A COMBINATORIAL SHIFTING METHOD ON
MULTICOMPLEXES WITH APPLICATIONS TO
SIMPLICIAL COMPLEXES AND SIMPLE GRAPHS

YUSUF CIVAN

ABSTRACT. We introduce a combinatorial shifting operation on mul-
ticomplexes that carries similar properties required for the ordinary
shifting operation on simplicial complexes. A linearly colored simpli-
cial complex is called shifted if its associated multicomplex is stable
under defined operation. We show that the underlying simplicial
subcomplex of a lincarly shifted simplicial complex is shifted in the
ordinary sense, while the ordinary and linear shiftings are not in-
terrelated in general. Scparately, we also prove that any linearly
shifted complex must be shellable with respect to the order of its
facets induced by the lincar coloring. As an application, we provide
a characterization of simple graphs whose independence complexes
are linearly shifted. The class of graphs obtained constitutes a su-
perclass of threshold graphs.

1. INTRODUCTION

In this paper, we extend the combinatorial shifting technique to linearly
colored simplicial complexes by introducing a shifting operation on multi-
complexes. Recall that a simplicial complex A on [n] is called shifted if
F\{7} U {i} € A for every face F of A, whenever there exist ¢ < j with
i ¢ F and j € F, while a shifting operation is a map A — Shift(A) that
associates with a simplicial complex A on [n] a simplicial complex Shift(A)
on [n] satisfying the following conditions:

(S1) Shift(A) is shifted.

(S2) Shift(A) = A if A is shifted.

(83) £(A) = f(Shift(A)).

(S4) Shift(A’) C Shift(A) if A’ C A,
where [n] = {1,2,...,n} and f(A) denotes the f-vector of A. If A is
a simplicial complex on the vertex set V, the shifting operation may be
applied to A after possibly choosing a bijection V' — [n], where |V]| = n. Of
course, such a choice will substantially affect the resulting shifted complex.

Key words and phrases. Linear coloring, multicomplex, graph complex, combinato-
rial shifting.
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In general, any surjective map x: V' — [k] is called a vertex coloring of
A, while the images of faces of A under x may not produce a simplicial
complex on [k]. However, assuming  to be a linear coloring, we can always
construct a unique multicomplex over [k] which carries enough information
to recover A back. We rccall that a vertex coloring k: V. — [k] of A
is called linear provided that for every two vertices u,v of A having the
same color, we have cither F(u) C F(v) or F(v) C F(u), where F(u)
denotes the set of facets of A containing the vertex u (see Definition 2.1
for an equivalent formulation.) We proved in [2] that there is a one-to-one
correspondence between linearly colored simplicial complexes using & colors
and all multicomplexes over [k].

We introduce a combinatorial shifting operation on multicomplexes as a
map I' — C(T') that associates a multicomplex I' on [k] with a multicom-
plex C(T') on [k] which satisfics similar properties required for an ordinary
shifting operation and may be stated as follows (see Theorem 4.8):

(M1) C(T) is shifted.
(M2) C(I") =T if T is shifted.
(M3) f(I') = f(C(T)).

As in the ordinary case, C(I') not only depends on I' but also on the order
of the operations that are applied.

Once we associate a multicomplex I' to a simplicial complex A, we shift
I’ and define S(A) to be the associated simplicial complex of C(I'). We
then call the map A — S(A), a linear combinatorial shifting of A with
respect to chosen linear coloring. The linear shifting somewhat behaves
differently. For instance, a linear shifting of a pure simplicial complex may
result in a nonpure complex. However, many combinatorial and topological
properties of linearly shifted complexes are easy to detect. For example, any
such complex is shellable (seec Proposition 3.9). Furthermore, we provide
examples that are not shifted in the ordinary sense but turn out to be
linearly shifted.

As an application, we consider the independence complexes of simple
graphs, and provide a structural characterization of graphs whose indepen-
dence complexes are linearly shifted. The class of graphs obtained forms a
superclass of threshold graphs.

We organize the paper as follows: In Section 2 we review basic defini-
tions of multisets and multicomplexes, and recall useful facts about linear
colorings of simplicial complexes. We then explain how to associate a mul-
ticomplex to a simplicial complex and vice versa. Then, in Section 3,
we introduce linearly shifted simplicial complexes and verify some of their
topological and combinatorial properties. The Section 4 is devoted to the
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construction and study of the linear combinatorial shifting operation. Fi-
nally, we investigate the structures of simple graphs whose independence
complexes are linearly shifted in Section 5.

2. LINEAR COLORINGS

Let N denote the set of non-negative integers. We denote by N¥ the
lattice of k-tuples of elements of N ordered componentwise, ie., n < m
in NF if n(i) < m(4) for all 1 < i < k, where m = (m(1),...,m(k)) and
n = (n(l),...,n(k)).

A multiset on [k] is a function m: (k] — N, where m(z) is regarded as the
number of repetitions of 7 € [k]. Any multiset m on [k] can be identified
with a unique vector (m(1),...,m(k)) of N* by assigning m(i) = m(3) for
all 7 € [k], and via this assignment, we will always mean by a multiset over
[k], a vector in the lattice N*. As a consequence, a submultiset n of m is a
multiset satisfying n < m. The size of a multiset m € N* is defined to be
] := iy m(a).

For a given multiset m over [k], we define {m) := {n € N¥: n < m}, and
a subset I' C N* is said to be a multicompler over [k] provided that (m) C
T for all m € I". Unless otherwise stated, we will always consider finite
multicomplexes over [k]. If T is such a multicomplex, then it is clear that
there exists an antichain {my,...,m,} in I' such that I’ = (m;)U...U(m,),
in which case the elements m,...,m, are called the facets of I' and we
sometimes say that I' is the multicomplex generated by mi,...,m;. A
multicomplex is said to be pure if its facets are of same size. If T is a
multicomplex, its f-vector f([') = (fo, f1,...) is defined by f; := |[{m €
[: [|ml| =3 +1}.

It is also evident from the definitions that ordinary subsets A of [k]
may be identified with multisets of N* via their characteristic functions
xa = (xa(1),...,xa(k)) given by xa(i) equals 0ifi¢ Aor1ifi € A. In
other words, they corresponds to those elements m € N* with m(i) < 1 for
each 1 < i < k. It follows that if " is a multicomplex over [k], then there
exists a simplicial complex U(I") with vertex set [k] defined by G € U(T")
if x¢ € I'. This simplicial complex U(T") is called the underlying simplicial
complez of T

We next recall some definitions and facts about linear colorings of sim-
plicial complexes, more details can be found in [2].

Definition 2.1. Let A be a simplicial complex with vertex set V. A
surjective map k: V — [k] is called a k-linear coloring of A if the collection
{F(v): k(v) = i} is linearly ordered by inclusion for all ¢ € [k], where
F(v) denotes the set of facets of A containing v. We say that a simplicial
complex is k-linear colorable if it admits a k-linear coloring map. The least
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integer k where A is k-linear colorable is called the linear chromatic number
of A and denoted by Ichr(A).

When A is k-linear colorable, we may associate a unique multicomplex
in N* as follows. When F is face of A, we define the multiset mgp =
(mr(1),...,mp(k)) in N* by mp(i) := |{v € F: s(v) = i}| for each 1 <
i < k. In other words, mp gives the color combinations of the vertices
of F under k. It is then easy to verify that the collection {mp: F €
A} is a multicomplex over [k]. We call this multicomplex the associated
maulticomplez of the couple (A, k) and denoted it by I'(A, k).

This gives us an assignment (A,x) — I'(A,x) from the set of lin-
early colored simplicial complexes to multicomplexes. Indeed, this as-
signment is surjective. Let I' be a multicomplex over [k], and define
r; := max {m(i): m € T} and set V; := {ai: 1 <t < r;}. We next define a
k-linear colorable simplicial complex A(T') on V := US_, V; as follows. We
first associate a subset Fi, of V to every multiset m = (m(1),...,m(k)) €T
by

k
Fy = U{a'l,aa,. oy By}
i=1
Now, A(I') is the k-linear colorable simplicial complex generated by the
subsets Fy, for which m is a facet of I", and the linear coloring map x: V —
[k] is given by k(al) := i.

As an example we illustrate in Figure 1 the associated simplicial com-
plexes of the multicomplexes

T ={(2,0,1))U{(1,2,0)}U{(1,1,1)) and
I' ={(1,1,0,0)) U ((1,0,1,0)) U ((1,0,0,1)) U {(0,1,1,0)) L ((0,1,0,1))

where each number attached to a vertex denotes its color.
1 1 2 2
\A/ 3 \IA/ 4
3
2 1

A A’

FIGURE 1. The associated simplicial complexes of multicomplexes.

178



The construction described above gives a unique simplicial complex A(T")
associated to any multicomplex I', and it is also evident that the assignment
[’ = A(T’) is inverse to the assignment (A, k) — I'(A, k).

One of the important consequence of requiring a simplicial complex A
to be k-linear colorable is that it provides a strong deformation of the
complex to a subcomplex having as many vertices as the number of colors
used. This subcomplex (called the representative subcomplex of the couple
(A, k) in [2]) is an isomorphic copy of the underlying simplicial complex of
the associated multicomplex embedded into A.

Theorem 2.2. [see Section 3 of [2]] Let A be a k-linear colorable simplicial
complez and let T' = I'(A, k) be the associated multicomplez. Then A and
the underlying simplicial complez U(T') are homotopy equivalent.

3. LINEARLY SHIFTED COMPLEXES

The notion of combinatorial shifting goes back to Erdds, Ko and Rado,
and was introduced to combinatorial and algebraic theory of simplicial
complexes by Kalai. For the combinatorial aspects of the theory, we refer
readers to [3] and (6], while the surveys (4] and [5] provide recent devel-
opments on the algebraic side. We here extend the combinatorial shifting
technique in the frame work of linear colorings. It is interesting to note
that some complexes that are not shifted turn out to be linearly shifted,
and the structure of such complexes is easy to detect as in the ordinary
case.

Given a multiset m = (m(1),...,m(k)) € N¥, welet p;(m) := 3
for all 1 < j < k, and define a partial order on N* by

(3.1) n<pm: < || =|m| and pj(n) < pj(m) foreach1 < j < k.

k

i=j im(1)

On the other hand, <p; will denote the reverse lexicographical order on
N* defined by n <p; m, if in the vector difference m — n = (m(1) —
n(1),...,m(k)—n(k)), the right-most nonzero element is positive. We note
that the reverse lexicographical order is a linear extension of the partial
order <p.

Definition 3.2. Let M C N* be given. Then M is called shifted (resp.
compressed) if m € M and n <p m (resp. n <p; m) implies that n € M.

Definition 3.3. A simplicial complex A is called k-linearly shifted (resp.
k-linearly compressed) if it admits a k-linear coloring & such that the asso-
ciated multicomplex I' = T'(A, ) is shifted (resp. compressed).

Remark 3.4. We remark that the definition of k-linearly shifted complexes
does not cover the ordinary shifted complexes. In other words, if A is a
simplicial complex with vertex set [n], it is never n-linearly shifted, while
it could be shifted in the ordinary sense. On the contrary, a non-shifted
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simplicial complex may turn out to be linearly shifted. In fact, the sim-
plicial complex A depicted in Figure 1 is 2-linearly shifted, while it is not
shifted in the ordinary sensc. On the other hand, the 1-dimensional sim-
plicial complex A’ illustrated in Figure 1 is shifted but not linearly shifted
since it only admits a trivial linear coloring.

Since the reverse lexicographical order is a linear extension of the partial
order, the following is immediatc.

Corollary 3.5. Any k-linearly compressed simplicial complex is k-linearly
shifted.

The converse of Corollary 3.5 does not generally hold as illustrated in
the following example.

Example 3.6. Let A; and Aj be the simplicial complexes associated to
the following multicomplexcs:

T(A1) = ((3,0,0)) U ((2,1,0)) and
['(Az2) = ((3,0,0)) U{(2,1,0)) U{(2,0,1)) U((1,2,0)) U {(1,1,1)),

respectively. It is clear that A, is 2-linearly compressed and A, is 3-linearly
shifted. However, Aj is not 3-linearly compressed, since (0,3,0) ¢ I'(A2)
while (0,3,0) <grr (1,1,1) € I'(A2). Indeed, A, admits no 3-linear coloring
for which it is 3-lincarly compressed.

Theorem 3.7. If A is a k-linearly shifted simplicial complez with respect
to k, then U(T) = U(T'(A, &) is a shifted simplicial complez over [k].

Proof. We recall that the multicomplex associated to U(T") is given by IV =
{xc: G € U(T')} which is cmbedded into I'. Since I' is shifted, so is V. In
other words, the underlying complex U(T") is shifted as claimed. a

Let A be a k-linear colorable simplicial complex with the k-linear color-
ing map « and let I' = I'(A, ) be the associated multicomplex. We recall
that the reverse lexicographical order <y, provides a linear order on the
set of facets F(T'), and since there is a bijection between F(A) and F(I'),
the set of facets of A and T respectively, it also induces a linear order on
F(A). Therefore, we may lexicographically order the facets of A by

(3.8) F<py F' :& mp <pr mpr.

We next verify that the prescribed order on F(A) is in fact a shelling order
whenever A is linearly shifted. However, we first recall the definition of
shellability. A simplicial complex A is said to be shellable if there exists
an order Fi,...,F, of the facets of A such that for every 7 and ! with
1<i<l<n,thereisa j with 1 < j <! and an =z € F; such that
F,NnF, C F;nF, = F\{z}.
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Proposition 3.9. Every k-linearly shifted simplicial complex is shellable.

Proof. Let A be a k-linearly shifted with respect to a k-linear coloring
map & and let I' = I'(A, k) be the associated multicomplex. Assume that
R, F,,..., F, is the resulting order of facets according to the induced order,
i.e.,, F; <pp Fjifandonly if ¢ < j, and let F; and F; be two facets of A such
that i < j. We write mp, = (m(1),...,m(k)) and mg, = (n(1),...,n(k)),
and since mp, <pp mg;, there exists t € (k] such that m(t) > n(t) and
m(r) = n(r) for all 7 > ¢. So, let v € F;\F; be a vertex with x(v) =t and
define m’ := (m(1),...,m(t—2),m(t— 1)+ 1,m(t) - 1,m(t+1),...,m(k)).
It follows that m’ <p mp; so that m’ € I'(A), since A is k-linearly shifted.
We then let G be any face of A for which m’ = mg and let F; be the
earliest facet of A with respect to <g; containing G. In other words, F}
is the lexicographically earliest facet such that m’ < mpg, i.e.,, m’ € (mp).
If we write mp, = (s(1),...,s(k)), then we must have s(t) = m(t) — 1 and
s(r) = m(r) for all 7 > ¢, since otherwise mp;, € (mg) so that Fj can
not be a facet by the definition of a k-linear coloring. We also note that
s(q) > m(q) for any ¢ < t which implies mp, Nmg; = (m(1),...,m(t -
1),m(t) - 1,m(t +1),...,m(k)), that is, mg, Nmp; = mp;\ (o)

Therefore, mp, <pr mpg;, that is I < j. On the other hand, since
v ¢ G and s(t) = m(t) — 1, it follows that v ¢ F;. Furthermore, we have
mp, Nmp; < mp Nmg;; hence, F; N F; C Fi N F; = F;\{v}, which means
that <gy induces a shelling for A.

We next describe an alternative way to decide whether a k-linear coloring
of a pure simplicial complex induces a shelling.

Definition 3.10. Let A be a k-linear colorable pure simplicial complex
with the k-linear coloring map . For any face G € A, we say that G
has a perfect descent at v € G if there exists a vertex w ¢ G such that
k(w) < k(v) and G\{v} U {w} € A. We denote the set of vertices of G at
which it has a perfect descent by D,(G).

Theorem 3.11. A k-linear coloring & of a pure simplicial complez A in-
duces a shelling if and only if F <pp F' implies that Dp(F') € F for any
two facets F, F' € F(A).

Proof. Let Fy, Fs,..., F; be the resulting order of facets according to the
induced order, i.c., F; <pg Fj if and only if ¢ < j.

Assume first that <p. provides a shelling order, and F;, F; are any two
facets such that ¢ < j. It then follows that there exists an [ with 1 <1 < j
and v € Fj such that F;NF; C F;NF; = F;\{v}. Let w be the vertex of F}
not contained in Fj. The fact mp, <pr mp; guaranties that x(w) < x(v),
and since F; = Fj\{v} U {w} € A, it follows that v € D,(Fj); hence,
D,(F;) € F; as claimed.
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For the sufficiency, suppose that <gj satisfies the required condition,
and let F;, F; be any two facets such that ¢ < j. Since D,(F;) ¢ F,
there exists z € D,(F;) for which z ¢ F; N F;. On the other hand, by the
definition, there is a y ¢ F} such that x(y) < (z) and Fj, := F;\{z}U{y} €
A. Tt follows that mp, <pr mg;, ie, h < j,and FNF; CFNEF; =
F;\{z}. Therefore, <py is a shelling. O

Corollary 3.12. If A is a k-linearly shifted simplicial complex, then it is
homotopy equivalent to wedge of spheres and the Betti numbers of A are
given by

(3.13) Bi(A)=|{F eU(T(A)): |F| =i+ 1and FU{1} ¢ UT(A)},
fori<kand Bi(A)=0ifi> k.

Proof. The first claim follows from Proposition 3.9 together with the fact
that any shellable complex is homotopy equivalent to wedge of spheres. For
the later, the simplicial complexes A and U(I'(A)) are homotopy equivalent
by Theorem 2.2, and U(I'(A)) is an ordinary shifted simplicial complex over
(k). Therefore, the claim follows from Theorem 3 of (1]. O

4. LINEAR COMBINATORIAL SHIFTING

In this section, we introduce a combinatorial shifting operation on multi-
complexes that carries similar properties required for the ordinary shifting
operation on simplicial complexes. ’

Let M be a set of multisets over [k]. If m = (m(1),...,m(k)) € M
and 1 € 7 < j < k are given with m(j) > 1, we define a new multiset
m;; = (myi(1),...,mi(k)) by my;(3) := m(3) + 1, my;(4) := m(j) — 1 and
m;;(r) := m(r) if r € [k]\{%,7}. This provides us an operation m — C;;(m)
for all 4,5 € [k] with i < j on the set M defined by
(4.1) Cij(m) := {m"’ ifm(j) 2 1 and my; ¢ M,

m, otherwise,

and we write CJ; for the composition of C;; with itself r-times for r > 1.

Definition 4.2. A subset M of N* is called stable if C;j(m) = m for all
meMandl<i<j<k

Proposition 4.3. A subset M C N¥ is shifted if and only if it is stable.

Proof. Assume that M is shifted. Let m € M and 1 <7 < j < k be given
with m(j) 2 1. Since m;; <p m and M is shifted, we have m;; € M; hence
Cij(m) = m. Thus, M is stable.

Conversely, suppose M is stable and let n <p m be given such that m €
M. Let us write n = (n(1),...,n(k)) and m = (m(1),...,m(k)). If t € [k]
is the integer such that n(t) < m(t) and n(s) = m(s) for all s > t, we define
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my i= (my(1), .., my(K)) by mu(t) = n(t), my(t—1) = m(t—1)+m(t)-n(t)
and my(r) = m(r) for r # t,t — 1. We note that m; € M, since M is stable.
On the other hand, we have n <p m, together with n(s) = m:(s) for all
s > t. We replace m with m, and apply the same process to n <p m;. It is
now clear that therc exists a ¢ < ¢ such that n = m; € M which completes
the proof. a

An important consequence of Proposition 4.3 is that if n,m are two
multisets with n <p m, then n can be obtained from m by a finite number
of applications of the operations C;; for some i < j. This implies the
following useful fact.

Corollary 4.4. For any finite set M, there exists a sequence of pairs of
integers (i1,71),. .., (iq, Jq) with 1 < &5 < Js < k such that

Ciqjq(ciq—qu—-l (' .. (Ciljl (M) .o .)))
is shifted, where Cij(M) := {Cij(m): m € M} for each 1 < i< j<k.

Even though, any finite set can be brought to a shifted set by a finite
number of applications of the operations Cji; by Corollary 4.4, the resulting
shifted set is not uniquely dctermined as in the ordinary case, that is,
it is dependent on the choices of ij and the order of operations. Any
set that is obtaincd from M by a sequence of operations as described in
Corollary 4.4 will be denoted by C(A). As an example, we compute C(.A)
for A ={(1,1,0,1),(1,2,0,0),(0,0,2,0)} as follows.

C(A) = C12(C13(C13(C14(A))))

= 012(013(C13({(2, 1,0, 0)1 (17 2,0, 0)’ (0, 0, 29 0)})))a

= 012(013({(21 1,0, 0)1 (1’ 2,0, 0)1 (ly 0,1, 0)}))

= Cl2({(2; 11 Oa 0)1 (la 29 Oa 0)1 (21 0) Oa O)})a

= {(3,0,0,0),(2,1,0,0),(2,0,0,0)}).
It is important to note that when I is a multicomplex on [k], it is not gen-
erally true that C;;(T') is a multicomplex for all 1 < 7 < j < k. To illustrate
an example, we let I’ = ((1.0, 2))U{((0, 1, 0)) so that it is a multicomplex on
[3]. However, C23(T") is not a multicomplex, since (1,0,1) ¢ Ca3(I"), while
(1,0,1) < (1,1,1) € Co3(T"). We also remark that Co3(T") is not shifted as
well. We clarify this fact as follows.

Proposition 4.5. Let T be a multicomplex on [k] and let i, j € [k] be given
with i < j. If Cy;(T') is not a multicomplex, then it is not shifted.

Proof. Assume that C;;(T') is not a multicomplex. Therefore, there exist
m € C;;(T') and n < m such that n ¢ C;;(T’). Without loss of generality,
we may further suppose that |jm|| = ||n|| + 1. There are two possible cases
and we look at cach scparately.
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Case 1: Assume that m € I'. Thus, n € T, since I is a multicomplex. On
the other hand, we must have C;j(m) = m and C;;(n) = n;; by the choices
of m and n. If we write m = (m(1),...,m(k)) and n = (n(1),...,n(k)),
it follows that either m(j) = 0 so that n(j) = 0 and C;;j(n) = n, a con-
tradiction, or m(j) > 1 and m;; € I'. For the latter, we have n;; =
(n(1),...,n() +1,...,n(4) — 1,...,n(k)) < my; €T; hence, n;; € I' which
implies again Cj;(n) = n, a contradiction.

Case 2: Suppose that there exists m’ € T such that Cj;(m') = m{; =
m ¢ I'. Since n < m and ||m|| = ||n|| + 1, there is an s € [k] such that
n(s) = m(s) — 1 and n(r) = m(r) for all 7 € [k]\{s}. If s # ¢, we then
define n’ = (m/(1),...,m'(s)—1,...,m/(k)). Since ' < m’ € T, we deduce
that n’ € T. Furthermore, Cj;(n') = n{; = n so that n € Cy;(T") that
contradicts to the choice of n. On the other hand, if s = i, we conclude
that n = (m'(1),...,m/(3),...,m'(§) - 1,...,m/(k)). Thus, n < m’ and
n € I'. Since n ¢ C;;(T'), we also have Cjj(n) = ny; ¢ T', where n;; =
(m'(1),...,m'(B)+1,...,m'(§)—2,...,m'(k)). Now, if Cj;(T') is shifted, it
follows that Cy;(Ci;(T')) = Cy;(T). In particular, Cy;(m) = Ci;(mi;) = mj;
that implies (m};);; € Ci;(T). We note that m'(j) > 2, since n;; is a
multiset. Finally, we must have an m” € T such that Ci;(m”) = (m};)i;.
However, such a multiset m” € T satisfies n;; < m”; thus, n;; € T', a
contradiction. This completes the proof.

Another way to look at Proposition 4.5 is that if C;;(T") is shifted for
some i < 7, then it has to be a multicomplex on [k]. In fact, we have the
following.

Proposition 4.6. Let I' be a multicomplex on [k]| and let let i, € [k] be
given with i < j. Then there ezists a positive integer r; > 1 such that
C{(T) is a multicomplez.
Proof. For any i < j, we define 7; := max{m(j): m € I'} and claim that
C;’ (T) is a multicomplex. We first note that the set C':j (T) is stable under
the operation Cj;, that is, if a € C;? (T'), then Cij(a) = a, since a(j) < rj,
where a = (a(1),...,a(k)). Therefore, if ¢ = (¢(1),...,c(k)) € C{j (T") and
b= (b(1),...,b(k)) is a multiset such that b <p ¢ and ¢(s) = b(s) for all
s € [k]\{i, 5}, then b € CJ(T).

To verify the claim, let n,m be given such that m € C:;’ (T) and n < m.

Again, without loss of generality, we may suppose that |[m| = ||n|| + 1.
Since m € C’L’ (T'), there exists an m’ € T such that C';’ (m') = m. If we
write m’ = (m’(1),...,m’'(k)), then 1 < m'(j) < r; and m = m; for some
t < m'(j).

Ift =0, that is, m = m’ € T, we obtain that n € I, sincen <m and I
is a multicomplex. Moreover, the fact C:J’ (m) = m implies that m; € T’ for
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all 0 < I < m(j) which in particular forces ns € I for any s < n(j) < m(j),
since ng < m, € I'. Therefore, we conclude that C}?(n) = n as expected.
Assume that t > 1. Since [jm|| = |in|| + 1, there exists a v € [k] such
that n(v) = m(v) — 1 and n(r) = m(r) for all r € [k]\{v}. If v # 4,
we define n’ := (m/(1),...,m/(v) — 1,...,m'(k)) so that n’ < m’; hence,
n' € I. It follows that n <p C;j(n'); thus, n € C(T), since C;/(T)
is stable under the operation Cj;. Furthermore, if v = i, we set n' :=
(m/(1),...,m'(j) - 1,...,m'(k)). and note that if m’(j) = 1, we must have
n = n'. It follows similarly that n <p C:jj(n’) so that n € C,-'J? (T) as
claimed. O

By combining Propositions 4.6 with Corollary 4.4, we obtain the follow-
ing important result.

Corollary 4.7. IfT' is a multicomplez on [k], then there ezists a sequence
of pairs of integers (i1, 1), ..., (iq,Jq) with 1 < is < js < k such that

C(T) = Ci,5,(Ciy_rjyor (- (Ciy5,(T) L))
is a shifted multicomplex on [k].

Theorem 4.8. For any multicomplez T’ on [k], the multicomplez C(T) sat-
isfies the followings.

(M1) C(T') is shifted.

(M2) C(T') =T if T is shifted.

(M3) f(T) = f(C(T)).
Proof. The condition (M2) is a consequence of Proposition 4.3, and for
(M3), we note that |C;;(M)| = |M| for any set M C NFand1<i<j<
k. O

Definition 4.9. Let A be a k-linear colorable simplicial complex with
the k-linear coloring map « and let I' = T'(A, k) be the associated multi-
complex. We define C,(A) to be the simplicial complex associated to the
multicomplex C(I'). This simplicial complex C,(A) is called the k-linear
shifting of A with respect to . In particular, if & is an Ichr(A)-linear
coloring of A, we write S (A) := Cc(A).

Example 4.10. We illustrate in Figure 2, a 2-linear colorable simplicial
complex and jts 2-linear shifting with respect to given coloring. It is in-
teresting to note that contrary to ordinary case, a k-linear combinatorial
shifting of a pure simplicial complex may results a nonpure simplicial com-
plex. Furthermore, we remark that f(A) = f(Sx(A)) in this case.

Corollary 4.11. Let A be a k-linear colorable simplicial complex with the
k-linear coloring map k. Then the simplcial compler C(A) is k-linearly
shifted. Moreover, if A is k-linearly shifted, then C(A) and A are isomor-
phic.
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FIGURE 2. A 2-linear shifting of a 2-linear colorable complex.

Proof. The former follows from the fact that the simplicial complex C.(A)
is associated to a shifted multicomplex over [k], and the latter is a conse-
quence of the fact that a shifted multicomplex is invariant under shifting
operations. O

It is obvious that the assignment A — S,(A) is not generally a shifting
operation, i.e., it may not satisfy the conditions (S3) — (S54) given in Sec-
tion 1. However, since there arc cases where it turns out to be a shifting
operation, one may still argue as follows.

Problem 4.12. When is the association A — S,(A) a shifting operation?

For instance, if a simplicial complex is disconnected, the prescribed as-
signment is not a shifting operation. To provide an example, let A be
the simplicial complex consisting of the disjoint union of two 1-dimensional
simplexes. The lincar chromatic number of A is 2, while the f-vectors of
A and S, (A) are clearly different.

5. LINEARLY SHIFTED INDEPENDENCE COMPLEXES

In this final section, we provide a characterization of simple graphs whose
independence complexes are linearly shifted. The work presented here may
be considered as parallel to that of Klivans [7] and [8], where she provided
such a characterization for the ordinary shifting operation.

By a simple graph G = (V, E), we mean an undirected graph without
loops and multiple edges. The (open) neighborhood of a vertex v € V
is defined to be N (v) := {u € V: (u,v) € E}, while Nv] := N(v) U
{v} denotes the closed ncighborhood of v. A subset U C V is said to
be an independent set of G, if there is no edge in G among the vertices
contained by U, and the independence complez I(G) of G is defined to
be the simplicial complex on V' whose faces are formed by its independent
sets.
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We recall that a (vertex) coloring of G is a surjective mapping v: V — [n]
such that v(u) # v{v) whenever (u,v) € E. The least integer n for which G
admits a coloring is called the (vertex) chromatic number of G and denoted
by x(G). It follows that if x: V — [k] is a linear coloring of Z(G), then it
is also a (vertex) coloring of G, since {u,v} ¢ Z(G) whenever (u,v) € E.
Therefore, we have the incquality x(G) < Ichr(Z(G)). We now provide the
required condition for a coloring of a graph to be a linear coloring of its
independence complex.

Proposition 5.1. A coloring x: V — [k] of G = (V, E) is a linear coloring
of I(G) if and only if either N'(v) C N(u) or N(u) C N(v) holds for every
u,v € V with k(u) = k(v).

Proof. Assume that whenever x(u) = &(v) for any two vertices u, v € V(G),
then one of the inclusions N (v) C N(u) or N(u) C N(v) holds. Let
u,v € V(G) be two such vertices and let M(u) C NM(v). To verify that
Fr(6y(v) € Fr(c)(u), let F be a facet of Z(G) containing v. Assume that
z € F be given. If (z,u) € E, then z € N(u) C N(v); hence, (z,v) € E, a
contradiction. Thercfore, (2,u) ¢ E, i.e., FU{u} € Z(G). Since F is facet,
we must have u € F.

Suppose that x: V' — [k] be a lincar coloring of G, and let k() = k(y)
for z,y € V. By the definition of linearity, we may assume without losing
generality that Fz(c)(z) C Fz(c)(y). We claim that A(y) C M(z) must
hold. To see that let z € M(y) be given such that z ¢ A(z). In other words,
(2,z) ¢ E. It follows that the set {z,2} forms a face of Z(G). If F is a
facet of Z(G) containing this face, we then have y € F by our assumption.
Therefore, (z,y) ¢ E; hence, 2 ¢ N(y), a contradiction. O

Klivans proved in [8] that for a simple graph G = (V, E), the indepen-
dence complex Z(G) is shifted in the ordinary sense if and only if G is a
threshold graph. We recall that a simple graph is called threshold if one of
the inclusions N (z) C N[y] or M(y) C N|z] is satisfied for any two vertices.
Alternatively, a graph is threshold if and only if it can be constructed from
the one-vertex graph by repcatedly adding a disjoint vertex or a starred
vertex. Following her notation, we will continue to denote these operations
by D and S respectively, where the operation D adds a new disjoint vertex
to a graph, while S adds a new vertex adjacent to all former vertices of the
graph.

We next prove that the independence complexes of threshold graphs are
linearly shifted, whereas the converse holds no longer as shown in Example
5.4,

Proposition 5.2. If G is a threshold graph, then I(G) is linearly shifted.

Proof. Let G = (V,E) be a threshold graph. Then we necessarily have
X(G) = Ichr(Z(G)), since any vertex coloring of G is a linear coloring
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of Z(G) in this case. Indced. let p: V — [k] be a vertex coloring of G,
and let p(u) = p(v) for some w,v € V. Since G is threshold, we may
assume without loss of generality that M (u) € M{v]. However, the equality
p(u) = u(v) implies that (u,v) ¢ E. In other words, N (u) C N (v); hence,
u is a linear coloring of Z(G) by Proposition 5.1.

Therefore, it is enough to show that Z(G) is x(G)-linearly shifted. We
consider the string representation of G formed by D’s and S’s which is
written from left to right, and assume that the number of staring operations
in this representation is cqual to k; hence, x(G) = k + 1. We define a
linear coloring k: V — [k + 1] by labeling the vertices represented by D
operations by 1, and label the vertices corresponding to S operations by 2
through k+1 from left to right. We note that « is linear, since it is clearly a
vertex coloring of G. Furthermore, the associated multicomplex I'(Z(G), k)
is shifted, since Z(G) contains no edges between vertices represented by S
operations. Thus, Z(G) is x(G)-linearly shifted with respect to the linear
coloring k. O

Example 5.3. We illustrate the threshold graph G and its independence
complex in Figure 3, whose representation is given by G = DDSSDS.

D
S
S
D D
G I(G)
FIGURE 3

Example 5.4. For the simple graph G depicted in Figure 4, its indepen-
dence complex Z(G) is 2-lincarly shifted, while G is not threshold. Further-
more, the linear shiftedness of the independence complex is not generally
inherited by the induced subgraphs of a linearly shifted graph. For exam-
ple, the independence complex of the subgraph of G induced by {z,y,u, 2}
is not linearly shifted.
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We remark that the cquality x(G) = Ichr(Z(G)) for a threshold graph is
not a coincidence, as we shall prove next that it holds for all simple graphs
with linearly shifted independence complexes.

Proposition 5.5. If Z(G) is linearly shifted, then x(G) = lchr(Z(G)).

Proof. Let G = (V, E) be a simple graph with |V| = m, and assume that
Z(G) is n-linearly shifted with respect to an n-linear coloring v: V' — [n]
of Z(G), and suppose that x(G) = k for some k& < n. Then there exists
a pair of vertices u.v € V with (u,v) ¢ E such that v(u) # v(v), while
the mapping 7: V — [n]\{v(v)} defined by T(z) := v(z) if z € V\{v} and
7(v) = v(u) is a vertex coloring of G. We may assume without loss of
generality that v(u) =i < j = v(v). Since 7 is a vertex coloring, we must
have v(z) # i for any z € A/(v). It follows that the multiset

m;; = (0,...,0,1,0,...,0,1,0,...,0)GN",

where 1’s are i*" and j*'-position, is contained by the associated multicom-
plex I'(Z(G),v). Since it is shifted, we have m;; = (0,...,0,2,0,...,0) €
[L(Z(G),v). Thercfore, therc exists a vertex w; € V\{v,u} such that
v(wy) = i. Note that w; ¢ N (v) for such a vertex. Then the set {v,u,w;}
forms a face in Z(G). In other words, the multiset

m,-,-j = (0,...,0,2,0,...,0,1,0,...,0) eNn

is also contained by I'(Z(G), v). Once again, since I'(Z(G), v) is shifted, it
must also contain my;;, that is, there must exists a vertex we € V\{v,u,w;}
with wy ¢ N (v) such that v(w2) = i; hence, the set {v,u,w;,w;} forms a
face in Z(G). Continuing in this way, we reach a contradiction, since G is
a finite graph. 0

We note that the equality x(G) = Ichr(Z(G)) for a simple graph G is not
sufficient for guaranteeing its independence complex to be linearly shifted,
as one may easily construct a counterexample.
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We next investigate the local structures of simple graphs with linearly
shifted independence complexcs in order to provide a characterization. As-
sume that G = (V, E) is a simplc graph with |V| = m such that Z(G)
is k-linearly shifted with respect to a k-linear coloring x: V' — [k], where

= x(G). We may disrcgard the case where & = 1 for which E = §;
thus, Z(G) is just a simplex on m vertices. We therefore let k£ > 1. Since
k is eventually a vertex coloring of G, it partitions V into independent
setsas V = Vi U...UV,, where V; = {v € V: k(v) = i}, and we write
|Vi| = r; for 1 <4 < k. Since & is a linear coloring, the vertices of each set
Vi = {zi,...,2% } can be ordcred in such a way that N'(z}) C N(z}) when-
ever j < l. We further note that only the set Vj can have a disjoint vertex,
i.e., a vertex which is not incident to any edge of G by the linear shifted-
ness of Z(G). Morecover, for any given i, j € [k] with ¢ < j, there exxsts an
1 <1 <7y such that (zi.2]) € E, since otherwise the set {zi,...,2% 2]}
forms a face in Z(G) so that the multiset

m,,; = (0,...,0,7:,0,...,0,1,0,...,0) € N¥
belongs to I'(Z(G), &), however m := (0,...,0,7;+1,0,...,0) ¢ I'(Z(G), k),

while m <p m,,; that contradicts to the shiftedness of I'(Z(G), ). By a
similar reasoning, we conclude that whenever the set

{z}.2%,...,¢h, 2], 2},...,2]}

is a face of Z(G) for some 0 < h < 7, I < rj and ¢, 5 € [k] with ¢ < 7, then
h+1! < r;, and the set

{23, 75  Thys Ty Thy o, 7y}
also forms a face in Z(G) for all 1 < t < I. This last fact also forces
an inequality r; > 7; + e(i, j) on the sizes of blocks of the partition, where
i,j € [k} with i < j, and e(i, ) := max {h € [0,rs]: (z},2]) ¢ E for any s <
handt <r;}.
We claim that these conditions suffice to characterize the class of simple
graphs with linearly shifted independence complexes.

Theorem 5.6. For a simple graph G = (V, E), the independence complez
Z(G) is linearly shifted if and only if either E = 0 or there ezists a disjoint
partition V =Vy U... UV, into x(G) = k independent sets such that
(a) each set V; = {zi,...,z.} can be ordered in such a way that
N(zi) C N(zt) whenever s < t,
(b) if {z‘i,zg,...,z;',,a:{',:x"',...,xj} € I(G) for some h € [0,r;] and
1< rj, then {x’i,a:é,...,x,,_,_,,r{,zé, Z_,} € I(G) for any 1 <
t<landi,je€ k] withi<j.

Proof. We only need to verify the sufficiency of the given conditions. So,
let G = (V, E) admit such a partition. It readily follows that the mapping
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k: V — [k] defined by x(z’) := i is a linear coloring of Z(G) by the con-
dition (a). We claim that T' = ['(Z(G), k) is a shifted multicomplex. This
is in turn equivalent to showing that I' is stable under the operation Cj;
for all 4,7 € [k] with 7 < j by Proposition 4.3. Let 4,5 € [k] be given with
i< jandlet n = (n(l)..... n(k)) € T such that n(j) > 1. Thus, we have
to verify that Ci;(n) = n. that is, n;; € I'. Since n € T, the set

k
h
U {zh,... » Tngh)}
t:?;ll)>0

forms a face in Z(G). In particular, the set {z},z}, ... ,x;(i), A :cf;(j)} €
Z(G); hence, we conclude that {x’i,x%,...,xfl(i)ﬂ,z]l,z%,...,xfl(j)_l} €

Z(G) by the condition (). that is,

ni; = (n(1),...,n(i—1),n(i)+1. n(i+1),...,n(j-1),n(j)-1,n(G+1),...,n(k)) € T
as claimed. O
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