Irreducible Cyclic Codes of Length 2^n Anuradha Sharma; Gurmeet K. Bakshi, V.C.Dumir and Madhu Raka Centre for Advanced Study in Mathematics Panjab University Chandigarh INDIA #### Abstract Explicit expressions for all the primitive idempotents in the ring $R_{2^n} = F_q[x]/(x^{2^n}-1)$, where q is an odd prime power, are obtained. Some lower bounds on the minimum distances of the irreducible cyclic codes of length 2^n over F_q are also obtained. Keywords: Minimal cyclic codes, primitive idempotents, cyclotomic cosets. 2000 Mathematics Subject Classification: 11T71, 94B15. #### 1. Introduction. Let F_q be a field of prime power order q. Let $m \geq 1$ be an integer with $\gcd(q,m)=1$. A q-ary cyclic code $\mathcal C$ of length m is an ideal in the principal ideal ring $R_m=F_q[x]/(x^m-1)$. The ideal $\mathcal C$ is generated by a generating polynomial g(x) that is the unique monic divisor of (x^m-1) . The ideal $\mathcal C$ is also generated by an idempotent e(x) which is the unique polynomial in $\mathcal C$ that generates $\mathcal C$ and satisfies $(e(x))^2=e(x)$. (For reference see chapter 5 of [4] and chapter 8 of [5]). Every ideal in R_m can be expressed uniquely as a sum of minimal ideals. The generator idempotent of a minimal ideal (also known as irreducible cyclic code) is called the primitive idempotent. Thus it is of interest ^{*}Research supported by N.B.H.M., India is gratefully acknowledged. to determine the primitive idempotents. When q=2, all the idempotents in R_m can be constructed directly from the cyclotomic cosets. For non-binary cyclic codes, Berman [3, p.22] gave explicit expression for all the primitive idempotents in R_{p^n} , where p, q are distinct odd primes, $n \geq 1$, q a primitive root mod p^n . The authors [6] generalized the result of Berman, by taking q to be an odd prime power, not necessarily a primitive root mod p^n and gave an algorithm to compute explicitly all the primitive idempotents in the ring R_{p^n} making use of cyclotomic numbers. In another paper [7], Sharma, Bakshi and Raka determined all the primitive idempotents in the ring R_{2p^n} explicitly. Earlier, Bakshi and Raka [1] derived all the primitive idempotents in the ring $R_{p^n l}$, where p, l are distinct odd primes, q a primitive root mod p^n and also modulo l, with $\gcd(\frac{\phi(p^n)}{2}, \frac{\phi(l)}{2}) = 1$. The primitive idempotents of irreducible cyclic codes of length 2^n , $n \geq 3$, were determined by Bakshi and Raka [2] under the conditions that $q \equiv 3$ or 5 (mod 8). In this paper, we drop this condition on q and for all odd prime power q, derive explicit expressions for all the primitive idempotents in R_{2^n} , $n \geq 3$ (see Theorems 1 and 2). We give two examples to illustrate it. These explicit expressions have been used in our another paper [8] to compute the idempotent generators of polyadic codes of prime power length. We also find some lower bounds on the minimum distances of the minimal cyclic codes of length 2^n (see Section 4). # 2. q-cyclotomic cosets modulo 2^n , $n \ge 3$. For any integer $m \geq 1$, the set $\{0, 1, 2, \dots, m-1\}$ is divided into disjoint cyclotomic cosets $C_s = \{s, sq, sq^2, \dots, sq^{m_s-1}\}$, where m_s is the smallest positive integer such that $sq^{m_s} \equiv s \pmod{m}$. In this section we determine cyclotomic cosets modulo 2^n , $n \geq 3$. Since $q \equiv \pm 1 \pmod{4}$, we write $q = 1 + 2^d c$ or $-1 + 2^d c$, where $d \geq 2$ and c is odd. Note that if $q \equiv 3$ or $5 \pmod{8}$, d is always equal to 2. Let $O_m(q)$ denotes the order of q modulo m. For every positive integer ℓ , $\ell \geq 2$, $$O_{2^{\ell}}(q) = \begin{cases} 2^{\ell-d} & \text{if} \quad \ell \ge d+1, \quad q = \pm 1 + 2^{d}c; \\ 1 & \text{if} \quad 2 \le \ell \le d, \quad q = 1 + 2^{d}c; \\ 2 & \text{if} \quad 2 \le \ell \le d, \quad q = -1 + 2^{d}c. \end{cases}$$ (1) Therefore the q-cyclotomic coset modulo 2^n containing $2^{n-\ell}r$, $2 \le \ell \le n$, r odd, is given by $$C_{2^{n-\ell_r}} = \begin{cases} \{2^{n-\ell_r}, 2^{n-\ell_r}q, \cdots, 2^{n-\ell_r}q^{(2^{\ell-d}-1)}\} & \text{if} \quad d+1 \leq \ell \leq n \\ & \text{and} \ q = \pm 1 + 2^d c \ ; \\ \{2^{n-\ell_r}\} & \text{if} \quad 2 \leq \ell \leq d \\ & \text{and} \ q = 1 + 2^d c \ ; \end{cases}$$ $$\{2^{n-\ell_r}, 2^{n-\ell_r}q\} = \{2^{n-\ell_r}, -2^{n-\ell_r}\} \quad \text{if} \quad 2 \leq \ell \leq d \\ & \text{and} \ q = -1 + 2^d c \ . \end{cases}$$ $$(2)$$ Clearly $C_0 = \{0\}, C_{2^{n-1}} = \{2^{n-1}\}.$ ### Proposition. (a) Let $q = 1 + 2^d c$, $d \ge 2$, c odd. All the distinct q – cyclotomic cosets modulo 2^n are given by C_0 , $C_{2^{n-1}}$ and $C_{2^{n-\ell}r}$ for $\ell = 2, 3, \dots, n$ and r running over S_ℓ for each ℓ , where $$S_{\ell} = \begin{cases} \{\pm 1, \pm 3, \cdots, \pm 3^{(2^{d-2}-1)}\} & \text{if} \quad d+1 \le \ell \le n, \\ \{\pm 1, \pm 3, \cdots, \pm 3^{(2^{\ell-2}-1)}\} & \text{if} \quad 2 \le \ell \le d. \end{cases}$$ (3) (b) Let $q=-1+2^dc$, $d\geq 2$, c odd. All the distinct q-cyclotomic cosets modulo 2^n are given by C_0 , $C_{2^{n-1}}$ and $C_{2^{n-\ell}r}$ for $\ell=2,3,\cdots,n$ and r running over T_ℓ for each ℓ , where $$T_{\ell} = \begin{cases} \{1, 3, 3^{2}, \dots, 3^{(2^{d-1}-1)}\} & \text{if} \quad d+1 \leq \ell \leq n, \ d \geq 3; \\ \{1, 3, 3^{2}, \dots, 3^{(2^{\ell-2}-1)}\} & \text{if} \quad 2 \leq \ell \leq d, \ d \geq 2; \\ \{1, -1\} & \text{if} \quad 3 \leq \ell \leq n, \ d = 2. \end{cases}$$ $$(4)$$ **Proof.** We first note that $O_{2^{\ell}}(3) = 2^{\ell-2}$ for $\ell \geq 3$ and $q^2 \equiv 1 \pmod{2^{d+1}}$ for any q. Also for any r, r' odd, it is clear that $C_{2^{n-\ell}r} \neq C_{2^{n-\ell'}r'}$ if $\ell \neq \ell'$. First we consider the case when $q = 1 + 2^d c$, $d \ge 2$. Suppose, if possible, $C_{2^{n-\ell}r}=C_{2^{n-\ell}r'}$ for some ℓ , $2\leq \ell\leq n$ and $r,r'\in S_{\ell}$. This means $$2^{n-\ell}3^t\equiv \pm 2^{n-\ell}3^{t'}q^u (\bmod\ 2^n)$$ for some $t,t',\ 0 \le t,t' \le 2^{\min(\ell,\ d)-2}-1$ and for some u. Then $3^{t-t'} \equiv \pm q^u \pmod{2^\ell}$. This implies $3^{2(t-t')} \equiv q^{2u} \equiv 1 \pmod{2^{\min(\ell,\ d)+1}}$. Since the order of 3 modulo $2^{\min(\ell,\ d)+1}$ is $2^{\min(\ell,\ d)-1}$, we get that $2^{\min(\ell,\ d)-1}$ divides 2(t-t') which is possible only if t=t' and hence r=r'. Thus the cosets $C_{2n-\ell r},\ 2 \le \ell \le n$ and $r \in S_\ell$, are disjoint modulo 2^n . When $q=-1+2^2c$, working in a same way, one finds that the cosets $C_{2n-\ell_n}$, $r\in T_\ell=\{1,-1\}$ for $3\leq \ell\leq n$, are disjoint modulo 2^n . Let now $q = -1 + 2^d c$, $d \ge 3$. Suppose, if possible, $C_{2^{n-\ell}r} = C_{2^{n-\ell}r'}$ for some ℓ , $3 \le \ell \le n$ and $r, r' \in T_{\ell}$. This gives $$3^{t-t'} \equiv q^u \pmod{2^\ell} \tag{5}$$ for some $t, t', 0 \le t' \le t \le 2^{\min(\ell-1, d)-1} - 1$ and for some u. For $d+1 \le \ell \le n$, working as above, we get that it is possible only if either t-t'=0 or $t-t'=2^{d-2}$. If $t-t'=2^{d-2}$, write $3^{t-t'}=3^{2^{d-2}}=1+2^d\lambda$, λ odd. Then (5) gives $3^{t-t'}=1+2^d\lambda\equiv q^u \pmod{2^{d+1}}$ which is not possible, as $q^u\equiv 1 \pmod{2^{d+1}}$ if u is even, $q^u\equiv -1 \pmod{2^d}$ if u is odd. Thus we must have t=t'. For $3 \le \ell \le d$, we have, by (2), that u = 0 or 1. If u=0, then we have $3^{t-t'}\equiv 1 \pmod{2^\ell}$ which implies $2^{\ell-2}$ divides t-t'. This gives t=t'. If u=1, we have $3^{t-t'}\equiv -1+2^dc \pmod{2^\ell}$, and hence $3^{2(t-t')}\equiv 1 \pmod{2^{\ell+1}}$. This implies $2^{\ell-2}$ divides t-t'. So t=t', as $t-t'<2^{\ell-2}$. Therefore the cosets $C_{2^{n-\ell}r}$, $3\leq \ell\leq n$ and $r\in T_\ell$, are disjoint modulo 2^n . Further, these are all the q-cyclotomic cosets modulo 2^n , because in each case, the number of elements in the listed cosets sums upto to 2^n . For example, in Case (a), $$|C_0| + |C_{2^{n-1}}| + \sum_{\ell=2}^n \sum_{r \in S_\ell} |C_{2^{n-\ell}r}| = 1 + 1 + \sum_{\ell=d+1}^n 2^{d-1} 2^{\ell-d} + \sum_{\ell=2}^d 2^{\ell-1} = 2^n. \quad \Box$$ For any ℓ , $2 \le \ell \le n$, we note that $$\bigcup_{\tau} C_{2^{n-\ell_{\tau}}} = \{ j : 1 \le j \le 2^n - 1 \text{ such that } 2^{n-\ell} || j \},$$ (6) where r runs over S_{ℓ} or T_{ℓ} according as $q = 1 + 2^{d}c$ or $q = -1 + 2^{d}c$, (By $2^{n-\ell} \parallel j$, we mean that $2^{n-\ell} \mid j$ but $2^{n-\ell+1} \not \mid j$). Throughout this paper, empty sums are assumed to be zero. ## 3. Primitive Idempotents in R_{2^n} , $n \geq 3$. If α denotes a primitive 2^n th root of unity in some extension field of F_q , then the polynomial $M^{(s)}(x) = \prod_{i \in C_s} (x - \alpha^i)$ is the minimal polynomial of α^s over F_q and the ideal \mathcal{M}_s generated by $\frac{x^{2^n}-1}{M^{(s)}(x)}$ is a minimal ideal in R_{2^n} . The idempotent generator of the ideal \mathcal{M}_s , i.e. the primitive idempotent will be denoted by $\theta_s(x)$. **Theorem 1.** Let $q = 1 + 2^d c$, $d \ge 2$, c odd and let ζ be an arbitrary primitive 2^d th root of unity in F_q . Then we can choose α , a primitive 2^n th root of unity, suitably, so that all the primitive idempotents in the ring R_{2^n} are given by $$\theta_0(x) = \frac{1}{2^n}(1+x+x^2+\cdots+x^{2^n-1}),$$ $$\theta_{2^{n-1}}(x) = \frac{1}{2^n}(1-x+x^2-\cdots-x^{2^n-1}),$$ and for $2 \le \ell \le n$, $r \in S_{\ell}$, $$\theta_{2^{n-\ell}r}(x) = \frac{|C_{2^{n-\ell}r}|}{2^n} \left\{ \sum_{\stackrel{i=0}{2^{\ell}|i}}^{2^n-1} x^i - \sum_{\stackrel{i=1}{2^{\ell-1}||i}}^{2^n-1} x^i + \sum_{j=2}^{\min(\ell,d)} \sum_{s \in S_{n-\ell+j}} \zeta^{rs2^{d-j}} \left\{ \sum_{i \in C_{s2^{\ell-j}}} x^i \right\} \right\}.$$ Theorem 2. Let $q = -1 + 2^d c$, $d \ge 2$, c odd. Let ω be an arbitrary primitive 2^{d+1} th root of unity in \mathbb{F}_{q^2} . Then we can choose α , a primitive 2^n th root of unity, suitably, so that all the primitive idempotents in the ring R_{2^n} are given by $$\theta_0(x) = \frac{1}{2^n}(1+x+x^2+\cdots+x^{2^n-1}),$$ $$\theta_{2^{n-1}}(x) = \frac{1}{2^n}(1-x+x^2-\cdots-x^{2^n-1}),$$ and for $2 \le \ell \le n$, $r \in T_{\ell}$, $$\begin{split} \theta_{2^{n-\ell_r}}(x) &= \frac{|C_{2^{n-\ell_r}}|}{2^n} \left\{ \sum_{i=0}^{2^{n}-1} x^i - \sum_{i=1}^{2^{n}-1} x^i \right\} \\ &+ \frac{|C_{2^{n-\ell_r}}|}{2^{n+1}} \sum_{i=3}^{\min\{\ell, \ d+1\}} \sum_{s \in T_{n-\ell+i}} \{\omega^{rs2^{d+1-j}} + (-\omega)^{-rs2^{d+1-j}}\} \{\sum_{i \in C_{n-\ell-i}} x^i\}. \end{split}$$ Remark. Theorems 1 and 2 do not depend upon the choice of ζ and ω respectively. If ζ is a primitive 2^d th root of unity, then ζ^k , $k \in \{\pm 1, \pm 3, \dots, \pm 3^{2^{d-2}-1}\}$ are all the primitive 2^d th roots of unity. Changing ζ to ζ^k just changes $\theta_{2^{n-\ell}r}(x)$ to $\theta_{2^{n-\ell}rk}(x)$ for $rk \in S_\ell$ modulo 2^ℓ . Similarly, changing ω to ω^k , where $k \in \{1, 3, 3^2, \dots, 3^{2^{d-1}-1}\}$, changes $\theta_{2^{n-\ell}r}(x)$ to $\theta_{2^{n-\ell}rk}(x)$. #### Corollary. (a) If $q \equiv 5 \pmod{8}$, all the primitive idempotents in \mathbb{R}_{2^n} are given by $\theta_0(x)$, $\theta_{2^{n-1}}(x)$ and $\theta_{2^{n-\ell}r}(x)$ for $2 \leq \ell \leq n$, $r \in \{1, -1\}$, where $$\theta_{2^{n-\ell_r}}(x) = \frac{1}{2^{n-\ell+2}} \left\{ \sum_{\stackrel{i=0}{2^{\ell} \mid i}}^{2^n-1} x^i - \sum_{\stackrel{i=1}{2^{\ell-1} \mid |i|}}^{2^n-1} x^i \right\} + \frac{r\sqrt{-1}}{2^{n-\ell+2}} \left\{ \sum_{i \in C_{2^{\ell-2}}} x^i - \sum_{i \in C_{-2^{\ell-2}}} x^i \right\}.$$ (b) If $q \equiv 3 \pmod{8}$, all the primitive idempotents other than $\theta_0(x)$ and $\theta_{2^{n-1}}(x)$, are given by $\theta_{2^{n-\ell}r}(x)$ for $3 \leq \ell \leq n$, $r \in \{1, -1\}$ and $\theta_{2^{n-2}}(x)$, where $$\theta_{2^{n-\ell}r}(x) = \frac{1}{2^{n-\ell+2}} \left\{ \sum_{\substack{i=0\\2^{\ell}|i}}^{2^{n}-1} x^{i} - \sum_{\substack{i=1\\2^{\ell-1}||i}}^{2^{n}-1} x^{i} \right\} + \frac{r\sqrt{-2}}{2^{n-\ell+3}} \left\{ \sum_{i \in C_{2^{\ell-3}}} x^{i} - \sum_{i \in C_{-2^{\ell-3}}} x^{i} \right\}$$ and $$\theta_{2^{n-2}}(x) = \frac{1}{2^{n-1}} \left\{ 1 - x^2 + x^4 - x^6 + \dots - x^{2^n-2} \right\}.$$ **Proof.** If $q \equiv 5 \pmod 8$, then $q = 1 + 2^d c$ with d = 2. Part (a), therefore, follows from Theorem 1, by taking $\zeta = \sqrt{-1} \in \mathbb{F}_q$. If $q \equiv 3 \pmod 8$, then $q = -1 + 2^d c$ with d = 2. Part (b) follows from Theorem 2, by taking $\omega = \frac{\sqrt{2} + \sqrt{-2}}{2} \in \mathbb{F}_{q^2}$. Lemma 1. Let α be a primitive 2"th root of unity in some extension field of F_{σ} . Then $$\sum_{i=0}^{2^{\ell-d}-1} \alpha^{2^{n-\ell}rq^i} = 0$$ for any r odd and any ℓ satisfying $d+1 \le \ell \le n$ or $d+2 \le \ell \le n$ according as $q=1+2^dc$ or $q=-1+2^dc$. **Proof.** Let $\beta = \alpha^{2^{n-\ell}r}$. Then β is a primitive 2^{ℓ} th root of unity and the required sum is equal to $\sum_{i=0}^{2^{\ell-d}-1} \beta^{q^i}$. Case I. Let $q = 1 + 2^d c$. For each $i,\ 0 \le i \le 2^{\ell-d}-1,\ q^i \equiv 1 \pmod{2^d},\ \text{so}\ (\beta^{q^i-1})^{2^{\ell-d}}=1.$ Further $\beta^{q^i-1}=\beta^{q^j-1}$ if and only if $q^i \equiv q^j \pmod{2^\ell}$ if and only if $i \equiv j \pmod{2^{\ell-d}}$, as the order of q modulo 2^ℓ is $2^{\ell-d}$ for $\ell \ge d+1$. Therefore $\beta^{q^i-1},\ 0 \le i \le 2^{\ell-d}-1$, are all the distinct $2^{\ell-d}$ th roots of unity and hence their sum is zero. Therefore the required sum, being equal to $\beta(\sum_{i=0}^{2^{\ell-d}-1}\beta^{q^i-1})$, is also zero. Case II. Let $q = -1 + 2^d c$. The required sum is equal to $\beta(\sum_{i=0}^{2^{\ell-d-1}-1}\beta^{q^{2i}-1})+\beta^q(\sum_{i=0}^{2^{\ell-d-1}-1}\beta^{q^{2i+1}-q})$ which is further equal to $\beta(\sum_{i=0}^{2^{\ell-d-1}-1}\beta^{q^{2i}-1})+\beta^q(\sum_{i=0}^{2^{\ell-d-1}-1}\beta^{q^{2i}-1})^q.$ Since $q^2\equiv 1$ (mod 2^{d+1}), we have $q^{2i}\equiv 1$ (mod 2^{d+1}) and so $(\beta^{q^{2i}-1})^{2^{\ell-d-1}}\equiv 1$. As before, $\beta^{q^{2i}-1}$ for $0\leq i\leq 2^{\ell-d-1}-1$, are all the distinct $2^{\ell-d-1}$ th roots of unity and hence their sum is zero. \square **Proof of Theorem 1.** In view of Theorem 6 (generalized to non-binary case) of Chapter 8 by MacWilliams & Sloane [5], we have $$\theta_s(x) = \sum_{i=0}^{2^n-1} \epsilon_i^{(s)} x^i, \text{ where } \epsilon_i^{(s)} = \frac{1}{2^n} \sum_{j \in C_s} \alpha^{-ij}.$$ Clearly $$\epsilon_i^{(0)} = \frac{1}{2^n}$$ for every i , and $\epsilon_i^{(2^{n-1})} = \frac{1}{2^n} \sum_{i \in C_{nn-1}} \alpha^{-ij} = \frac{1}{2^n} \alpha^{-i2^{n-1}} = \frac{(-1)^i}{2^n}$. Thus $$\theta_0(x) = \frac{1}{2^n} (1 + x + x^2 + \dots + x^{2^n - 1}) \quad \text{and} \quad \theta_{2^{n-1}}(x) = \frac{1}{2^n} (1 - x + x^2 - \dots - x^{2^n - 1}).$$ To compute the primitive idempotents $\theta_{2^{n}-\ell_r}(x)$, we write $$\theta_{2^{n-\ell_r}}(x) = \sum_{i=0}^{2^n-1} \epsilon_i^{(2^{n-\ell_r})} x^i$$ $$= \sum_{i=0}^{2^n-1} \epsilon_i^{(2^{n-\ell_r})} x^i + \sum_{i=1 \ 2^{\ell-1} \mid |i|}^{2^n-1} \epsilon_i^{(2^{n-\ell_r})} x^i + \sum_{t=0}^{\ell-2} \sum_{i=1 \ 2^t \mid |i|}^{2^n-1} \epsilon_i^{(2^{n-\ell_r})} x^i, \quad (7)$$ where for any $i \geq 0$, we have, using (2), $$\epsilon_{i}^{(2^{n-\ell_{r}})} = \frac{1}{2^{n}} \sum_{j \in C_{2^{n-\ell_{r}}}} \alpha^{-ij} = \begin{cases} \frac{2^{\ell-d}-1}{2^{n}} \sum_{j=0}^{2^{\ell-d}-1} \alpha^{-i2^{n-\ell_{r}}q^{j}} & \text{if } d+1 \le \ell \le n, \\ \frac{1}{2^{n}} \alpha^{-i2^{n-\ell_{r}}} & \text{if } 2 \le \ell \le d. \end{cases}$$ (8) If $2^{\ell}|i$, then we have $$\epsilon_i^{(2^{n-\ell}r)} = \begin{cases} \frac{2^{\ell-d}}{2^n} = \frac{1}{2^{d+n-\ell}} & \text{if} \quad d+1 \le \ell \le n, \\ \frac{1}{2^n} & \text{if} \quad 2 \le \ell \le d. \end{cases}$$ (9) If $2^{\ell-1} || i$, then as $\alpha^{2^{n-1}} = -1$, we have $$\epsilon_i^{(2^{n-\ell_r})} = \begin{cases} \frac{-1}{2^{d+n-\ell}} & \text{if} \quad d+1 \le \ell \le n, \\ \frac{-1}{2^n} & \text{if} \quad 2 \le \ell \le d. \end{cases}$$ (10) If $2^{\ell}||i|$ for some t, $0 \le t \le \ell - 2$, then by (6), we have $i \in \bigcup_{s \in S_{n-\ell}} C_{2^{\ell}s}$, i.e., $i \in C_{2^{t}s}$ for some $s, s \in S_{n-t}$. Since $\epsilon_i^{(2^{n-t}r)}$ has the same value for all i varying over a cyclotomic coset, we have, from (8), $$\epsilon_{i}^{(2^{n-\ell_{r}})} = \epsilon_{2^{t}s}^{(2^{n-\ell_{r}})} = \begin{cases} \frac{1}{2^{n}} \sum_{j=0}^{2^{\ell-d}-1} \alpha^{-2^{n-\ell+\ell_{rs}q^{j}}} & \text{if} \quad d+1 \leq \ell \leq n, \\ \frac{1}{2^{n}} \alpha^{-2^{n-\ell+\ell_{rs}}} & \text{if} \quad 2 \leq \ell \leq d. \end{cases}$$ (11) Now $\alpha^{-2^{n-\ell+t}rsq^j} = \alpha^{-2^{n-\ell+t}rsq^u}$ if and only if $q^j \equiv q^u \pmod{2^{\ell-t}}$. In view of (1), for $\ell - t \ge d + 1$, this is so if and only if $j \equiv u \pmod{2^{\ell-t-d}}$, and for $\ell - t \le d$, this is so if and only if $j \equiv u \pmod{1}$. Thus $$\sum_{j=0}^{2^{\ell-d}-1} \alpha^{-2^{n-\ell+t} r s q^{j}} = \begin{cases} 2^{t} \sum_{j=0}^{2^{\ell-\ell-d}-1} \alpha^{-2^{n-\ell+t} r s q^{j}} & \text{if } \ell-t \ge d+1, \\ 2^{\ell-d} \alpha^{-2^{n-\ell+t} r s} & \text{if } \ell-t \le d. \end{cases}$$ (12) Also for $\ell - t \ge d + 1$, i.e., for $0 \le t \le \ell - d - 1$, the sum on the right hand side of (12) is zero, by Lemma 1. Therefore from (11) and (12), we have $$\epsilon_{2^{t}s}^{(2^{n-\ell}r)} = \begin{cases} 0 & \text{if } d+1 \le \ell \le n \text{ and } 0 \le t \le \ell-d-1, \\ \frac{1}{2^{d+n-\ell}} \alpha^{-2^{n-\ell+t}rs} & \text{if } d+1 \le \ell \le n \text{ and } \ell-d \le t \le \ell-2, \\ \frac{1}{2^{n}} \alpha^{-2^{n-\ell+t}rs} & \text{if } 2 \le \ell \le d & \text{and } 0 \le t \le \ell-2. \end{cases}$$ (13) Choose α , a primitive 2"th root of unity such that $\alpha^{-2^{n-d}} = \zeta$, then ζ is a primitive 2^d th root of unity. Note that $\alpha^{-2^{n-\ell+\ell}} = \zeta^{rs2^{d-\ell+\ell}}$. Substituting the values of $\epsilon_i^{(2^{n-\ell}r)}$ from (9), (10) and (13) in (7), we get that for $d+1 \leq \ell \leq n$, $$\begin{split} \theta_{2^{n-\ell_r}}(x) &= \frac{1}{2^{d+n-\ell}} \left\{ \sum_{\substack{i=0\\2^{\ell} \mid i}}^{2^n-1} x^i - \sum_{\substack{i=1\\2^{\ell-1} \mid |i}}^{2^{n-1}} x^i \right\} + \sum_{t=0}^{\ell-2} \sum_{s \in S_{n-t}} \epsilon_{2^t s}^{(2^{n-\ell_r})} \sum_{i \in C_{2^t}, s} x^i \\ &= \frac{1}{2^{d+n-\ell}} \left\{ \sum_{\substack{i=0\\2^{\ell} \mid i}}^{2^n-1} x^i - \sum_{\substack{i=1\\2^{\ell-1} \mid |i}}^{2^{n-1}} x^i \right\} + \frac{1}{2^{d+n-\ell}} \sum_{t=\ell-d}^{\ell-2} \sum_{s \in S_{n-t}} \zeta^{rs2^{d-\ell+t}} \sum_{i \in C_{2^t}, s} x^i \end{split}$$ and for $2 < \ell < d$, $$\theta_{2^{n-\ell_r}}(x) = \frac{1}{2^n} \left\{ \sum_{\stackrel{i=0}{2^{\ell}|i}}^{2^n-1} x^i - \sum_{\stackrel{i=1}{2^{\ell-1}||i|}}^{2^n-1} x^i \right\} + \frac{1}{2^n} \sum_{t=0}^{\ell-2} \sum_{s \in S_{n-t}} \zeta^{rs2^{d-\ell+t}} \sum_{i \in C_{2^t}, s \in S_{n-t}} x^i.$$ Putting $\ell - t = j$, we obtain the required expression as stated in Theorem 1. **Proof of Theorem 2.** Here $q = -1 + 2^d c$, $O_{2^d}(q) = 2 = O_{2^{d+1}}(q)$. For $2 \le \ell \le n$, $r \in T_{\ell}$, working as in proof of Theorem 1, we can write $\theta_{2^{n-\ell_r}}(x)$, as in (7), where now, for any $i \ge 0$, $\epsilon_i^{(2^{n-\ell_r})}$ has instead of (8), the following values: $$\epsilon_{i}^{(2^{n-\ell_{r}})} = \frac{1}{2^{n}} \sum_{j \in C_{2^{n-\ell_{r}}}} \alpha^{-ij} = \begin{cases} \frac{1}{2^{n}} \sum_{j=0}^{2^{\ell-d}-1} \alpha^{-i2^{n-\ell_{r}}q^{j}} & \text{if } d+1 \leq \ell \leq n, \\ \frac{1}{2^{n}} (\alpha^{-i2^{n-\ell_{r}}} + \alpha^{i2^{n-\ell_{r}}}) & \text{if } 2 \leq \ell \leq d. \end{cases}$$ (14) Clearly, if 2^{ℓ} i, then we have $$\epsilon_i^{(2^n - \epsilon_r)} = \frac{|C_{2^n - \epsilon_r}|}{2^n}.\tag{15}$$ If $2^{\ell-1}||i$, then we get $$\epsilon_i^{(2^{n-\ell_r})} = -\frac{|C_{2^{n-\ell_r}}|}{2^n}. \tag{16}$$ ζ And if $2^{\ell}||i, 0 \le t \le \ell - 2$, then by (6), $i \in \bigcup_{s \in T_{n-\ell}} C_{2^{\ell}s}$. Therefore we have $$\epsilon_{i}^{(2^{n-\ell}r)} = \epsilon_{2^{\ell}s}^{(2^{n-\ell}r)} = \begin{cases} \frac{1}{2^{n}} \sum_{j=0}^{2^{\ell-d}-1} \alpha^{-2^{n-\ell+\ell}rsq^{j}} & \text{if } d+1 \leq \ell \leq n, \\ \frac{1}{2^{n}} (\alpha^{-2^{n-\ell+\ell}rs} + \alpha^{2^{n-\ell+\ell}rs}) & \text{if } 2 \leq \ell \leq d. \end{cases}$$ (17) The value of $\sum_{j=0}^{2^{t-d}-1} \alpha^{-2^{n-\ell+t}rsq^j} \text{ is same as that given in (12) when } \ell-t \geq d+1; \text{ but when } \ell-t \leq d, \text{ its value is } 2^{\ell-d-1}(\alpha^{-2^{n-\ell+t}rs}+\alpha^{-2^{n-\ell+t}rsq}) \text{ . This is so because for } \ell-t \leq d, \quad \alpha^{-2^{n-\ell+t}rsq^j}=\alpha^{-2^{n-\ell+t}rsq^u} \text{ if and only if } j\equiv u \pmod{2}.$ Further for $\ell-t \geq d+2$, i.e., for $0 \leq t \leq \ell-d-2$, by Lemma 1, the sum $\sum_{j=0}^{2^{\ell-t-d}-1} \alpha^{-2^{n-\ell+t}rsq^j}=0.$ Thus in this case $$\epsilon_{2^{i}s}^{(2^{n-\ell}r)} = \begin{cases} 0 & \text{if } 0 \le t \le \ell - d - 2, \\ 0 & d + 1 \le \ell \le n; \\ \frac{|C_{2^{n-\ell}r}|}{2^{n+1}} (\alpha^{-2^{n-\ell+\ell}rs} + \alpha^{-2^{n-\ell+\ell}rsq}) & \text{if } t \ge \ell - d - 1, \\ 0 & d + 1 \le \ell \le n; \end{cases} \\ \frac{|C_{2^{n-\ell}r}|}{2^{n+1}} (\alpha^{-2^{n-\ell+\ell}rs} + \alpha^{2^{n-\ell+\ell}rs}) & \text{if } 2 \le \ell \le d, \\ 0 \le t \le \ell - 2. \end{cases}$$ (18) Choose α , a primitive 2^n th root of unity such that $\alpha^{-2^{n-d-1}} = \omega$. Since $q = -1 + 2^d c$, $\omega^{2^d} = -1$, one finds that $\omega^q = -\omega^{-1}$. Then for $t \ge \ell - d - 1$ and $d+1 \le \ell \le n$, we have $$\begin{array}{lll} \alpha^{-2^{n-\ell+t}rs} + \alpha^{-2^{n-\ell+t}rsq} & = & \omega^{rs2^{d+1-\ell+t}} + \omega^{rs2^{d+1-\ell+t}q} \\ & = & \omega^{rs2^{d+1-\ell+t}} + (-\omega)^{-rs2^{d+1-\ell+t}}. \end{array}$$ Also for $2 \le \ell \le d$, $0 \le t \le \ell - 2$, $$\alpha^{-2^{n-\ell+t}rs} + \alpha^{2^{n-\ell+t}rs} = \omega^{rs2^{d+1-\ell+t}} + \omega^{-rs2^{d+1-\ell+t}} = \omega^{rs2^{d+1-\ell+t}} + (-\omega)^{-rs2^{d+1-\ell+t}}.$$ Also observe that when $t = \ell - 2$, $\omega^{rs2^{d-1}} + \omega^{-rs2^{d-1}} = 0$. Substituting the values of $\epsilon_i^{(2^{n-\ell_r})}$ in (7) and putting $\ell - t = j$, we obtain the required idempotents as stated in Theorem 2. #### 4. The minimum distance of minimal cyclic codes of length 2ⁿ. The minimum distance of the minimal cyclic codes \mathcal{M}_0 and $\mathcal{M}_{2^{n-1}}$ is clearly 2^n and their generating polynomials are $1+x+x^2+\cdots+x^{2^n-1}$ and $(x-1)\{1+x^2+x^4+\cdots+(x^2)^{2^{n-1}-1}\}$ respectively. For a fixed integer ℓ , $2 \le \ell \le n$, and r varying over S_{ℓ} or T_{ℓ} as the case may be, all the minimal cyclic codes $\mathcal{M}_{2^{n-\ell_r}}$ are equivalent, and hence have the same minimum distance. For any ℓ , $2 \le \ell \le n$, we have $$x^{2^{n}}-1=(x^{2^{\ell-1}}+1)(x^{2^{\ell-1}}-1)\left\{1+x^{2^{\ell}}+(x^{2^{\ell}})^{2}+\cdots+(x^{2^{\ell}})^{2^{n-\ell}-1}\right\}.$$ Note that, for r varying over S_{ℓ} or T_{ℓ} , by (6), we have $$\prod_{r} M^{(2^{n-\ell_r})}(x) = \prod_{r} \prod_{i \in C_{2^{n-\ell_r}}} (x - \alpha^i) = \prod_{\substack{j=1 \\ 2^{n-\ell_{\parallel j}}}}^{2^{n-1}} (x - \alpha^i) = x^{2^{\ell-1}} + 1.$$ Let \mathcal{C}_{ℓ} be the code of length 2^{ℓ} generated by $x^{2^{\ell-1}} - 1$. Then by Lemma 12 of [6], $\hat{\mathcal{C}}_{\ell}$, the code of length 2^n generated by $\frac{x^{2^n-1}}{\prod_{r} M^{(2^n-\ell_r)}(x)}$ is the repetition of code \mathcal{C}_{ℓ} repeated $2^{n-\ell}$ times and its minimum distance is $2 \cdot 2^{n-\ell} = 2^{n-\ell+1}$. The minimal code $\mathcal{M}_{2^{n-\ell_r}}$, being the subcode of the code $\hat{\mathcal{C}}_{\ell} = \bigoplus_{r} \mathcal{M}_{2^{n-\ell_r}}$, has minimum distance at least $2^{n-\ell+1}$. **Example 1.** Let n=4, $q=3=-1+2^2$ so that d=2. The 3-cyclotomic cosets mod 16 are Also $x^2 \equiv -2 \pmod{3}$ has the solutions ± 1 . If we take $\sqrt{-2} = 1$ in F_3 , the seven ternary primitive idempotents mod 16 are given by $$\begin{array}{lll} \theta_0(x) & = & (1+x+x^2+\cdots+x^{15}), \\ \theta_1(x) & = & 1-x^2-x^6-x^8+x^{10}+x^{14}, \\ \theta_2(x) & = & -1+x+x^3+x^4-x^5-x^7-x^8+x^9+x^{11}+x^{12}-x^{13}-x^{15}, \\ \theta_4(x) & = & -1+x^2-x^4+x^6-x^8+x^{10}-x^{12}+x^{14}, \\ \theta_{-1}(x) & = & 1+x^2+x^6-x^8-x^{10}-x^{14}, \\ \theta_8(x) & = & 1-x+x^2-\cdots-x^{15}, \\ \theta_{-2}(x) & = & -1-x-x^3+x^4+x^5+x^7-x^8-x^9-x^{11}+x^{12}+x^{13}+x^{15}. \end{array}$$ The minimal ternary cyclic codes of length 16 have the following parameters: Code dimension minimum generating polynomial **Example 2.** Let n=4, $q=5=1+2^2$ so that d=2. The 5-ary cyclotomic cosets mod 16 are $$C_0 = \{0\}, C_8 = \{8\},$$ $C_1 = \{1, 5, 9, 13\}, C_{-1} = \{3, 7, 11, 15\},$ $C_2 = \{2, 10\}, C_{-2} = \{6, 14\},$ $C_4 = \{4\}, C_{-4} = \{12\}.$ Also $x^2 \equiv -1 \pmod{5}$ has the solutions ± 2 . If we take $\sqrt{-1} = 2$ in F_5 , the eight 5-ary primitive idempotents mod 16 are given by $$\begin{array}{lll} \theta_0(x) & = & (1+x+x^2+\cdots+x^{15}), \\ \theta_1(x) & = & -1+2x^4+x^8-2x^{12}, \\ \theta_2(x) & = & 2+x^2-2x^4-x^6+2x^8+x^{10}-2x^{12}-x^{14}, \\ \theta_{-1}(x) & = & -1-2x^4+x^8+2x^{12}, \\ \theta_4(x) & = & 1-x-x^2+x^3+x^4-x^5-x^6+x^7+x^8-x^9-x^{10}+x^{11}\\ & & +x^{12}-x^{13}-x^{14}+x^{15}, \\ \theta_{-2}(x) & = & 2-x^2-2x^4+x^6+2x^8-x^{10}-2x^{12}+x^{14}, \\ \theta_8(x) & = & 1-x+x^2-\cdots-x^{15}, \\ \theta_{-4}(x) & = & 1+x-x^2-x^3+x^4+x^5-x^6-x^7+x^8+x^9-x^{10}-x^{11}\\ & & +x^{12}+x^{13}-x^{14}-x^{15}. \end{array}$$ The minimal 5-ary cyclic codes of length 16 have the following parameters: | Coae | aimension | mınımum
distance | generating polynomial | |--------------------|-----------|---------------------|---| | \mathcal{M}_0 | 1 | 16 | $(x^{15}+x^{14}+\cdots+x+1),$ | | \mathcal{M}_1 | 4 | 4 | $(x^{12}+2x^8-x^4-2),$ | | \mathcal{M}_2 | 2 | 8 | $(x^{14} + 2x^{12} - x^{10} - 2x^8 + x^6 + 2x^4 - x^2 - 2),$ | | \mathcal{M}_{-1} | 4 | 4 | $(x^{12}-2x^8-x^4+2),$ | | \mathcal{M}_4 | 1 | 16 | $(x^{15} + 2x^{14} - x^{13} - 2x^{12} + x^{11} + 2x^{10} - x^{9} - 2x^{8} + x^{7} + 2x^{6} - x^{5} - 2x^{4} + x^{3} + 2x^{2} - x - 2),$ | | \mathcal{M}_{-2} | 2 | 8 | $(x^{14}-2x^{12}-x^{10}+2x^8+x^6-2x^4-x^2+2),$ | | \mathcal{M}_8 | 1 | 16 | $(x^{15}-x^{14}+\cdots+x-1),$ | | \mathcal{M}_{-4} | 1 | 16 | $(x^{15} - 2x^{14} - x^{13} + 2x^{12} + x^{11} - 2x^{10} - x^{9} + 2x^{8} + x^{7} - 2x^{6} - x^{5} + 2x^{4} + x^{3} - 2x^{2} - x + 2).$ | Given below is a table of irreducible cyclic codes of length 2^n , $3 \le n \le 7$, with good dimension and minimum distance: | | q = | = 3 | | | $\underline{q=5}$ | | | | | |--------|----------------------------|-----------|---------------------|---|-------------------|--------------------|-----------|---------------------|--| | Length | Code | dimension | minimum
distance | 1 | Length | Code | dimension | minimum
distance | | | 8 | \mathcal{M}_1 | 2 | 6 | | 8 | \mathcal{M}_1 | 2 | 4 | | | 16 | $\mathcal{M}_{\mathbf{l}}$ | 4 | 6 | - | 16 | \mathcal{M}_1 | 4 | 4 | | | 16 | \mathcal{M}_2 | 2 | 12 | - | 16 | \mathcal{M}_2 | 2 | 8 | | | 32 | \mathcal{M}_1 | 8 | 6 | - | 32 | \mathcal{M}_1 | 8 | 4 | | | 32 | \mathcal{M}_2 | 4 | 12 | | 32 | \mathcal{M}_2 | 4 | 8 | | | 32 | \mathcal{M}_4 | 2 | 24 | 1 | 32 | \mathcal{M}_4 | 2 | 16 | | | 64 | \mathcal{M}_1 | 16 | 6 | | 64 | \mathcal{M}_1 | 16 | 4 | | | 64 | \mathcal{M}_2 | 8 | 12 | 1 | 64 | \mathcal{M}_2 | 8 | 8 | | | 64 | \mathcal{M}_4 | 4 | 24 | 1 | 64 | \mathcal{M}_4 | 4 | 16 | | | 64 | \mathcal{M}_8 | 2 | 48 | 1 | 64 | \mathcal{M}_8 | 2 | 32 | | | 128 | \mathcal{M}_1 | 32 | 6 | 1 | 128 | \mathcal{M}_1 | 32 | 4 | | | 128 | \mathcal{M}_2 | 16 | 12 | | 128 | \mathcal{M}_2 | 16 | 8 | | | 128 | \mathcal{M}_4 | 8 | 24 | 1 | 128 | \mathcal{M}_4 | 8 | 16 | | | 128 | \mathcal{M}_8 | 4 | 48 | | 128 | \mathcal{M}_8 | 4 | 32 | | | 128 | \mathcal{M}_{16} | 2 | 96 | 1 | 128 | \mathcal{M}_{16} | 2 | 64 | | Their idempotent generators are explicitly stated in the Corollary with r=1, on taking $\sqrt{-2}=1$ in F_3 and $\sqrt{-1}=2$ in F_5 . #### References. - 1. G. K. Bakshi and M. Raka, Minimal cyclic codes of length p^nq , Finite Fields Appl. 9, no.4 (2003) 432-448. - 2. G. K. Bakshi and M. Raka, Minimal cyclic codes of length 2^m , Ranchi University Math. Journal 33 (2002) 1-18. - 3. D. Berman, "Semisimple cyclic and abelian code.II.", Cybernatics 3(3) (1967) 17-23. - 4. W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press (2003). - F.J. MacWilliams and N.J.A. Sloane, Theory of Error-Correcting Codes, North-Holland, Amsterdam (1977). - 6. A. Sharma, G.K. Bakshi, V.C. Dumir and M. Raka, Cyclotomic Numbers and Primitive Idempotents in the Ring $GF(q)[x]/(x^{p^n}-1)$, Finite Fields and their Appl. 10, no.4, (2004) 653-673. - 7. A. Sharma, G.K. Bakshi and M. Raka, Irreducible Cyclic Codes of Length $2p^n$, accepted in ARS Combinatoria, 2005. - 8. A. Sharma, G.K. Bakshi and M. Raka, Polyadic codes of prime power length, submitted in Journal of Combinatorial Theory, Series A.