_{e_i})| = |E_1(F_{e_i})|$, for $1 \le i \le m$. Therefore, $$|V_0(H)| = \sum_{i=1}^m |V_0(S_{e_i})| + U_0$$ and $|V_1(H)| = \sum_{i=1}^m |V_1(S_{e_i})| + U_1$. Then $|V_0(H)|$ and $|V_1(H)|$ differ by atmost 1 as U_0 and U_1 differ by atmost 1. Further, $$|E_0(H)| = \sum_{i=1}^m |E_0(F_{e_i})| = \sum_{i=1}^m |E_1(F_{e_i})| = |E_1(H)|.$$ Hence, H is cordial. Table 3. Vertex and edge labeling of even-multiple subdivision graph. | The vertex | When k_1 and k_2 are odd | | When k_1 and | Relation between | | |------------|------------------------------|-----------------------------|--|-------------------|---| | label of | Edge value | Edge value | Edge value | Edge value | $ E_0(P_e \cup P_e^{'}) $ and | | x and y | sequence of the | sequence of the | sequence of the | sequence of the | $ E_1(P_e \cup P_e^{'}) $ | | | edge of P_e | edge of $P_e^{'}$ | edge of P_e | edge of $P_e^{'}$ | | | 0 and 0 | 0 (01) 0 | 1 (01) 1 | $0 \ (01) \ 1^{2r_1-1}$ | $1 \ (01) \ 0$ | $ E_0(P_e \cup P'_e) $ $= E_1(P_e \cup P'_e) $ | | 0 and 1 | 0 (01) 1 | $1 (01) \stackrel{2r_2}{0}$ | $0 \ (01) \ 0$ | $1 \ (01) \ 1$ | $ E_0(P_e \cup P'_e) $ $= E_1(P_e \cup P'_e) $ | | 1 and 0 | 1 (01) 0 | $0 (01)^{\frac{2r_2}{1}}$ | $1 \begin{pmatrix} 2r_1 - 1 \\ 1 \begin{pmatrix} 01 \end{pmatrix} 1 \end{pmatrix}$ | $0 \ (01) \ 0$ | $ E_0(P_e \cup P'_e) $ $= E_1(P_e \cup P'_e) $ | | 1 and 1 | 1 (01) 1 | $0 \ (01) \ 0$ | $1 \ (01) \ 0$ | 0 (01) 1 | $ E_0(P_e \cup P'_e) $ $= E_1(P_e \cup P'_e) $ | # 4 Some general results on cordial graphs In this section, we introduce some general results on cordial graphs. Let K_n^* denote the graphs obtained from the complete graph K_n , by taking a new vertex v and joining v with $\lfloor \frac{n}{2} \rfloor$ vertices of K_n . Theorem 4 : The graph K_n^* is cordial. **Proof**: Assign label 1 to v and all of its $\lfloor \frac{n}{2} \rfloor$ adjacent vertices and label 0 to all the other remaining vertices of K_n^* . Let V_0 and V_1 respectively, denote the set of vertices of K_n^* assigned the label 0 and the set of vertices of K_n^* assigned the label 1 and let E_0 and E_1 respectively, denote the set of all edges of K_n^* getting the label 0 and the set of all edges of K_n^* getting the label 1. Observe that when n is even, say n=2r, then $|V_0|=r$ and $|V_1|=r+1$ and $|E_0|=|E_1|=r^2$, while when n is odd, say n=2r+1, then $|V_0|=|V_1|=r+1$ and $|E_0|=|E_1|=r^2+r$. Hence K_n^* is cordial. Corollary 1: Every graph is a subgraph of a cordial graph. A cordial graph H is said to be even cordial if $|V_0(H)| = |V_1(H)|$ and $|E_0(H)| = |E_1(H)|$, where $V_0(H), V_1(H)$ are respectively the set of all vertices of H with label 0 and 1 and $E_0(H), E_1(H)$ are respectively the set of all edges of H with label 0 and 1. Let H_1 and H_2 be two copies of an even cordial graph H with cordial labeling. Same label joining of H_1 and H_2 is addition of |V(H)| independent edges between the vertices of $V_0(H_1)$ and $V_0(H_2)$ and between the vertices of $V_1(H_1)$ and $V_1(H_2)$. Similarly, opposite joining of H_1 and H_2 is addition of |V(H)| independent edges between the vertices $V_0(H_1)$ and $V_1(H_2)$ and between the vertices of $V_1(H_1)$ and $V_0(H_2)$. Figure 1. A graph H. Figure 2. Same joining of H_1 and H_2 . Figure 3. Opposite joining of H_1 and H_2 . Let H be an even-cordial graph and let G be any graph with even number of edges. Let $V(G) = \{v_1, v_2, \dots, v_{|v(G)|}\}$ and $E(G) = \{e_1, e_2, \dots, e_{2r}\}$ and let G^* be a graph obtained by taking |V(G)| copies of H, each copy of H corresponds to a distinct vertex of G. Join of two copies of H by same join or opposite join depends on whether the edge joining the corresponding vertices of the copies in G is even suffixed or odd suffixed. Then G^* is cordial. #### Acknowledgement The authors would like to thank the referee for his / her valuable suggestions in improve the presentation of the paper. # References - I. Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, Ars combin., 23 (1987) 201-207. - [2] I. Cahit, Recent results and open problems on cordial graphs, Contemporary Methods in Graph Theory, R. Bodendiek (ed.), (Wissenschaftsverlag, Mannheim, (1990)) 209-230. - [3] J. A. Gallian, A dynamic srvery of grpah labeling, Electronic J. Combin. (Oct. 2003), # DS6.