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Abstract

Explicit expressions for all the primitive idempotents in the ring Rz» =
Fo[z)/(z®" — 1), where g is an odd prime power, are obtained. Some lower bounds on
the minimum distances of the irreducible cyclic codes of length 2" over F, are also
obtained.
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1. Introduction.

Let F, be a field of prime power order g. Let m > 1 be an integer with
ged(g,m) = 1. A g-ary cyclic code C of length m is an ideal in the principal
ideal ring R, = Fy[z]/(2™ - 1) . The ideal C is generated by a generating
polynomial g(z) that is the unique monic divisor of (2™ — 1). The ideal C is
also generated by an idempotent e(z) which is the unique polynomial in C that
generates C and satisfies (e(z))® = e(z). (For reference see chapter 5 of [4] and
chapter 8 of [5]). Every ideal in R, can be expressed uniquely as a sum of
minimal ideals. The generator idempotent of a minimal ideal (also known as

irreducible cyclic code) is called the primitive idempotent. Thus it is of interest
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to determine the primitive idempotents.

When g = 2, all the idempotents in R, can be constructed directly from the
cyclotomic cosets. For non-binary cyclic codes, Berman [3, p.22] gave explicit
expression for all the primitive idempotents in Rp», where p, ¢ are distinct odd
primes, n > 1, g a primitive root mod p". The authors [6] generalized the result
of Berman, by taking ¢ to be an odd prime power, not necessarily a primitive
root mod p" and gave an algorithm to compute explicitly all the primitive
idempotents in the ring R,» making use of cyclotomic numbers. In another
paper [7), Sharma, Bakshi and Raka determined all the primitive idempotents
in the ring Rop» explicitly. Earlier, Bakshi and Raka (1] derived all the primitive
idempotents in the ring R,ni, where p, [ are distinct odd primes, g a primitive
root mod p™ and also modulo {, with gcd(*"-(gﬂ, 2(29.) =1

The primitive idempotents of irreducible cyclic codes of length 27, n > 3,
were determined by Bakshi and Raka [2] under the conditions that g =3 or 5
(mod 8). In this paper, we drop this condition on ¢ and for all odd prime power
g, derive explicit expressions for all the primitive idempotents in Rz, n 2 3
(see Theorems 1 and 2). We give two examples to illustrate it. These explicit
expressions have been used in our another paper (8] to compute the idempotent
generators of polyadic codes of prime power length. We also find some lower
bounds on the minimum distances of the minimal cyclic codes of length 2™ (see

Section 4).

2. g-cyclotomic cosets modulo 2%, n 2> 3.

For any integer m > 1, the set {0,1,2,---,m — 1} is divided into disjoint cy-
clotomic cosets C, = {s,3q,8¢%,- -+, 8¢™ '}, where m, is the smallest positive
integer such that s¢™ = s(mod m). In this section we determine cyclotomic
cosets modulo 2®, n > 3.

Since ¢ = +1(mod 4), we write ¢ = 1+ 2%c or —1+ 2%, whered > 2 and cis
odd. Note that if ¢ = 3 or 5(mod 8), d is always equal to 2. Let On(g) denotes
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the order of ¢ modulo m. For every positive integer ¢, £ > 2,

2t-4 if ¢>d+1, ¢==1+2%;
Ox(g)=¢ 1 if 2<¢<d, g= 1+2%; (1)
2 if 2<£€<d, ¢g=-1+2%.

Therefore the g-cyclotomic coset modulo 2" containing 2"~‘r, 2 < € < 7,
r odd, is given by

{2ntr,2ntrg,- -, 27 trg@ -1} i d41<2<n
and ¢ = +1+ 2%;
_ ) {2~} if 2<¢<d
Con-tr = and g=1+2%; 2
{2"—tr, 2" trg} = {27, -2""%} if 2<€<d
and g = -1+ 2%.

Clearly Cp = {0}, Csa-1 = {2771}
Proposition.

(@) Let g=1+2%, d> 2, codd. All the distinct ¢ — cyclotomic cosets
modulo 2" are given by Cp, Can-1 and Cha-e, for £=2,3,---,n and
r running over S for each ¢, where

{£1,£3,---, 37D} if d+1<e<n,
L= e-3_ . 3)
{£1,£3,---,x3C¢7-1} if 2<e<d
(b) Let g=—1+2%, d>2, codd. All the distinct g—cyclotomic cosets
modulo 2" are given by Cpg, Can-1 and Cga-¢, for £ =2,3,---,n and
r running over T, for each ¢, where
{1,3,3%,.-,3¢° -0} if d+1<<n, d>3;
Ti=9 {1,3,3,--,3¢°-1}  if 2<e<d d>2; (4)

{1,-1} if 3<é<n,d=2.
Proof. We first note that O,¢(3) = 2¢~2 for £ > 3 and ¢* = 1(mod 2%*!) for
any g. Also for any r, r' odd, it is clear that Con-¢,, # Cyu-v . if £ # €.
First we consider the case when ¢ = 1+ 2%, d > 2.
Suppose, if possible, Con-¢,, = Can-¢,w for some £, 2 < €< n and r,r' € S.

This means
273t = 12" 3" g%(mod 2")
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for some ¢,¢/, 0 < ¢,¢' < 2min(t.d)-2 _ 1 and for some u. Then 3~ =
+¢%(mod 2¢). This implies 3*¢~*) = ¢** = 1(mod 2™nh 4+1) Since the
order of 3 modulo 2min(t: d+1 jg gmin(t, d)=1 we get that 2min(4 4)=1 divides
2(t — t') which is possible only if ¢ = ¢’ and hence r = r’. Thus the cosets
Con-ty, 2< €< nand r € Sy, are disjoint modulo 2.

When ¢ = -1 + 2%¢, working in a same way, one finds that the cosets
Can-t,, 7 € Ty = {1,~1} for 3 < £ < n, are disjoint modulo 2".

Let now ¢ = —1+ 2%, d > 3.

Suppose, if possible, Can-¢, = Can-¢,s for some ¢, 3 < { < n and r,7' € Tp.

This gives
3=t = ¢%(mod 2°) (5)

for some ¢, ¢/, 0 < ' < t < 2minié=1,d)-1 _ 1 and for some .

For d + 1 < ¢ < n, working as above, we get that it is possible only if either
t—t'=0ort—t =20-2 Ift — ' =292 write 3¢ = 377" = 1+24), )
odd. Then (5) gives 3'~% =1 + 29X = ¢*(mod 29+') which is not possible, as
q* = 1(mod 2¢+1) if u is even, ¢* = —1(mod 2¢) if u is odd. Thus we must have
t=t.

For 3 < £ < d, we have, by (2), that u=0or 1.

If u = 0, then we have 3!~¢' = 1(mod 2¢) which implies 2¢~2 divides ¢ — ¢'.
This gives ¢ = #. If u = 1, we have 3~ = —1 + 2%(mod 2¢), and hence
32t-t) = 1(mod 2¢+1). This implies 2¢~2 dividest—¢'. So t = ', ast—#' < 2¢-2.
Therefore the cosets Can-¢,., 3 < € < n and 7 € Ty, are disjoint modulo 2”.

Further, these are all the g-cyclotomic cosets modulo 27, because in each
case, the number of elements in the listed cosets sums upto to 2". For example,

in Case (a),

n n d
ICol+[Can-1]+3_ D [Con-epl = 1414+ 2d-12¢-44 Y 9t =2n. O

=2 r€S, t=d+1 £=2
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For any ¢, 2 < € < n, we note that

|JC2n-er = {i: 1< <2"—1such that 2°~“|)j}, (6)
-

where 7 runs over S or Ty according as ¢ = 1+ 2% or ¢ = -1 + 2%, (By
2"=¢ || j, we mean that 2"~¢|j but 2"~ }j).
Throughout this paper, empty sums are assumed to be zero.
3. Primitive Idempotents in Ran, n > 3.
If a denotes a primitive 2"th root of unity in some extension field of F,,
then the polynomial M?)(z) = H (z — o) is the minimal polynomial of a*
ieC,
over F; and the ideal M, generated by ﬁz(;ﬁ—};; is a minimal ideal in Ran. The
idempotent generator of the ideal M,, i.e. the primitive idempotent will be
denoted by 8,(z).
Theorem 1. Let ¢ = 1+ 2%, d > 2, c odd and let ¢ be an arbitrary primitive
29th root of unity in F,. Then we can choose a, a primitive 2"th root of unity,
suitably, so that all the primitive idempotents in the ring Ra» are given by
Bo(2) = E(l+z+2+. -+,
b-r(z) = F(l-2+2%----—2¥"1),

and for2< €< n, re s,

IC l i | min(¢,d)
n- d4-j .
Ban-c,(z) = =2 (" E 2t - E 2t + E E ¢ree E z*}
J=2 8€Sn.t4;j tEC',..e—,'
qq, 2:-1", 2

Theorem 2. Let ¢ = -1+ 2%, d > 2, c odd. Let w be an arbitrary primitive
29+1th root of unity in Fy2. Then we can choose @, a primitive 2"th root of
unity, suitably, so that all the primitive idempotents in the ring Ra» are given
by

00(1’.) . 5!;(1+1:+2:2+...+x2"—1),
Oan-a(z) = 24;(1—2:+3;'-’_..._3:2"-1)’
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and for 2<¢<n, r €Ty,

|c,..-¢,| =
Ban-er(z) = Ez Z
oll, ol 1“,
|C Imm(t d+1) ' e
an—( +l-: - +1-j .
PGl S oy B
j=3 36Tu-(+) 'Ec,gl—j

Remark. Theorems 1 and 2 do not depend upon the choice of ¢ and w respec-
tively. If ¢ is a primitive 2%th root of unity, then ¥, k € {1, 3,---, :1:324-2“}
are all the primitive 2%th roots of unity. Changing ¢ to ¢* just changes 8gn-¢,.(z)
t0 On-¢,(2) for rk € S¢ modulo 2¢. Similarly, changing w to w*, where

k€ {1,3,3%-,3"7"~1}, changes Byn-c,(2) 10 Byn-cyp(2).

Corollary.

(¢) If ¢ = 5(inod 8), all the primitive idempotents in Ra» are given by
8o(z), Oan-1(z) and Ban-c.(2) for 2< €< n, 7 € {1,-1}, where

LI on _)
Ban-c,(2) = 52r Zz - Zz‘ +5?%-{ z zt — Z :1:"}.

i=0 iml i€C¢-2 i€C_nt-2
at)i at-1)4 -

() If ¢ = 3(mnod 8), all the primitive idempotents other than 8g(z) and
8an-1(z), are given by Ban-c.(2) for 3 < €< n, r € {1,-1} and Oan-2(z),

where
0”_1 2n_l
O3n-c,(z) = 2-.- z Z-’B - Z zt +2,,_ Z 2t - Z z*
'nl, ot‘-II“; 1€Cyt-3 i€C_y¢-3
and
Oan-2(2) = 2" vy {1—1 +z2i—2% 4. 22 —»2}.

Proof. If ¢ = 5 (mod 8), theu g = 1 + 2% with d = 2. Part (a), therefore,
follows from Theorem 1, by taking ( = v/-1 € F,. If ¢ = 3(mod 8), then

g = =1+ 2% with d = 2. Part (b) follows from Theorem 2, by taking w =
A@.‘tﬁ € qu. [m]
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Lemma 1. Let a be a primitive 2™th root of unity in some extension field of

F,. Then

24y

n-C 3
> o =0

i=0
for any r odd and any € satisfyingd +1 < £ <nor d + 2 < ¢ < n according as
g=1+42%org=-1+2%.
Proof. Let 8 = a®”~‘r. Then f is a primitive 2th root of unity and the required

at-4

sum is equal to Z B"‘.
i=0

Case I. Let g=1+2%.

For each i, 0 < i < 20-%— 1, ¢’ = 1(mod 2%), so (87 ~1)*" = 1. Further
B -1 = 71 if and only if ¢’ = ¢/(mod 2%) if and only if i = j(mod 2¢-9), as
the order of g modulo 2¢ is 2¢=¢ for ¢ > d+1. Therefore 87 =1, 0 < i < 2¢-9—1,

are all the distinct 2¢~%th roots of unity and hence their sum is zero. Therefore

2t-4)
the required sum, being equal to 8( Z B ~1), is also zero.
i=0
Case II. Let g = —1+ 2%.
at-d=1_, al=d-1_,
The required sum is equal to  f( Z BT 1) + g Z B ey
s-d-1_y =0 at-dm1_, i=0
which is further equal to A( Z B =1 + B( Z B9 ~1)4, Since ¢* = 1
i=0 i=0

(mod 29+!), we have ¢* = 1 (mod 29+!) and so (89" ~1)* """ = 1. As before,

BT~ for 0 < i < 2¢~4-1 — 1, are all the distinct 2¢~9~1th roots of unity and
hence their sum is zero. Therefore the required sum is zero. m]

Proof of Theorem 1. In view of Theorem 6 (generalized to non-binary case)
of Chapter 8 by MacWilliams & Sloane [3), we have

-1
. 1 y
0s(z) = Z 2%, where €/ = £ Z a9,
i=0 j€C,

Clearly
n-1 . som - -1)¢
e = & forevery i, and &> ) =& Y ai=goe T 2 GAL
jEGy.-l
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Thus
bo(z) = &(l+z+2>+---+2¥""!) and
Opn-1(z) = :(l-—z+27 = = 22"-1).
To compute the primitive idempotents fan-c,.(2), we write

2" -1

n-¢ .
Oan-e(z) = ZG? "y
i_o
e -2 2"
ne= "=
- T R T S T @
io0 il t=0 im1
2¢|; 20-1§ 2t||i
where for any 7 > 0, we have, using (2),
2t-4
& —2"hrd i d+1<e<
@ —ij_ ) Z a 1 +1l<é<n,
€ Cz: a4 =0 8
JG an-{, .La-'i'-'"-zf if 25(’5(1.

an

If 2¢| 4, then we have

(‘3”“!‘) - 2'4:)_:1 = ad¥n= if d+ 1 S ¢ S n, (9)
: = if 2<2<d.
If 2¢-1|| 4, then as a®" " = -1, we have
@4 _ [ qammr f d+1<€<n,
& -{:1 if 2<e<d (10)

If 2¢)| i for some ¢, 0 < t < €~ 2, then by (6), we have i € U Cat,, ie.,
8€ESn -1t

i € Car, for some 8, 8 € Sp—¢. Since ¢! e ") has the same value for all i varying

over a cyclotomic coset, we have, from (8),

gt-d_)
n—2L an—2C A ‘2“_"{.""‘1’ H <E <
&N @ ] go o if d+1<€<n, )
& a2 e if 2<e<d.
Now a=2""*'rs¢’ = o=2"""""ra¢" if and only if ¢ = q* (mod 2~%). In view

of (1), for € —t > d + 1, this is so if and only if j = u(mod 2¢-t-4y and for
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£ —1t < d, this is so if and only if j = u(mod 1). Thus

at-t-d_,
264y f L RS TS .
_an=C+t 05 a™® T if (—-t>d+1
PSRRI PP Tt
=0 20-dq2" " rs if (—t<d

Alsofor€~t>d+1,ie.,for0<t<€-d-1, the sum on the right hand

side of (12) is zero, by Lemma 1. Therefore from (11) and (12), we have

0 if d+1<f<nand0<t<l-d—1,
TNl e i d1<f<nandf-d<t<e-2, (13)
A q ¥ e if 2<€<d and0<t<e-2.

on

Choose a, a primitive 2"th root of unity such that a=? = (,then  is a
primitive 29th root of unity. Note that @=2"""*'rs = ¢re2'~ ", Substituting the

values of 622"-"’) from (9), (10) and (13) in (7), we get that ford+1 < €< n,

1 an_y an -2 .ty)
2" r 1
Oan-er(2) = 5y Z" - Z S EDDIE DI
=0 8€Sn -t i€Car,
ot|‘ ot 1“,
an_ an_y
K rg2d-t+ oF
=TS zm,z > < 2@
i=0 ial t=l—d 3€Sn - i€Cy
2¢)i at-1|ji i
andfor2<€<d,
)"_l ‘,”_1
i =41 ;
T Y ST 3] 5 3 sl o
i=0 i=1 t=0 s3€S, -, {€C,e
2¢)i -1y :

Putting ¢ — ¢t = j, we obtain the required expression as stated in Theorem 1.

Proof of Theorem 2. Here g = -1+ 2%, 0s(g) = 2 = Osas1(q).
For 2 < € < n, r € T;, working as in proof of Theorem 1, we can write
Ban-c.(2z) , as in (7), where now, for any i > 0, ef-zn_c") has instead of (8), the

following values :

lél_

at-d
— —jon-t qi .
( Z ol = ,E-o a fd+1<€<n, (14)

2" jebmc, (@2 4?7 f2<0<d

lgl'_
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Clearly, if 2°| 4, then we have

(2*=¢r) _ |Con-eol

{ - (15)
If 26| 4, then we get
(2" ~¢r [Con -]
( r) = ___2"_"__ (16)
And if 2|, 0<t<€—2, then by (6),i€ U Car,. Therefore we have
8€Th-¢ {
at=d_)
qn —( qn=C, L —2" " rag if d+1<¢t<
Et" r) = 6(273 ) = an .’:-Zo « 1 a+l1<E<n, (17)
AT e 4o i 2< <
at-d_)
The value of Z a~2"" 'm0’ is same as that given in (12) when €—1t >
j=0

_an=t4t _an=-t+t

d+1; but when £—t < d, its value is 264" (a2 "Mra v89) . Thisis

—an =g _an- e

so because for £ -t < d, « r8¢" if and only if j = u(mod

2). Further for ¢ -t >d+2, ie., for0<t < {—d -2, by Lemma 1, the sum

at-t-d_,

n-0{440,, y . .
Z a~2""""'r*¢ = 0. Thus in this case

=a

j=0
0 if 0<t<eé-d-2,
d+1<¢€<n;
@ty _ ) el (@2 e o2 ey if 4> 0-d -1, as)
T d+1<€t<n;
Ez":_;.i‘.ul(a-'-’"'”'" + a’.""“"ra) if 2 < ) < d,
0<t<e—-2.
Choose a, a primitive 2"th root of unity such that """ = w. Since
qg=-1+2¢%, w? = —1, one finds that w? = —w™!, Then for ¢ > €—d—1 and

d+1< €< n, we have

_on—t+t _an=C+t,, ad+1-C+t ad+1=C+t
2 2 req = ,ro? rs2

q9
rg2dtl-l+t

™+ a +w

= w,.,24+|-t+c + (_w)_

Alsofor2<€<d, 0<t<(-2,

,.,+a2u-t+r,.a - w,.‘24+|-c+|

_an =0+t —pgad -+t
2 w 2

+
+ (~w)”

d+1-C+1 gl +1=C+1
wra?. 182" .
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Also observe that when t = £ -2, w™*™" 4w="2°"" = 0, Substituting the
n-¢
values of e? " in (7) and putting £~¢ = j, we obtain the required idempotents

as stated in Theorem 2. a
4. The minimum distance of minimal cyclic codes of length 2".

The minimum distance of the minimal cyclic codes My and Ma. -1 is clearly
2" and their generating polynomials are 1+2+2%+---+2%" ~! and (z-1){1+
22+t + (3:2)2"-"1} respectively.

For a fixed integer £, 2 < ¢ < n, and r varying over S or T; as the case
may be, all the minimal cyclic codes Mgn-¢, are equivalent, and hence have the

same minimum distance.

For any ¢, 2 < £ < n, we have
an at-1 Ht-1 ot YIS on—t_
2 —1=(@¥" + 1) -1){1+:c‘ + @)+ + (2¥)? }

Note that, for r varying over S; or T, by (6), we have

.

HM("“ D)= I @-o)= ] @-o)=2""+1.
r i€C,, ¢, jat
an- ‘"1

Let C be the code of length 2¢ generated by 22" = 1. Then by Lemma 12

2" =Cri(z)

of [6], Cs, the code of length 2" generated by H—’""—— is the repetition
M

of code C; repeated 2"~¢ times and its minimun: distance is 2.2~ = 2n-t+1,
The minimal code Mau-c,., Being the subcode of the code ¢, = @Mgn-tr,
has minimum distance at least 2"~ ¢+!, "

Example 1. Let n =4, ¢ = 3 = —1 + 22 so that d = 2. The 3-cyclotomic

cosets mod 16 are

Co = {0}, Ci = {412},

¢ = {1,3,9,11)}, C., = {5,7,13,15},
n = {2,6}, Ca = {10,14},
Cs = {8}.
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Also 2?2 = —2 (mod 3) has the solutions 1. If we take /=2 = 1 in F3, the

seven ternary primitive idempotents mod 16 are given by

00(17)
01 (.’L')
6a(2:)
04(2)
0_1(2:)
08(3)
-2 (.’L‘)

(L+z+27+-- +2'%),
1—3-—16—1 + 210 4 21

-1+z+2%+27 —15—::'—1,84-:1 + 21l 4 12 L 13 g1,
—1+42% =24 + 26 — 28 + 210 — 212 4 214,

1422 +25 — 28 — 210 — 14,

l-z+2® - -2,
“1-z-—23+2t+2°+27 - 28 —2° — 211 4+ 217 4 213 + 215,

The minimal ternary cyclic codes of length 16 have the following parameters:
Code dimension minimum generating polynomial

distance
Mo 1 16 @ +at -+ +1),
M 4 6 (212 + 210 —28 — 24 - 27 + 1),
My 2 12 (2™ + 213 — 212 — 210 — 2% + 58
428 425 —28 -2 -2+ 1),
My 2 8 (2 - 212 4+ 219 — 28 + 26 — 2% + 2% - 1),
Mo 4 6 (212 =219 — 28 — 2% 422 + 1),
Mg 1 16 (2 —2M 4. 1),
M_a 2 12 (21 = 218 — 212 — 210 4 50 48
428 28 -2t -2 + 2 +1).
Example 2. Let n =4, ¢ = 5 = 1+ 2 so that d = 2. The 5-ary cyclotomic
cosets mod 16 are
Co = {0}, Cs = {8},
¢ = {1,59,13}, C-, = {3,7,11,15},
C. = {2 10}, C.. = {6,14},
Cy = {4}, C-q4 = {12}.

Also 22 = -1 (mod 5) has the solutions £2. If we take /=1 =2 in Fs, the

eight 5-ary primitive idempotents mod 16 are given by

6o(z)
01(z)
0a(x)
0_ 1 (.’l?)
04(x)

0_2(2)
03 (Jv)
0-4(2)

(I+z+2*+---+2%),

-1+ 22 + 2% — 2212,

2+2% - 2% — 28 + 228 4 210 — 2217 — 214,

—-1-22" + 28 + 2212
1-z-22+28+2' -2°— 28 +27 + 2% —2® - 210 + 21!
Fal? 13 _ gl +$15,

2~ 22 — 2% + 28 4 228 — 210 — 2212 4 14,

1-242%— =215,
l+:L—.r; -1,3+:t: +z:5—::°—:z:'+x8+a:9—a:1°—:c“
+212 +J, 214 — 15
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The minimal 5-ary cyclic codes of length 16 have the following parameters :

Code

dimension

= N B e

[

minimum

distance
16

4
8
4
16

8
16
16

(¥ +2M 4+ +2+1),

generating polynomial

(212 + 228 — 24 - 2),
(a2 + 2212 — 210 — 228 4 28 4 224 — 22 - 2),
(22 - 228 — 2% 4+ 2),
(@15 + 221 — 213 — 2212 4 g1 4 2210 — 5F

-228 + 27+ 228 2% - 224 + 23 + 22 — 2 - 2),
(21 — 2212 — 210 + 228 + 25 — 22 — 22 4+ 2),

(¥ —2M 4. 42-1),

(219 — 221 — 213 £ 2212 4 211 = 2210 _ 9
+228 + 27 - 228 - 2% + 220 + 23 - 222 =2 4+ 2).

Given below is a table of irreducible cyclic codes of length 2%, 3 < n < 7, with

good dimension and minimum distance :

Length

8
16
16
32
32
32
64
64
64
64
128
128
128
128
128

=3

Code dimension

My

N R 00 N AN

minimuin
distance

6
6
12
6
12
24
6
12
24
48
6
12
24
48
96

Length Code dimension

8
16
16
32
32
32
64
64
64
64
128
128
128
128
128

g=3

Mis

LA S I VN V)

minimum
distance

4

G & 00 B

Their idempotent generators are explicitly stated in the Corollary with r = 1,
on taking v—2=1in F; and v/-1= 2 in Fs.
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