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Abstract

A graph G is a (d,d + k)-graph, if the degree of each vertex of
G is between d and d + k. Let p > 0 and d,k > 2 be integers. If G
is a (d,d + k)-graph of order n with at most p odd components and
without a matching M of size 2)]M| = n — p, then we show in this
paper that
(i()n>2d+p+2whenp< k-2,
(ii) n > 2[(d(p+2))/k] + p+2 whenp > k- 1.

Corresponding results for 0 < p < 1 and 0 < k < 1 were given by
Wallis [6], Zhao [8], and Volkmann [5).

Examples will show that the given bounds (i) and (ii) are best
possible.
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We shall assume that the reader is familiar with standard terminology
on graphs (see, e.g., Chartrand and Lesniak [2]). In this paper, all graphs
are finite and simple. The vertex set of a graph G is denoted by V(G). The
neighborhood Ng(x) = N(z) of a vertex z is the set of vertices adjacent
with z, and the number dg(z) = d(z) = |N(z)| is the degree of z in the
graph G. If d < dg(z) < d + k for each vertex z in a graph G, then we
speak of a close to regular graph or more precisely of a (d, d + k)-graph. If
M is a matching in a graph G with the property that every vertex (with
exactly one exception) is incident with an edge of M, then M is a perfect
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matching (an almost perfect matching). We denote by K, ; the complete
bipartite graph with partite sets A and B, where |A| = and |B| = s. If
G is a graph and A C V(G), then we denote by ¢(G — A) the number of
odd components in the subgraph G — A.

As a generalization of a result by Wallis [6] (see also [7]), Zhao (8] proved
in 1991 the following theorem.

Theorem 1 (Zhao (8] 1991) Let d > 2 be an integer. If a (d, d+1)-graph
G has no odd component and no perfect matching, then

[V(G)| 2 3d +4.

Theorem 1 follows easily from the next result by Volkmann [5].

Theorem 2 (Volkmann [5] 2004) Let d > 2 be an integer, and let
G be a (d,d + 1)-graph with exactly one odd component and without any
almost perfect matching. Then

1) [V(G)| 24(d+1)+1,
2) |V(G)| 2 4(d+1)+3 when d > 3 is odd or d = 2 and G is connected,
3) |V(G)| 24(d+1)+5 when d > 3 is odd and G is connected.

In [5] one can also find the following corresponding result for (d, d+2)-
graphs.

Theorem 8 (Volkmann [5] 2004) If G is a (d,d + 2)-graph with ex-
actly one odd component and without any almost perfect matching, then

[V(G)| > 3d +3.

Instead of (d,d + 1)-graphs or (d, d + 2)-graphs, we investigate in this
paper the general case of (d,d + k)-graphs for k > 2. Our main theorem
(Theorem 4) is a supplement to Theorems 1 and 2 and an extension of
Theorem 3. The proof of our main theorem is based on the following gen-
eralization of Tutte’s famous 1-factor theorem (3] by Berge (1] in 1958, and
we call it the Theorem of Tutte-Berge (for a proof see e.g., [4]).

Theorem of Tutte-Berge (Berge [1] 1958) Let G be a graph of order
n. If M is a maximum matching of G, then

n—2|M|= Agl‘z}ztc){q(c - A) - |Al}.
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Theorem 4 Let p > 0 and d, k > 2 be integers. If G is a (d, d + k)-graph
of order n with at most p odd components and without any matching M
of size 2|M| = n — p, then

(i() n>2d+p+2whenp< k-2,
(ii) n > 2[(d(p+2))/k]+p+2whenp >k - 1.

Proof In view of the hypotheses, we observe that » and p are of the same
parity. Suppose to the contrary that there exists a (d, d+k)-graph G with at
most p odd components and without any matching M of size 2|M|=n—p
such that

a) n<2d+p+1whenp<k-2
b) n < 2[(d(p+2))/k] +p+1whenp>k—1.

By the hypotheses and the Theorem of Tutte-Berge, there exists a non-
empty set A C V(G) such that ¢(G - A) > |A|+p+1. However, since n and
p are of the same parity, it is straightforward to verify that this even leads
to the better bound ¢(G — A) > |A| +p + 2. We call an odd component of
G — A large if it has more than d vertices and small otherwise. If we denote
by a and 8 the number of large and small components, respectively, then
we deduce that

a+pB=q(G-A)2|Al+p+2, 1
n 2 |Al+B+a(d+1), (2)
n > |Al+ B8+ a(d+2) when d >3 is odd. (3)

Firstly, we show that a < p+ 1. In the case that p < k — 2, it follows
from assumption a) and inequality (2) that

2d+p+1>n2|Al+B+a(d+1)>1+a(d+1).

This leads to (2 - a)(d+ 1) +p — 2 > 0 and thus a < p+ 1. In the other
case that p > k — 1, we conclude from assumption b) and (2) that

2[d(p:— 2)

]+p+l >n>|Al+B8+o(d+1) > 1+a(d+1).

This inequality chain yields

2(d(p+2) + k_1)+p—a(d+1) >0.

k k

Because of k > 2, it is a simple matter to verify that this inequality implies
a < p+ 1. Applying (1), we arrive at

B2|Al+1. (4)
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Since G is a (d, d + k)-graph, it is easy to show that there are at least
d edges of G joining each small component of G — A with A. Therefore it
follows from the hypothesis that G has at most p odd components that

a-p+dp <|A|(d+k), (5)

dB < |A|(d+ k) when a <p. (6)

Case 1. Assume that p < k — 2.
If |A| > d, then inequalities (1) and (2) lead to the following contradic-
tion to assumption a):

n > |Al+B8+a(d+1)

> |Al+|Al+p+2-a+a(d+1)

> 2d+p+2+cad

> 2d+p+2
Let U be a small component of G— A. Since N(z) C V(U)UA for z € V(U),
we observe that |A] + [V(U)| = d+ 1. If |A| < d, say |A| = d — ¢ with
1 <t <d-1, then we deduce that each small component U contains at
least ¢t + 1 vertices. Thus (1) implies that

|Al+Bt+1)+ad+1)

d—t+(JAl+p+2-a)(t+1)+a(d+1)
2d+p+2+(d—t+p—a)t+ad

n

v v

Because of < p+1 and ¢t < d — 1, this leads to n > 2d + p + 2, a contra-
diction to assumption a).

Case 2. Assume that p >k —1 and a =0.
From inequalities (6) and (1), we deduce that

|Al(d+ k) > dB = d(JA| +p +2).

This yields |Alk > d(p + 2) and thus |A| > [(d(p +2))/k]. Combining this
with (1) and (2), we arrive at the following contradiction to assumption b):

n > |Al+B82|Al+|Al+p+2
> 2[@1”%

Case 3. Assume that p >k —1and a > 1.
We note that inequality (5) is equivalent to

pt+kB—a

<
BslAl+— %

(7)
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Subcase 3.1. Assume that p+ kB —a < d+ k — 1. It follows from (7)
that 8 < |A|, a contradiction to (4).

Subcase 3.2. Assume that p + kf — o > d + k. This implies that
kB > d + k — p + a. Combining this with (5), we obtain

a—p+df a—p+fd+k-p+a)
d+k ~ d+k ’
For a = p + 1, this yields |A| > (d + 1)/k and hence (2) leads to

n 2 |Al+B+a(d+1)
d+1 d+k+1

|A] =

2 St +(+1)(d+1)
2d
= —T:-—2+d(p+l)+p+2. ®)

Since p > 0 and d,k > 2, we observe that k(pd + d — 2) > 2(pd + d — 2),
and this is equivalent to
2d+2 dp+2)+(k-1)

—k—+d(p+1)22 z

Combining this inequality with (8), we arrive at a contradiction to assump-
tion b) as follows:

2d+2
= v dp+1)+pt2
pdp+2) + (k= 1)

NESETI

Assume next that 1 <a <p,andleta=p—swith0<s<p-1. We
deduce from (1) that 8 > |A| + s+ 2, and this yields together with (6) the
inequality

v

v

+p+2

Az | ©)
Subcase 9.2.1. Assume that k = 2 and that d > 2 is even. In this case
(2) and (9) lead to the following contradiction to b):
|[Al+ 8+ a{d+1)
21A|+s+2+ (p—s)(d+1)

24(3;2) +5+2+ (p—s)(d+1)
dp+2)+p+2

d(p+2)
z[ .

n

v v

v

]+p+2
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Subcase 9.2.2. Assume that k = 2 and that d > 3 and s are odd. Since
d is odd, (3) and (9) yield the following contradiction to b):

|Al + B8+ a(d +2)
YAl +5+2+ (p—s)(d+2)

2
2§%ﬂ-+s+2+(p—s)(d+2)

dp+2)+p+3+p—s

dip+2)+p+4
d(p+2)

4 2 ]

n

vV IV IV

v

\Y)

+p+2

Subcase 3.2.8. Assume that k = 2 and that d > 3 is odd and that s is
even. Combining (3) and (9), we arrive at the following contradiction to
b):

|Al + B+ a(d+2)
20Al+s+2+(p—s)d+2)
ds+2)+s+2+(p—s)(d+2)
dp+2)+2p+2-s
dp+2)+p+3
2d(p+2)+1
—
d(p+2)
41%7_

AV | I AV AV AV

+p+2

v

[#o+2

Subcase 8.2.4. Assume that k > 3. It follows from (2) and (9) that

n > |Al+B+a(d+1)
> 2A|+5+2+ (P —s)(d+1)

> [d(“'z)] +p-s)d+p+2. (10)
To receive a contradiction to assumption b), it thus remains to show
that
d(s+2) +p—s)d> 2d(p+2)k+k-1'
and this is equivalent to
2(k-1)
d> st 11
2 G- 9= an
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If s <p—2, then k > 3 implies

oAk-1) k-1
G_s)(F-2) ~k-z525d

and (11) is valid. If s=p —1 and d 2 4, then it is easy to see that (11) is
also true. In the remaining case that k >3, s=p—1,and 2< d < 3, we
deduce that

d(p +2) dp+1) d
< o[detl) +2m
= 2-d(”:1)-+2
< 2-d(”:1)-+d
= 2F$s:i)-+(p—s)d.

Combining this inequality chain with (10), we finally obtain a contradiction
to b).

Since we have discussed all possible cases, the proof of Theorem 4 is
complete. O

The following examples show that the bounds in Theorem 4 are best
possible.

Example 5 Case 1. Assume that p+ 2 < k. In this case, the com-
plete bipartite graph Ky 41,42 is a (d, d+ k)-graph of order n = 2d +p+2
without a matching M of size 2|M| = n — p. Consequently, Condition (i)
is best possible.

Case 2. Assume that p+2 > k+ 1. Let H be a d-regular bi-
partite graph with the partite sets X = {zl,zz,...,xrmﬁ and Y =
{v1,92,... ,y[&ix&]}. Now let G consists of H and p + 2 additional ver-
tices uy, up, ..., ups2, Which are connected with X by d(p + 2) edges such
that dg(wi;) = d for i = 1,2,...,p + 2 and |dg(z;) — de(z;)| < 1 for
1<4,5< [5(2,;"—22] Now G is a (d,d + k)-graph of order 2[‘-’52:'—211 +p+2
without a matching M of size 2|]M| = n — p. This example shows that
Condition (ii) is also best possible.
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