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Abstract: Let K = (Kij) be an infinite lower triangular matrix of non-
negative integers such that Ko = 1 and K;; > 1 for i > 0. Define a
sequence {V;n(K)}m>o by the recurrence Vi (K) = > w0 KmjV3(K) with
Vo(K) = 1. Let P(n;K) be the number of partitions of n of the form
n=p1+p2+p3+pg+ - such that p; > 3., Kijpiy for j > 1 and
let P(n; V(K)) denote the number of partitions of » into summands in the
set V(K) = {V1(K), 2(K),...}. Based on the technique of MacMahon’s
partitions analysis, we prove that P(n;K) = P(n; V(K)) which generalizes
a recent result of Sellers’. We also give several applications of this result to
many classical sequences such as Bell numbers, Fibonacci numbers, Lucas
numbers and Pell numbers.

1. Imtroduction

A partition of n is of the form n = py +py +p3 + ps + --- with p; >
P2 2 p3 2ps = -+ 2 0. There are many interesting partition identities in
the theory of partitions [3]. The most celebrated Euler’s identity states as
follows:

Theorem 1.1 Let o(n) be the number of partitions of n into odd parts and
d(n) be the number of partitions of n into distinct parts. Then, for all
n 2 0, o(n) = d(n).

Recently, Santos [14] proved bijectively that o(n) also equals the number
of partitions of n of the form p; + pa + p3 + ps + - -+ such that P1>p2 >
P32 ps 2 ---20and p; > 2ps +p3+ps+--- . Later, by the technique
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of MacMahon’s partitions analysis [13], Sellers (15, 16] obtained a more
general result, namely,

Theorem 1.2 Let A = (az, a3, a4, --) be an infinite vector of nonnegative
integers with ag > 1. Define p(n; A) as the number of partitions of n
of the form py +p2 +ps +pa+ -+ withp 2 p2 2 p3 2 pa--- 20 and
p1 > agpz+asps+aspa+- - . Then, foralln 20, p(n; A) equals the number
of partitions of n whose parts must be 1°s or of the form (222 a,-) +(m-1)
for some integer m > 2.

More recently, a refinement of Sellers’ result has been obtained by [11]. Our
main theorem reads as follows:

Theorem 1.3 Let K = (Ki;) be an infinite lower triangular mairic of
nonnegative integers such that Ko =1 and Ky > 1 for i > 0. Define
a sequence {Vin(K)}m>o by the recurrence Vim11(K) = Y 72o Km;V3(K)
with Vo(K) = 1. Let P(n;K) be the number of partitions of n of the form
n=py+p2+pa+pat--- suchthat p; > L5 Kispiyr for j 2 1 and let
P(n; V(K)) denote the number of partitions of n into summands in the set
V(K) = {(Vi(K), Va(K),...}. Then

n 1
Y P(nik)g” = [] T = > P(n; V(K))g".
n>0 m>1 1t 4 n>0

In this paper, based on the technique of MacMahon’s partitions analysis,
we prove this result in the next Section. And in Section 3, we give several
applications of this result to many classical sequences such as Bell numbers,
Fibonacci numbers, Lucas numbers and Pell numbers.

2. The Proof of Main Theorem

Before proving our main theorem, we briefly recall the technique of MacMa-
hon’s partitions analysis, which has been exploited further by G. Andrews,
P. Paule, A. Riese and other authors [1, 2, 4, 5, 6, 7, 8, 9, 10].

Definition 2.1 The Omega operator S>2 is defined by
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where the domain of the Ts,,...s; 18 the field of rational functions over C
in several complex variables and the \; are restricted to annuli of the form
1—€<‘)\i| <l+4e.



According to this definition, it is easy to show the following lemma which
plays an important role in the paper.
Lemma 2.2
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Now we give the proof of our result.
Proof. By the definition of the Omega operator, applying Lemma 2.2 mui-
tiple times to A; for ¢ > 1, we obtain that
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Continuing to apply Lemma 2.2 to annihilate all parameters )\;, we have
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Now expanding (2.1) in terms of geometric series and utilizing the
Omega operator to eliminate y; for i > 1, we attain,
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where Vip4+1(K) = Z’;‘:O Km;V;i(K) with Vp(K) = 1.
Now we take the step of eliminating pm41 into detailed consideration,
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Then
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Hence the result holds. O

3. Applications

In this section, we give several applications of our main theorem to many
classical sequences such as Bell numbers, Fibonacci numbers, Lucas num-
bers and Pell numbers.

First, define an infinite lower triangular matrix X = (Ki;) with Kjp > 1



and

Kiy={ Ka if j=1and i>1, (3.1)

1 if j=0,0r i=32>2,
0 otherwise,

Using the recurrence relation

Vms1(K) =Y KmV5(K), VoK) =1, (3.2)
Jj=0

we get

Vimt1(K) = m+ dom + »_ Kia, (m20),

i=1

where 8o is the Kronecker symbol, which is Sellers’ result. Clearly, in
addition, setting K33 = 2,Ki; = 1 for i > 2 in (3.1), we obtain Santos’
result. Other special cases have been given in [15}], including an interesting
case related to graphic forest partitions [12], at this point.

Next, we list nine interesting corollaries of Theorem 1.3 in the following
table according to different K.
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if 7=0,
if i>275>1, u™—1
otherwise.
if =0,

if i>252>1, m!
otherwise.

if i=72>1,
if ©<j, Fypm—1
otherwise.

if i=7>2,

if i<jori>2
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1 if 3=0,0ri—-353=0
(mod 2) and i > 7, F.

0 otherwise.
1 if =0,
u-—1 if 1<j<k, ukFgm_zk_z ifm>k+1
um™-1 ifl<m<k

i—j+1 if i>5>k+1,

0 otherwise.
1 if j=0, ori=y,
0 if i<y, P
2 otherwise.
1 ifj=0,0ri—-35=0
(mod 2) and i > j > 2,
2 ifi-j=0(mod 2) Lo

andi>j=1,
0 otherwise.

where By, is the mth Bell number defined by Bpy1 = ZZ;O (',’:) B, with
Bo = 1; F,, is the mth Fibonacci number defined by Fouw1 = Fon + F1
with Fo = F} = 1; P,, is the mth Pell number defined by Pnt+1 = 2P, +
Py with Py = 1, P; = 2; L,y is the mth Lucas number defined by Lyt =
Ly + Lyp—y with L) = 1,Ly = 3.

It seems that some entries of K could be negative integers. For example,



define another infinite lower triangular matrix K¢ = (K;) with

1 if j=0,
2 if i=j2>1
L — =%
Ki=9 -1 if i-j=1,

0  otherwise.

By (3.2), we obtain Vi (K) = (™F*) for m > 1. For this case, Andrews (2]
has proved the following:

Theorem 8.1 Let P(n;KS) be the number of partitions of n of the form
n=p1+p2+p3+pa+--- suchthat pj —2p;jr1+pjr2 2 0 for j 2 1. Then

SYAT — 1
> Pk = [] Ty

n>0 m21

Namely, P(n;K°) also eguals the number of partitions of n into iriangular
numbers.

Our goal in future work is to consider a general principle so that K can
be extended to include negative integer entries.
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