The Complexity of List Ranking of Trees

Dariusz Dereniowski*
Department of Algorithms and System Modeling,
Gdairisk University of Technology, Poland
deren@eti.pg.gda.pl

Abstract: A vertex k-ranking of a graph G is a function ¢ :
V(G) — {1,...,k} such that if c(u) = ¢(v),u,v € V(G) then
each path connecting vertices © and v contains a vertex w with
c(w) > c(u). If each vertex v has a list of integers L(v) and for
a vertex ranking c it holds ¢(v) € L(v) for each v € V(G) then ¢
is called L-list k-ranking, where £ = {L(v) : v € V(G)}. In this
paper we investigate both vertex and edge (vertex ranking of a line
graph) list ranking problems. We prove that both problems are
NP-complete for several classes of acyclic graphs, like full binary
trees, trees with diameter at most 4 and comets. The problem
of finding vertex (edge) £-list ranking is polynomially solvable for
paths and trees with bounded number of nonleaves, which includes
trees with diameter less than 4.

1 Introduction

Let G = (V(G), E(G)) be a graph and let £ = {L(v) : v € V(G)}, where L(v) is
a set of permissible colors for vertex v. In the list coloring problem G and £ are
given and the goal is to determine whether there exists a proper vertex coloring
of G such that each vertex v gets a color from its list L(v). This problem is
a generalization of the classical coloring problem because coloring of a graph
G with k colors is a list coloring with L(v) = {1,...,k} for all v. Thus, this
problem is NP-complete for general graphs.

Vertex k-ranking of a graph G is a coloring of the vertices of G with k colors
such that for all vertices u,v with the same color each path connecting and
v contains a vertex w colored with a greater color. The smallest integer k for
which there exists a vertex k-ranking of G is called the verter ranking number
of G and denoted by x(G). The problem of determining x,(G) is NP-hard for
chordal graphs [4], bipartite and co-bipartite graphs [1]. On the other hand,
the vertex ranking problem is polynomially solvable for interval, circular-arc

*Partially supported by KBN grants 3 T11C 01127 and 4 T11C 04725

ARS COMBINATORIA 86(2008), pp. 97-114

and permutation graphs [2], partial k-trees, where k is bounded (1] and, in
particular, it is linear for trees [11].

A function ¢ mapping the set of edges of G into integers 1,...,k is an edge
k-ranking of G if each path connecting two edges z,y colored with the same
color contains an edge z such that ¢(z) > ¢(z). The smallest number & such
that there exists an edge k-ranking of G is the edge ranking number of G and it
is denoted by x.(G). Finding edge rankings using minimal number of colors is
NP-hard for general graphs (7). This problem can be solved in linear time for
trees [8], but it is hard for bounded diameter multitrees [3].

It is natural to consider a generalization of ranking problems to list rankings.
More formally, given a graph G and a list assignment £ = {L(v) : v € V(G)}
for G, a function c is a vertez L-list k-ranking of G if c is a vertex k-ranking of
G and for each vertex v € V(G), ¢(v) € L(v). If the value of k is not important
then we write vertex L-list ranking or simply vertex list ranking. Vertex list
ranking was recently defined by Jamison in [6]. In the Vertez List Ranking
problem for a given G and £ we ask whether there exists a vertex L-list ranking
of G. Finally, we define edge L-list ranking and Edge List Ranking problem
to be, respectively, the vertex £-list ranking and Vertex List Ranking problem
for the line graphs. Note that if all vertices of graph G have the same list of
available colors and the vertex ranking problem can be solved in polynomial
time for G then the Vertex List Ranking problem is also polynomially solvable
for G.

The vertex ranking problem has applications in the parallel Cholesky factor-
ization of matrices [9]. The edge ranking problem can be applied in the parallel
query processing [10]. Consider the query graph G for a given database query.
Vertices of G correspond to relations and two vertices of this graph are adjacent
if the corresponding relations have to be joined during execution of the query.
The goal is to find edge ranking of some spanning tree of G. The execution of
a query is divided into steps and in the ith step we process operations which
correspond to the edges of the spanning tree colored with label . Another appli-
cation of the edge ranking problem is the parallel assembly of modular products
[3, 5], where we have a tree T such that the parts of the product correspond
to vertices of T and two vertices are adjacent in T if and only if the corre-
sponding parts have to be connected during the assembly. If we find an edge
ranking of T then in the ith step we perform operations corresponding to edges
labeled by i. The List Ranking Problems can be interesting not only because
they are generalizations of the ranking problems, but because of their potential
applications. By using list rankings in both applications we can specify some
additional properties of the input problem (i.e. query processing or product
assembly). For example, if some operation corresponding to edge z has to be
performed in one of the prespecified time windows then we can express such a
restriction by defining the list of available colors for edge z in such a way that
i ¢ L(z) if the corresponding operation cannot be performed in the ith step.

The paper is organized as follows. In the next section we describe a polynomial-
time reduction from the Set Cover problem to the Vertex List Ranking of graphs.
This reduction is given in a general form, i.e. we list properties which must be

98

satisfied by a graph and a list assignment for vertices of the graph, created on
the basis of the input for the Set Cover problem. Then, we use this general the-
orem to show that the Vertex List Ranking problem is hard for several classes
of trees. In Section 3.4 we use previously described reduction to show that the
Edge List Ranking problem is hard for those classes of trees as well. Section 4
describes two examples of polynomial-time algorithms. In particular, we use a
dynamic programming technique for solving the problem for paths and a reduc-
tion to the matching problems, which allows to find a list rankings for graphs
with bounded number of nonpendant vertices.

2 General reduction from the Set Cover prob-
lem

Let us recall the Set Cover problem. Given a set S = {ay,...,a,} and ! its
subsets S, ...,S, find the smallest subset of indices I C {1,...,!} such that

the sets S; cover S, i.e.
Us:i=s.

iel

In our reduction we use the decision version of the above problem denoted by
Set Cover, where the question is: does there exist a subset I C {1,...,l} of
cardinality at most ¢ (¢ is part of the input to the problem) which covers S?

For a given instance of the Set Cover problem we construct a graph G and
a list assignment £ for the vertices of G such that there exists a subset I of
cardinality at most ¢t which covers S if and only if there exists a vertex L-list
ranking of G. In the following we assume that [> 0 and for each j = 1,...,n
there exists a set S; such that ¢; € S;, because if a; ¢ S; for eachi =1,...,!
and some j € {1,...,n} then there is no set I which covers S and as an input
for the Set Cover problem we pass any graph G and £ such that vertex L-list

ranking of G does not exist.
In this section we are going to describe the reduction in a general form by

determining properties which should hold for G and £ in order to reduce the Set
Cover problem to Vertex List Ranking of G. We will not restrict our theorems
to trees, because we want to show hardness for list ranking of line graphs of
trees as well. So, we formulate and prove theorems in this section in a more
general form.

For each set S;,i = 1,...,1 there are vertices {v[S;]} U {vi[a] : @ € S;} in
G. Vertex v[S;] corresponds to set S; while the vertices v;[a] correspond to the
elements of S;. Denote V(S;) = {vi[a] : a € S;}. Graph G contains a set of
blocking vertices

B = {bl, . ,b[..t}) {b[a1], . ,b[a,,]}.

The vertices by,...,b_; block colors available for vertices v[Si],...,v[S], i.e.
they get colors which belong to the lists L(v[S1]),...,L{v[St]). Analogously,
blai], ..., blas] are blocking vertices for v;[a;], because bfa] gets a color which

99

can be assigned to some vertex v;{a), where ¢ € {1,...,1} and @ € S;. Let us
denote
W =BU{y[S),...,v[SJpUV(S)U---UV(S).

Graph G contains also some additional vertices which give some properties of G,
like being bounded degree and we will define them in the next sections. Denote
d = xr~(G[V(G) \ W]), where G[X] is the subgraph induced by vertices of X,
ie.

G[X] = (X, {{u,v} € E(G) : v,v € X}).

Define £ = {L(v) : v € V(G)} for G. Let
L(v) ={1,...,d}, whereve V(G)\ W. (1)

The list of permissible colors for each vertex v[S;], i = 1,...,l contains two
elements:

LO[S)) ={d+id+l+i+1+ Z V(S;)I}- @)
j=1

Color d + i is called small for vertex v[Si] and the other color is big for v[S;].
We will use symbols big(v[S;]) and small(v[S;]), respectively. Define lists for the
vertices in V(S;),i=1,...,! as follows.

Voev(solL(v)| =1, 3)
Yuvev(syt # v — L(u) # L(v) and 4)
UJ L) = {big([S:]) = [V(Sl,. .., big(v[S]) - 1}. (5)

veV(S:)

In other words, for each vertex v € V(S;), L(v) contains one element, which is
smaller than big(v[S;]) and bigger than big(v[S;-1]) (if ¢ > 1). Colors permissi-
ble for different vertices in V/(S;) do not overlap. We sort these vertices according
to increasing values of their permissible colors. Formally, for each i = 1,...,1
define a permutation m; : V(S;) — {1,...,|V(Si)|} such that m(u) < m;(v) if
and only if z < y, where L(u) = {z} and L(v) = {y}. Finally, define lists for
blocking vertices:

L(bx)
L(bla])

{big([Si]) :i=1,...,1}, (6)
U{L(wla)) :i =1,...,1 and a € V(Si)}, (7

wherek=1,...,l—-tand e €S.

The definition of £ is correct, i.e. each vertex has nonempty list of available
colors, because we assumed that for each j = 1,...,n element a; belongs to
some set S; (so L(b[aj]) # 0) and we assumed that [> 0 (so L(b;) # @ for
j=1,...,01—t). In the following, if path P connects two vertices u and v then
we assume (in order to simplify the notation) that u is adjacent to one end
vertex of P and v is adjacent to the other end vertex of P. Thus, we assume
that u,v ¢ V(P).

100

On the basis of the definition of £ we can formulate two simple lemmas
which hold regardless of the structure of graph G. Graph G’ in Lemma 1 is
defined so that V(G’') = W and {u,v} € E(G’) iff u and v are connected in G
by a path which does not contain a vertex from W.

Lemma 1 Let L satisfy properties (1} — (7). If ¢; is a vertex L-list ranking of
G' and c; is a vertex L-list ranking of G[V(G) \ W] then function ¢ such that
clw = e1 and clyg\w = ¢2 is a vertez L-list ranking of G.

Proof: If u € W and v ¢ W then L{u) N L(v) = @. So, we consider two
cases. Case 1: u,v ¢ W. Each path between u and v in G which does not
appear in G[V(G) \ W] contains a vertex w € W. We have, by the definition of
£, min(L(w)) > max(L(u) U L(v)), which means that c(w) > max(c(u), c(v)).
Case 2: u,v € W. If P is a u-v path in G then there exists a path in G’
containing vertices in V(P)NW. Thus, by the definition of £, the biggest color
in path P in G equals to the biggest color in the corresponding path in G'. O

The second lemma follows directly from the definition of L.

Lemma 2 Let L satisfy properties (1) - (5). Ifu,v € W\ B then L(u)NL{v) =
9. o

Now, let us formulate properties (p1), (p2) and (ps) of G and £ which guar-
antee that the Set Cover problem reduces to the problem of Vertex List Ranking

of G. The properties are as follows:

(1) £ is defined by equations (1) - (7),

(p2) for each u € V(S;) and v € B each path connecting u and v contains
vertex v[Si],

(p3) for each u € V(S;) and v € B there exists a path between u and v which
does not contain vertices in

Bu {'U[S,'+1),. .. ,‘U[Sz]} U {w € V(5;) : m(w) > mi(uw)}.

In the following we assume that G and L satisfy properties (p1), (p2) and
(p3). By Lemma 1, without loss of generality we assume that subgraph G[V(G)\
W] is properly colored and for a u-v path P in G, where u,v € W we consider
only vertices of P which belong to W. Lemma 3 is a consequence of property

(p2)-

Lemma 8 For each i = 1,...,1 graph G — v[S;] contains two (not necessary
connected) components. The vertices in B belong to one component and the
vertices in V(S;) belong to the other component. a

101

Figure 1: The structure of graph G satisfying properties (p1) and (p2).

Let us illustrate the structure of graph G in Fig. 1. There exists a path be-
tween the vertex v[S;] and any vertex among by, .. .,bi—¢,b[a1],. .., ban]. Paths
like P; and P; are not allowed because vertices v[S;] are separators as stated in
Lemma 3. A vertex v[S;] can be directly connected to the component contain-
ing vertices in B or paths connecting v[S;] to this component may pass through
vertices v[Si),#’ < i. So, in Fig. 1 we have j > i. If m(vi[ar]) > mi(v1[aq])
then there exists a path connecting v1[aq] with v[S1], which does not contain
vi[ar]. On the other hand, all paths connecting vi[a;] to v[S1] may contain
v1[ag). Thus, the path P; does not have to exist, but the existence of P, does
not exclude the path P;.

Now we prove several technical lemmas which we use to prove the main
result of this section formulated as Theorem 1.

Lemma 4 For all vertices u,v € B there ezists a path P connecting u and v
such that V(P)NW C {v[S1]}.

Proof: By (p3) there exists a path P{ connecting u and some vertex w € V(51)
which does not contain vertices in BU {v[S2),...,v[Si]}. Note that by Lemma
3, if v[S;] ¢ V(P]), i > 1 then no vertex in V(S;) belongs to Py, because
otherwise P} would contain a cycle. Thus, V(P})N(V(Sz)U---UV(S)) = 0.
So, P, = PJ[V(P)) \ (V(51) U {v[S1]})] connects u and v[S1] and does not
contain vertices in V($) U --- U V(S) U {v[S1],...,v(S)]}. Similarly, there
exists a path P, connecting v and v[S)] which does not contain vertices in
V(S1)U---uV(S)U{v[Sa),...,v[S)]}. If we concatenate P, v[S1] and P; and
remove cycles if necessary, then we obtain the desired path P. (]

102

Lemma 5 All vertices in B get pairwise different colors in each vertex L-list
ranking of G.

Proof: By (7), for each blai),ble;), ©,7 = 1,...,n if i # j then L(bla;]) N
L(blaj]) = 0. By (6) and (7), for each pair bfa;],b;, i=1,...,n,j=1,...,01 =t
we also have L(b[a;]) N L(b;) = @. Consider two vertices b;, b;, i # j and assume
that c(b;) = ¢(b;) in some vertex £-list ranking ¢ of G. From (6) we know that
c(b;) is big with respect to some vertex v[Sk}, k € {1,...,!}. By (2) we have
that big(v[Si]) < big(v[S;]) for 1 <i < j <!. By Lemma 4 there exists a path
P connecting b; and b;, such that no vertex in W \ {v[S)]} belongs to P. Thus
the biggest possible color assigned to a vertex in P is big(v[S;]). This leads to
a contradiction to the definition of vertex ranking. a

Lemma 6 Ifu € V(S;) and v € B then v[S;] is the only verter in V(G) which
belongs to each path between u and v and can get bigger color than the only
element in L(u).

Proof: We want to find a vertex w € W such that max(L(w)) > p, where
L(u) = {p} and w belongs to each path connecting u and v. By property
(p3), w ¢ Band w # v[S;], j =i+1,...,l. By Lemma 3, w ¢ V(S;) for
j > i, because otherwise we would have that v[S;], j > i also is in every
path between u and v — a contradiction. Furthermore, w ¢ V(S;), because if
mi(w) > m;i(u) then there exists a path between u and v which does not contain
w (by property (p3)) and if 7;(w) < m;(u) then the color assigned to w in every
L-list ranking of G is smaller than the color of u (by the definition of ;). Thus,
all vertices not yet considered have lists containing colors smaller than p except
v[S;], because big(v[S;]) > p. Furthermore, by property (p2), v[S;] belongs to
each path between u and v, which completes the proof.

Lemma 7 Foreachi=1,...,l and each j =1,...,l — t there ezists a path P
‘connecting v[S;] and b; such that

Vuev(p) max(L(u)) < big(v[S;]).

Proof: By property (ps) there exists a path P’ between b; and some vertex
v € V(S;) which does not contain vertices in

Bu{v[Si+1),-.., 'U[S(]}

By (p3), P’ contains v[S;]. Let P be the subpath of P’ connecting b; and v[S;].
Thus, if w € V(P)NW then w = v[Sk] or w € V(Sk), where k£ < 7. By the
definition of £ in both cases max(L(w)) < big(v[S;]). 0

103

Theorem 1 Let G and L satisfy (p1), (p2) and (p3). There ezists a solution of
cardinality at most t to the Set Cover problem if and only if there ezists a vertex
L-list ranking of G.

Proof: (=) Assume that there exists a solution I of cardinality at most ¢ to the
Set Cover problem. We construct vertex L-list ranking c of G. We assume that
graph G[V(G) \ W] has been colored by any vertex ranking algorithm (there
exist linear time algorithms for vertex ranking of trees [11] and for edge ranking
of trees [8]). By Lemma 1 we consider in the following vertices in W only. Each
vertex v € V(S;) U---UV(S) gets the color from its list L(v). Define

C(U[Si])={ :lfifi;)ll(iils)i]) ii :Zf (8)

By Lemma 2 graph G[W \ B] is properly colored. At most ¢ vertices among
v[S1), ..., v[Si] get big color, because |I| < t. So, at least I —¢ big colors are not
assigned to vertices in W \ B and, by (6), any big color can be assigned to a
vertex bj,j = 1,...,0—t. It remains to color bla;),...,b[as]. Let j € {1,...,n}.
There exists i € I such that a; € Si. By (8), ¢(v[S:]) = big(v[S:]). By (p2),
each path between v;[a;] and bfa;] contains v(S;]. From the definition of £ it
follows that c(vi[a;]) € L(b[aj]) and big(v[S;]) > c(vi[a;]). This means that we
can extend c so that c(b[a;]) := c(vi[aj]). The above statement holds for each
j=1,...,n, which means that all vertices can be colored properly.

(<) Let c be a vertex L-list ranking of G. We have to show that there exists
aset I C {1,...,!} such that |I| < t and if @ € S then there exists i € I such
that a € S;. Define

tel <& c(v[S.-]) = big(v[S;]). (9)

Consider a vertex b[a] € B. By the definition of L(b[a]) we have that

L= U Liwla) (10)
i=1,...,l:a€S;
and
|L(bla))| = {vila) : @ € Si,i=1,...,1}]. (11)

Equations (10), (11) and Lemma 2 imply that c(bla]) = c(vi[a]) for some i €
{1,...,1}. By Lemma 6 we have that ¢(v[S;]) > c(vi[e]) which implies (by the
definition of £) c(v[S;]) = big(v[S:]). Thus, ¢ € I. It remains to show that
|7} < t. By Lemma 5 all the vertices in B get pairwise different colors. By
Lemma 7, if v[S;] gets big color then it is forbidden for all vertices in B. Thus,
at most ¢ vertices in {v[S1),...,v[Si]} get big color, so by (9) there are at most
t indicies in I. u]

104

3 Instances of the reduction

In this section we show several examples of trees satisfying properties (p2) and
(p3). All trees considered are rooted at vertex r. Since all graphs in this section
are trees, we will use symbol T instead of G.

3.1 Bounded height trees

Let the subgraph induced by {v[S;]} U V(S;) be a star with the central ver-
tex u[S;] and leaves in V(S;). Tree T contains vertex r which is adjacent to
all vertices v[Sh],...,v[Si],bla1),...,b[an],b1,...,bi—¢. So, T = (V(T), E(T)),
where
v(T)
E(T)

{r}uw
{{r,v}:v e BU{v[S1)},...,v[Si]}}
U{{v[Si),v}:i=1,...,L,ve V(S;)}.

]

Theorem 2 Vertez List Ranking problem is NP-complete for trees of height
bounded by 2.

Proof: The problem is in NP. If we root T" at vertex r then each path connecting
r to a leaf is of the form r-v[S;]-v;[a;] or r-b; or else r-bfa;]. Thus, the height of
T is 2. One can check that T satisfies (p2) and (p3). £ is defined as in (1) - (7).
Thus, in this case V(T)\ W = {r} and d = 1. By Theorem 1 we have that for a
given instance of the Set Cover problem there exists a solution of cardinality at
most ¢ if and only if there exists a vertex £-list ranking of T. The size of V(T

isl+2l—-t+n+ Z§=1 |S;|, which is polynomial in the size of the input for the
Set Cover problem.]

3.2 Full binary trees

Let Ty, where v € V(T') be the subtree rooted at vertex v, i.e. subtree of T
induced by v and all its descendants. Let T be a full binary tree such that the
number of leaves in T is the smallest power of 2 greater than or equal to

(1 + 1) - 2Mtoga(mH=0)],

Let X;,i=1,...,1 +1 be any subset of leaves of T such that

1X;] = 2loga(n+i-)]
and for their closest common ancestor x; we have that the set of leaves in T,
equals to X;. For each i = 1,...,l we place vertices v[Si},v[e;] in tree T in

such a way that v[S;] = z; and V(S;) C X;. We assume that z; # z; for i # j.
This definition is correct because

V(S:)| € n < 2ftestn+=01 = | x|

105

fori=1,...,L. Finally, let
{bla;) :i=1,...,n}U{bi:i=1,...,0 -t} C Xuip1. (12)

Theorem 3 The Vertez List Ranking problem is NP-complete for full binary
trees.

Proof: It is easy to check that (pz) and (ps) hold for T. The size of T is
polynomial in I 4+ n. By Theorem 1 there exists a solution I, |I| < t, to the Set
Cover problem if and only if there exists a vertex £-list ranking of T. a

3.3 Comets

A comet Ch, n, is a tree with n; + ng vertices, which contains a path P,, as a
subgraph and one end vertex of this path is adjacent to n; leaves. Define Cy, n,
such that the path P,, contains vertices in (W \ B)U{r} in the following order

r oS, W)y T V(S -

e S A W, VS, - 0[S A), IVISDI)

Finally, all the vertices in B are adjacent to r. The graph created in this way
is & comet Cp, », With 1y = 1 +1+(|S1| +--- +[Si|) and ng = | B]. As before,
the above graph fulfills (p2) and (ps) and its size is polynomial in n + {. Thus,
by Theorem 1 we obtain the following

Theorem 4 Vertez List Ranking problem is NP-complete for comets. a

3.4 Hard instances for edge list ranking

We use symbol p|v], where v € V(T) \ {r} to denote the parent of vertex v in
tree T. All trees T are rooted at vertex r and r ¢ W.

Let G be the line graph of T. In order to distinguish the sets W, B for
T and G we denote them by W(T), B(T) and W(G), B(G), respectively. The
vertices of G are denoted as follows. The vertex v in V(G) corresponds to edge
{v,p[v]} € E(T). Thus, in particular, W(G) = {{v,p[v]} € E(T) : v € W(T)}.

Lists £ for vertices of G are defined by equations (1) - (7), where parameter
d =X, (T[V(T) \ W(T))) = x-(GIV(G)\ W(G)))-

Lemma 8 If T satisfies properties (p2), (p3) and for all vertices u € B(T),v €
W(T)\ B(T) it holds that r is the only common ancestor of u and v in T, then
its line graph G defined above also satisfies (p2) and (ps).

Proof: First, we prove (pz) for G. Assume, that P is a u-v path in G, where
u € B(G) and v € V(S;) C V(G) for some i € {1,...,1}. Consider the subgraph
T’ of T, such that E(T’) = V(P). Assume, for a contrary, that the vertex v[S;]
of G does not belong to P. Some subgraph of T is a u’-v' path P’ in T,

106

where {v/,p[u/]} = u and {v/,p[v/]} = v. The only vertex of P’, denoted by
w', such that {w’,p[w’]} € V(P) is the closest common ancestor of u' and v'.
By assumption w' # v[S;], which means that (p;) does not hold for T - a
contradiction.

To prove (p3) for G we use the fact argumented above: if some path P
connects u € B(G) and v € V(S;) C V(G) then the corresponding path P’
contains only one vertex w’ such that {w’,p[w']} ¢ V(P). Since w’ = r, we
have that if (p3) does not hold for G then this property does not hold for T as
well. o

Observe that if we root trees T used in Theorems 2, 3 and 4 at vertex r,
then T fulfills assumptions of Lemma 8. We obtain the following

Theorem 5 Edge List Ranking problem is NP-complete for the following trees:
with diameter at most 2, full binary and comets.

Proof: Let T be a tree created for Theorems 2, 3 and 4. By Lemma 8 the line
graph of T satisfies (p2) and (p3). £ is defined by (p;) for the edges of T'. By
Theorem 1 there exists a vertex £-list ranking of G if and only if there exists a
solution of cardinality at most ¢ for the Set Cover problem. The thesis of the

theorem follows. o

4 Polynomial-time cases

Define x,(G,L) to be the smallest number k such that there exists a vertex
L-list k-ranking of G. If no vertex L-list ranking of G exists then x.(G, L) is
undefined. Symbol (G, L) is called the L-list ranking number of G. In this
section we consider the optimization version of the List Ranking problem, where
for given G and £ we want to find a vertex L-list x.(G, £)-ranking of G. Denote
L= Ei:l,...,n |L(‘U,)I

A separator S of a graph G is minimal if no proper subset of S is a separator
in G. There exists a formula for computing the vertex ranking number for any

graph G # K, [2]:
xr(G) = sg&){lsl +max{x-(Gi): i =1,...,5}} (13)

where S(G) is the set of all minimal separators of G and Gi,...,Gj; are the
connected components of G — S. We want to give a formula analogous to (13)
which holds for list rankings. Then, we use it to prove that the list ranking
number of a path can be determined in polynomial time.

If G’ is a subgraph of G and £ is the set of lists for vertices of G then,
in order to simplify the formulas, we write x,(G’, L) instead of x(G’, {L(v) €
L:veV(G)}). If GyU---UG; are some graphs and all numbers x-(G;, £),
1 <14 < j are defined then x,.(G1 U---UGj, L) is defined and

xr(G1U---UG;, L) =max{x-(Gi, L) : i =1,...,7}.

107

If at least one number x(Gi, L), i € {1,...,7} is undefined, i.e. the vertex £L-
list ranking of G; does not exist, then x(G, £) is undefined because the vertex
L-list ranking of G does not exist as well. Now, let us assume that we want
to assign the biggest label to some vertex v € V(G) in some L-list ranking
¢, of a connected graph G. Since ¢, is a ranking, such a vertex is unique.
Let Gy,...,G; be the connected components of G — v. Then, ranking ¢, can
properly color all vertices of G if and only if xr(G1U...UGj, £) is defined and

{i € L(v) : i > max{xr(Gs,£L) : i=1,...,5}} #0.

If a ranking c, exists then the biggest label used by c, is as small as possible if
and only if it is defined as follows

co(v) = min{i € L(v) : i > max{xr(Gi,£) : i =1,...,5}}.

If for each vertex v € V(G) vertex list ranking c, of G does not exists then
xr(G, £) is undefined. Otherwise x-(G, £) = min{cy(v) : v € V(G)}. Thus, we
obtained the following

Theorem 6 For a given connected graph G and a list assignment L, if xr(G, £)
exists then

min(L(v)) if n=1,
xr(G, L) = énvi(%){min{i € L(v):i>x(C1U---UG;,L)}} if n>1,

where G1,...,Gj are the connected components of G—v. (m]

We show that this formula can be used to design a polynomial-time algorithm
for computing an optimal vertex L-list ranking of a path P. Note that if v €
V(P) then P — v contains one (if v is an end vertex of P) or two (if v is an
internal vertex of P) connected components. By Theorem 6 we have to compute
the vertex list ranking numbers of connected components of P—uv for all vertices
v € V(P). If for all v € V(P) the vertex list ranking number of at least one
connected component of P — v is undefined or the biggest color in L(v) is not
bigger than the list ranking number of some connected component of P —v then
x-(P, L) is undefined. Otherwise, the value of x,(P, £) can be computed. Let us
denote P = ({v1,...,o}, {{v1,22},-.., {va-1,va}}) and P ; = P[{w;,...,v;}]
for j > i. We find list ranking numbers of subpaths P; ; according to increasing
values of j—i. In order to compute x,(P; ;, £) we try to assign the biggest label
to a vertex v, for each r =4,...,j. This can be done in linear time if the label
for v, can be determined in constant time. We use two 2-dimensional tables ¢
and ¢, such that

tuli,5] = min{k € L(w:) : k > X+ (P13, £)}

and
tr[i,]] = rmn{k € L(v,-) k> Xr(Pi.j-lyc)}-

108

Observe that if ¢ > j then xr(P;j,£) = 0. Then, max(t.[¢, 7], t[r, j]) is the
desired value for the vertex v,. If the value of x,(F; j, L) has been computed
then we find the values of i — 1,7],% > 1 and ¢,.[¢,j + 1], < n as follows

tii = 1,j] = min{i’ € L(vi-1) : ¢’ > max{x+(P: j, L), ti[3, 3]} },

tf[i:j + 1] = min{i' € L(v.‘i-l‘l) 1> max{xr(Pi,j) ‘C)a tf‘[ivj]}}‘

Thus, the cost of processing the lists in £ in this algorithm is O(L). So, Theorem
6 and the dynamic programming technique gives the following

Theorem 7 The list ranking number of a path can be computed in O(n® + L)
time. a

In Section 3 we have proved the NP-completeness results for vertex and edge
list rankings. By an internal vertex (edge) we mean a vertex (edge) which is
not a leaf (is not adjacent to a leaf, respectively). Observe that in the case
of bounded height trees defined in Subsection 3.1 the internal vertices (edges)
are {r,v[S1],...,v[S:]} (respectively {v[S1],...,v[Si]}). This meens that the
Vertex List Ranking and the Edge List Ranking problems are hard for trees
even if the lists of permissible colors for the internal vertices/edges have sizes at
most 2. In the remaining of this section we prove that if internal vertices (edges)
are precolored (sizes of lists are equal to 1) then the vertex (edge) list ranking
problem is polynomially solvable. We also show that if the sizes of mentioned
lists are not bounded, then the problem is polynomially solvable if the number
of internal vertices (edges) is bounded. For a given graph G, define S(G) to be
the subset of vertices of G such that v € S(G) if and only if there is no minimal
separator in G containing v. Note that we consider a more general problem,
because a vertex can be internal in G (according to the definition above) and
may not belong to S(G). We will show that it can be determined in polynomial
time whether a vertex list ranking cg(g) of G[S(G)] can be extended to a vertex
list ranking of G.

Assume that a valid vertex L-list ranking cs(¢) of G[S(G)] is given. For G,
L and cs(c) define a bipartite graph G = (V1 U V2, E), where

V(G)\ S(G)
{v::v € V(G)\ S(G) and i € L(v)}.

Vi
V2

So, vertices in V) correspond to uncolored vertices of G and vertices in ¥,
correspond to colors available for these vertices. Note that, in general, we have
two different vertices in V; corresponding to the same color which appears in lists
of two different vertices in V(G)\ S(G). In the case described below we “merge”
two such vertices in V5. If u, v ¢ S(G), color ¢ belongs to L(u) N L(v) and there
exists a path in G connecting vertices u and v, which contains vertices in S(G)
colored by cs(g) with labels smaller than %, then let u; = v; in Gg. Thus, u;
and v; are in that case the two labels denoting the same vertex in Gp. Finally,
for a vertex v € V; and ¢ € L(v) we have {v,v;} € E(Gp) if and only if there

109

is no path P connecting v and a vertex u € S(G) such that V(P) C S(G),
cs(c)(u) =t and for each vertex w € V(P) we have cg(g)(w) < i.

This reduction is illustrated in Fig. 2. A graph G is given in Fig. 2(a) along
with a list assignment for vertices in V(G) \ S(G). The vertices in S(G) are
precolored by some function cg(g). Fig. 2(b) depicts the bipartite graph Gp
obtained from G, £ and cs(g)-

(@ ®) °
(3.68) 2 a
a5
b b,
c
ay=by=cy=
d =d8 = eB = j;
e ¢; =d,
S/ e=Js
(38} {38} {68 {3.6.8}
fs

Figure 2: (a) some graph G, lists £ for vertices in V(G) \ S(G) and partial list
ranking cs(c); (b) the corresponding graph Gp.

Lemma 9 There exists a vertezr L-list ranking ¢ of G such that c|s(c) = cs(G)
if and only if there exists a matching of size |V1| in the greph Gp.

Proof: Assume that c is a proper vertex L-list ranking of G such that c|s(c) =
¢s(c)- We have to show that each vertex in V] is matched in some matching M
of Gg. Define

M = {{v,v)} :vE W1} (14)

Thus, for each vertex v € V; there exists an edge e € M such that v € e.
Observe that if c(u) # c(v) for u,v € V; then edges {u,uc(u)}, {¥, Ve(v)} do not
share a vertex in G, which follows directly from the definition of Gg. So, we
consider the case when {u,u;}, {v,v:} € M and u; = v;. Then, we would have
that u and v get the same color ¢ under c and there is a path P contained in
$(G) (and thus in G) such that each vertex in P gets a color smaller than i. This
would give a contradiction, because we assumed that c is a vertex ranking of G.
Thus, no two edges in M are adjacent. The size of M is |Vi| = [V(G) \ S(G)|.

Now, let us assume that M is a matching in Gp such that each vertex in
V; is matched, i.e. for each v € V; there exists an edge {v,v;} € M. Let v get
color i in vertex L-list ranking of G iff {v,v;} € M. We show that function c
defined in this way is a vertex C-list ranking of G. By the definition of Gg,
i € L(v). Let u # v, u € V(G) be a vertex such that c(u) = i. Assume, for

110

a contradiction, that there exists a path P in G such that all vertices in P get
colors smaller than i in ranking c and the end vertices of P are u and v (in this
case let u,v belong to P). Consider any three consecutive vertices vi, v, v3 of
P. If v, ¢ S(G) then {v;,v3} € E(G) because otherwise every separator which
disconnects v; and v in G would contain vz, so some minimal separator would
contain vy, which means (by the definition of S(G)) that v € S(G). Thus,
if v2 ¢ S(G) then we can create path P, by removing vz from P. The end
vertices of P, are u,v and all internal vertices of P; have smaller colors than i
in ranking c. Thus, after a finite number of such steps we obtain path P; such
that end vertices of P; are u,v, all internal vertices of P; belong to S(G) and
have colors smaller than i under ranking c. If u € S(G) then we would have a
contradiction, because vertex u is precolored with i, which means that v could
not be adjacent to v; in G, so {v,v;} ¢ M. On the other hand, if u ¢ S(G) then
the existence of the u-v path P; implies that u; = v; in graph G g, which implies
that {u,u;}, {v,v} € M and these edges are adjacent in Gg — a contradiction.
Thus, we have proved that if for u,v € V(G), ¢(u) = c(v) = i then each path
connecting u and v in G contains a vertex with a color greater than i. (u]

From Lemma 9 it follows that we can solve the Vertex List Ranking problem
with precolored vertices in S(G) by finding a matching of size |V1| in graph G5.
The complexity of finding maximum cardinality matching in a bipartite graph
is O(mn). The number of vertices in Gp is bounded by

VEE)\SGI+ > ILw)]=0()

veV(GN\S(G)

and the number of edges in G is O(L). The complexity of the above algorithm
is O(L?). Furthermore, if M is an appropriate matching in Gp then each edge
in M defines a color for vertex in V(G) \ S(G). So, we obtained the following

Corollary 1 For a given £ and G, we can determine in O(L?) time whether
vertez L-list ranking cs(g) of G[S(G))] can be extended to a vertez L-list ranking

of G. O

We assumed that colors for vertices in S(G) have been determined, or equiva-
lently, each vertex in S(G) has a list of permissible colors of size 1. The following
theorem extends our results to graphs with fixed |S(G)| and arbitrary sizes of
list of permissible colors for vertices in S(G). We also want to compute optimal

list rankings.

Theorem 8 Given a graph G and a list assignment L for the vertices of G. If
the size of S(G) is fized then x,(G, L) and an optimal vertez L-list ranking of
G can be computed in polynomial time O(L® - [],¢ s(a) IL@)I).

Proof: If |S(G)| is bounded then the number of all vertex labelings of vertices
in S(G) is polynomially bounded in the sizes of the lists in £. For any such
labeling cg(c) we can check in time polynomial in |S(G)| whether cs(c) is a

111

vertex ranking of G[S(G)]. If cs(c,) is a ranking then we create the corresponding
bipartite graph G and compute a matching of size [V(G) \ S(G)| in Gg. If
such a matching does not exist then, by Lemma 9, we have that there is no
vertex L-list ranking ¢ of G such that c restricted to S(G) is equal to cs(g). On
the other hand, if such a matching has been found then we know that cg(g) can
be extended to a vertex L-list ranking ¢ of G. However, in order to compute
x-(G, L) and an optimal vertex L-list ranking of G we have to guarantee that
the largest label used by c is as small as possible. For the graph Gp define a
weight function w: E(Gg) — Ry as follows

w({v,u:})=1+ > w({y,u;}) (15)

{u|0j}EE(GB),j<i

for each {v,v;} € E(Gg). For a matching M define
w(M) = Z w(e).

eeM

Without loss of generality, we may assume that |Vj| < |V2| because otherwise
we know that no vertex C-list ranking exists. We find a matching M of size
[V4], such that for any other matching M’ (with [M’| = |W1]) it holds w(M) <
w(M'). We have to prove that a matching of minimum weight in Gp gives
an optimal vertex L-list ranking ¢ in G. Let M’ be a matching of size l,
w(M’) > w(M) and ¢ be the corresponding vertex list ranking of G. Assume,
for a contradiction, that the largest labels used by ¢ and ¢ are j and k > j,
respectively. By (15) we have

w(M') < Yoo w({v,u)) (16)
{v,vi}€E(GB)i<i
and from the fact that {v,v:} € M it follows
w(M) 2 w({v, ve}). 17)
We assumed that k > j, so combining equations (15), (16) and (17) we obtain
w({v,u}) > > w({v,u}),
{vvi}eE(GB)i<i

which implies that w(M) > w(M') — a contradiction. The complexity of finding
minimum weight perfect matching in G is O(L?®) and the thesis of the theorem
follows. m]

Observe that if vertex v is a leaf in a tree T' then v ¢ S(G). Furthermore,
the vertex v in the line graph of T (denoted by T"), corresponding to the edge
adjacent to a pendant vertex in T also does not belong to set S(I"). Thus,
Theorem 8 implies that if T is such a tree that the number of nonleaf vertices
is bounded then an optimal vertex (edge) £-list ranking of T can be computed
in polynomial time. In particular, we have

112

Corollary 2 IfT is a tree with diameter at most 3 and L is a list assignment for
T, then optimal verter (edge) L-list rankings of T can be obtained in O(|L(u)|-
[L(v)] - L%) (O(L{e)L?®), respectively) time, where u,v are internal vertices (e is
an internal edge, respectively) of T. u|

5 Concluding remarks

We have proved that the Vertex and Edge List Ranking problems are NP-
complete for very simple classes of graphs. The problem of determining the
smallest k such that there exists vertex (edge) L-list k-ranking is also NP-hard
for trees even if £ is created in a way that guarantees that a vertex (edge) ranking
exists. To prove this observe that there exists a vertex £-list ranking of G if and
only if there exists vertex £'-list k-ranking of G, where £' = {L'(v) : v € V(G)},

k=max(J L(v))

veV(G)

and
Voevic) L'(v) = L(v)U {k+ 1,k +2,...,k+|V(G)[}.
It is easy to see that a vertex L£'-list ranking of G always exists.

The complexity results presented in this paper are summarized in Table 1,
where VLR and ELR stand for Vertex List Ranking and Edge List Ranking,
respectively. Symbols C; (£’;) are used to denote that the sizes of lists of nonleaf
vertices (edges not adjacent to leaves, respectively) are bounded by a constant
i

Table 1: The complexity of list ranking of graphs.

class of graphs VLR ELR
trees with diameter > 4 NPC NPC
trees with diameter < 4 O(|L(w)||L(v)|L3) | O(|L(e)|L?)
trees with A > 2 NPC NPC
paths (A < 2) On®+1L) O(n®+ L)
comets NPC NPC
interval graphs NPC NPC
circular-arc graphs NPC NPC
permutation graphs NPC NPC
graphs with £;, 1 < 2 NPC —
graphs with £;, i =1 O(L3) —
graphs with £';, i < 2 — NPC
graphs with £';, i =1 — O(L3)

Since comets are interval graphs, we obtain that Vertex and Edge List Rank-
ing problems are NP-complete for interval graphs, and thus for circular-arc and

113

permutation graphs. Note, that polynomial-time algorithms for vertex ranking
exist for these three classes of graphs [2]. Vertices u,v in the second row of
Table 1 denote the internal vertices of a graph, while e is the internal edge of a
graph. In the case of polynomial-time instances Table 1 gives the complexity of
finding the list ranking number of a graph.

References

(1] H. Bodlaender, J.S. Deogun, K. Jansen, T. Kloks, D. Kratsch, H. Miiller,
Z. Tuza, Rankings of graphs, SIAM J. Discrete Math. 11 (1998) 168-181.

[2] J.S. Deogun, T. Kloks, D. Kratsch, H. Miiller, On the vertex ranking prob-
lem for trapezoid, circular-arc and other graphs, Discrete Appl. Math. 98
(1999) 39-63.

[3] D. Dereniowski, Edge ranking of weighted trees, Discrete Appl. Math. 154
(2006) 1198-1209.

[4] D. Dereniowski, A. Nadolski, Vertex rankings of chordal graphs and
weighted trees, Infor. Process. Lett. 98 (2006) 96-100.

[5] A.V. Iyer, H.D. Ratliff, G. Vijayan, Parallel assembly of modular products
- an analysis, Tech. Report 88-06, Georgia Institute of Technology, 1988.

(6] R.E. Jamison, Coloring parameters associated with rankings od graphs,
Congressus Numerantum 164 (2003) 111-127.

[7] T.W. Lam, F.L. Yue, Edge ranking of graphs is hard, Discrete Appl. Math.
85 (1998) 71-86.

(8] T.W. Lam, F.L. Yue, Optimal edge ranking of trees in linear time, Proc.
of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (1998)
436-445.

[9] J.W.H. Liu, The role of elimination trees in sparse factorization, SIAM
J.Matriz Analysis and Appl. 11 (1990) 134-172.

[10] K. Makino, Y, Uno, T. Ibaraki, Minimum edge ranking spanning trees of
threshold graphs, LNCS 2518 (2002) 428-440.

[11] A.A. Schiffer, Optimal node ranking of trees in linear time, Infor. Process.
Lett. 33 (1989/90) 91-96.

114

