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Abstract

Abstract: A vertex-distinguishing edge-coloring (VDEC) of a
simple graph G which contains no more than one isolated vertex and
no isolated edge is equitable (VDEEC) if the absolute value of differ-
ence between the number of edges colored by color i and the number
of edges colored by color j is at most one. The minimal number of
colors needed such that G has a VDEEC is called the vertex distin-
guishing equitable chromatic index of G. In this paper we propose
two conjectures after investigating VDEECSs on some special families
of graphs, such as the stars, fans, wheels, complete graphs, complete
bipartite graphs etc.
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1 Simple introduction and concepts

As we have known, many problems can be regarded as graph coloring prob-
lems, such as time tabling and scheduling, frequency assignment, register
allocation, labeling a point set, computer security and electronic banking,
integers assignment and so on. Of course, many problems of coloring in-
volve the question of how to color objects efficiently. These questions lead
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to consideration of computational complexity of algorithms. After inves-
tigating various graph colorings of decades, most graph colorings, as far
as we have known, have been verified to be very difficult and challenging
because many of them have been proved being NP-complete problems. In
particular, for some special graphs, some problems can be performed in
polynomial times.

It is interesting that the frequency assignment problem is somewhat
similar to that investigated by the distinguishing methods. In 1973, Meyer
[8] introduced the notion of equitable (vertex) coloring of graphs and pro-
posed the conjecture that the equitable chromatic number of a connected
graph G, which is neither a complete graph nor an odd cycle, is at most
A(G). Motivated, we study the vertex-distinguishing equitable edge color-
ing on graphs.

In the following argument, all graphs are simple and undirected. Let
integers m > 0 and n > 0. For simplicity, we use the symbol [n]° to indicate
an integer set {0,1,2,...,n} for integer n > 0, and [n] = [r]° \ {0}, and
[m,n] = {m,m+1,...,n} where integers n and m satisfies that n > m > 0.

For a simple graph G, an edge k-coloring f from E(G) to (k] is proper if
f(uv) # f(vz) for all pairs of incident edges uv, vz € E(G). The notation
C(u) denotes the set of all labels f(uwv) of edges uv which are incident to
the vertex u € V(G), and we often write the color set C = [k] as well as
C(u) = C\ C(u). Another symbol n;(G) is used to indicate the number of
all vertices of degree i in G, throughout this paper.

Definition 1. (6] Let f be a proper edge k-coloring of a simple graph G
and let C(u) = {f(uv) | wv € E(G)} for every u € V(G). The coloring f
is called a vertex distinguishing edge k-coloring (k-VDEC) of G if C(u) #
C(v) for distinct vertices u,v € V(G). The number min{k | k-VDEC of G}
is called verter distinguishing chromatic index of G, denoted by x . 4(G).

In particular, a graph G is called a vdec-graph if it has a k-VDEC for
some positive integer k. In the paper [13], the authors defined that the
combinatorial degree of a vdec-graph G, u(G), is defined by the number
min{p | (4) > ni,6 < i < A}. They conjectured that for a vdec-graph G,
there exists that x ,;(G) < u(G) +1 (cf. [13]).

Definition 2. 8 Suppose that G is a vdec-graph, so it has a k-VDEC
f for some positive integer k. Let E; = {e € E(G) | f(e) = i} for each
i € [k]. We sat f a vertez-distinguishing equitable edge k-coloring (k-
VDEEC) if ||E:| ~ |Ej|| < 1 for distinct integers i and j with respect to
1 < 4,5 < k. The verter distinguishing equitable chromatic indezx of G,
denoted as x! ,.(G), is defined by the number min{k | k-VDEEC of G}.

vde

The graphs, mentioned here, are simple and finite; and the standard
notations of graph theory used here have been introduced in [5]. We need
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an operation on graphs in the paper in the following. The join graph of
two disjoint graphs G and H, denoted by GV H, is a graph with its vertex
set V(GV H) = V(G)U V(H) and edge set

E(GV H) = E(G)UE(H)U {w | u e V(G),v € V(H)}.

2 Main results

The following lemma is an immediate consequence of Definition 2.

Lemma 1. For a simple graph G which has no isolated edge and at most
one isolated vertez, there exists that x|, 4(G) > u(G).

Theorem 2. For a star S, on n+1 vertices (n > 2), we have x ,,4.(Sn) =
n.

Proof. Let S, be a star with vertex set V(S,) = {v; | i € [n]°} and edge
set E(Sn) = {vwovi | © € [n]}. Obviously, we have u(S,) = n. To verify
the correctness of this theorem, by Lemma 1, it is sufficient to provide a
n-VDEEC of S,,. Define an edge coloring f being as f(vov;) = ¢ for every
i € [n]. It follows from Definition 2 that f is truely a n-VDEEC of S,,. O

Theorem 3. For a complete graph K, onn > 3 vertices, we have x| 4,(Kn)
nifn=1 (mod 2), and x.,.(K,)=n+1 ifn=0 (mod 2).

vde

Proof. Let K, be a complete graph on n vertices with vertex set V(K,) =
{vi i€ [n]}.

Casel. Letn=1(mod2)andn >3, andlet C =[n—-1°% It
is obvious that x,.(K,) = n, so that it is sufficient to find a n-VDEEC
of K. Define an edge coloring f for K, in this way: f(viv;) =i4+75-2
(mod n) for i € [n — 1] and j € [i + 1,n]. Therefore, we have C(v;) =
{2(i—1)} for i € [(n+1)/2], and C(v;) = {2i—n—2} for i € [1+(n+1)/2,n].
Thus, fisan—VDEC of K,. Since |E;] =n—1 for i € [n], it means that
f is a n-VDEEC of K,,.

Case 2. n =0 (mod 2) and n > 4.

Assume that x,,.(K,) = n. Since [C(v;)] = n — 1 for any vertex
v; € V(K,), without loss of generalization, we have C(v;) = {i} for ¢ € [n].
So the color ¢ is appears at every vertex v; € V(K,,) \ {vi}. Furthermore,
the graph K, — v; has a perfect matching with the color i, that means
|V(Kn—v;)] = n—1is even, a contradiction. Therefore, x? . (Kp) = n+1.
We, now, give all (n 4 1)-VDEECs of K,, by its even order n (> 4) in the
following. Let C = [n]°.

For n = 4, we define an edge coloring f for K, by f(viv;) = i+1
(mod 5) for i = 2,3,4; f(vaus) =1, f(vovs) =4 and f(vavy) = 2.
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For n = 6, let f be as: f(vyv;) = i + 1(mod 7) for 7 € [6] \ {1};
f(vavs) = 0, f(vovy) = 4, f(vavs) = 1 and f(vaus) = 5; f(vavg) = 1,
f(vavs) =5, f(vavs) = 2, f(vavs) = 2, f(vavs) = 6 and f(vsve) = 3.

For n > 8, we construct an edge coloring f for K, in the following form:
f(vivi) =i+ 1(mod (n + 1)) for i € [n] \ {1}, and there are two cases as
follows:

(1) Ifi=2,4,...,n-2, we have f(v;v;41) = 2+i4+n/2, f(vivipe) = 14+2;
f(vivigs) =3 +i+n/2, f(vivipa) =i +3,..., f(viva) =1+ (n +14)/2.

(2)Ifi =3,5,...,n—1, we have f(viviy1) = 2+i4+n/2, f(viviga) = 142,
f(vivigs) =3+ i+ n/2, f(viviga) =1+ 3, fviva) = (i +1)/2.

Obviously, f is (n + 1)-VDEEC of K,, for all integers n > 8. O

Remark: If n =846k for k =0,1,..., we are not able to obtain
a (n 4+ 1)-VDEEC f’ of K,, by deleting a vertex from K,;; which has a

(n + 1)-VDEEC f, that is, f' = f. Otherwise, there exists C(u) = C(v)
for some vertices v and v.

Theorem 4. Let F,, be a fan on n + 1 vertices. Then x .4 (F2) = 3,
X vae(F3) =4 and x 14 (Fp) =n forn > 4.

vde

Proof. It is not hard to see u(Fy) = 3, u(F3) =4, and u(F,) =n forn > 4.
In order to prove the theorem, it is sufficient to give a u(F,)-VDEEC of
the fan F,,. Let V(F,) = {v; | i € [n]°} be the vertex set of the fan Fy,, so
its edge set is E(Fy,) = {vovi | i € [n]} U {viviy1 | ¢ € [n]}.

Case 1. Since F; = K3, the result is evident by Theorem 3.

Case 2. We define an edge coloring f of F3 by: f(vovi) = i for
i =1,2,3; f(vyyv2) = 3 and f(vav3) = 4. Obviously, the coloring f is a
4-VDEEC of F3.

Case 3. For case n > 4, let the color set C = [n]. There is an
edge coloring f defined as that f(vov;) = ¢ for ¢ € [n]; f(viv2) = n; and
f(‘U,"U,:;.]) =i-1forie [2,Tl - 1]

Furthermore, f is a n-VDEC of F, since C(v) = [n], C(v;) = {1,n},
C(vn) = {n—2,n} and C(v;) = {i — 2,7 — 1,4} for i € [3,n — 1]. Notice
that |E,—2| = 1 and |E;| = 2 for ¢ € [n]\ {n — 2}. Therefore, the edge
coloring f is a n-VDEEC of F,,.

The proof of the theorem is completed according to the above cases
verified. 0

Theorem 5. For a wheel W,, of order n + 1, then x.,.(W3) = 5, and
X;de(Wn) =n forn > 4.

Proof. Let W, be a wheel on n + 1 vertices, with vertex set V(W,) = {v; |
i € [n]°}, and edge set E(W,,) = {vov; | i € [n]}U{v1v2,v2v3,. .., Un—1Un, Vnv1 }.
For W3 = K, the result is true according to Theorem 3. Obviously, we have
w(Wy,) = n for n > 4. We have an edge coloring f of the wheel W,, in the
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following. Defining f(vov;) =i for i € [n]; f(v1v2) = n; f(vivig1) =i —1
for i € [2,n — 1}; f(vp—-1vn) = n — 1. Since the rest part of the proof is as
the same as the proof of Theorem 4, so the coloring f is a n-VDEEC of
W,. a

Theorem 6. For a complete bipartite graph K, , with m > n > 2, then
Xyge(Kma) = m+1 form > n > 2, and x4 (Kmpn) = m + 2 for
m=n2>2.

Proof. For case m > n > 2, let C = [m]°. Observe that
#(Kmn) =min{p| () 2n, () 2m}=m+1,

it is sufficient to find a (m + 1)-VDEEC of Ky, . Let V(Kmn) = {ui| i €
[n]} U {vi | i€ [n]} and E(Kmn) = {wiv; | i € [m], j € [n]}.

There is an edge coloring f of Km n described in the form: f(u;v;) =
i+ j— 1(mod (m + 1)) for i € [n] and j € [m]. It is easy to see that
C(u) # C(v) for all u,v € V(K,,,) and © # v. Furthermore, we have
|Ei] = n —1if i € [n — 1]° and otherwise |E;| = n. Hence, f is a (m + 1)-
VDEEC of K .

Consider case m = n > 2. Let C = [m + 1]°. Since p(Km,m) = m + 2,
so it enables us to define an edge coloring f of K, m as this: f(uiv;) = j
for j € [m]; f(uw;) =i+ 3 (mod (m + 2)) for i € [2,m] and j € [m].
Thereby, there is the coloring adjacent matrix of K, ,n depicted as follows.

1 2 ... m
3 4 ... 0
M, = i = (Cij)nxm
m+1 0 ... n-—2

where f(u;v;) = ¢;j for i,j € [n]. According to the matrix M, we know
C(u) # C(v) for distinct vertices u,v € V(K m). Notice that |E;] = m—1
for i =0,1,m,m + 1, and |E;| = m — 2 otherwise, it turns out that f is a
(m 4+ 2)-VDEEC of Ky, m. The proof of this theorem is completed by the
cases above. O

Theorem 7. X ,4.(PnV Sp) = 2n+1 forn € (3], and X vge(PnV Sp) =2n
forn > 4.

Proof. 1t is easy to see that p(P,VS,) = 2n+1forn € [3], and u(P,VS,) =
2n for n > 4. To prove the results, thus, it is sufficient to provide exactly
a (P, Vv S,)-VDEEC of P, V S,,.

For each n € [4], it is easy to give a u(P, V S,)-VDEEC f of P, vV S,,
so we omit to provide f since it is very simple.

For case n > 5, let the path P, = ujuy...u, and let C = [2n - 1]°.
let V(S,) = {vi | i € [n]°} and E(S,) = {vov; | i € [n]}. We define
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an edge coloring f in the following. First, we let f(vov;) = ¢, f(vous) =
n+i(mod 2n) for each i € [n]. For other edges, we have the following cases.

Case 1. 7 =0 (mod 2).

If n = 6, define f(uiv;) =n+1i+ j(mod 2n) for i =1,2,3 and j € [6];
f(uv;) =i+j—3fori=4,56and j € [6]; f(uiuiz1) =i+4fori=1,2
and define f(u;uiy1) =1+ 5 for i = 3,4,5.

If n > 6, define f(u;v;) =n+1i+j (mod 2n) for i € [n/2] and j € [n};
fluwj) =i+ j—n/2,i € 1 +n/2,n] and j € [n]; and define f(usuiy)) =
n+i—-2forien-1}

Case 2. n =1 (mod 2).

We have an edge coloring f defined as that f(u;v;) = n+i+j (mod 2n)
fori € [(n+1)/2) and j € [n]; f(uwv;) = i+7—(n+1)/2 for i €
[14+(n+1)/2,n] and j € [n]; f(uiniy1) =i+ (n+1)/2fori € [(n—1)/2-1];
and f(uig1) =i+ 14+ (n+1)/2fori€|(n—-1)/2,n-1].

Obviously, the above edge labels show that f is a 2n-VDEC of P,V S,,.
Next, we show that f is truly a (2n)-VDEEC of P, V S, by checking
||E:| - |Bjl| < 1 for i # 5.

If n = 6, it easy to see that f is equitable. If n is an even integer not
less than 6, we have |E;| = (n+2)/2 fori € [n —1]°U{2n—2,2n— 1}, and
|Ei| = (n + 4)/2 otherwise.

If n is of odd, there is |E,| = (n + 1)/2 and |E;| = (n + 3)/2 for other
i#n. O

Theorem 8. x.,.(C3V S3) =7 and x,,4.(Cn V Sp) =2n forn > 4.

Proof. There are obvious facts that p(C3 V S3) =7 and p(C, V S,) = 2n
for n > 4. We will define some edge colorings for C, V S,,.

For n = 3 or 4, we can omit to provide the 7-VDEC or 8-VDEC of
Cp V Sy since it is easy to do. Let the cycle C,, = wjus...unu; in the
consideration, and V(S,) = {v; | i € [n]°}, E(S,) = {vov; | i € [n]}. Let
C=[2n-1)%

For n > 5 and n is of even, we construct a mapping f from E(C, V Sy)
to C which is as the same one in the proof of Theorem 7, and followed
to color u,u; by color 2. Furthermore, there are |E;| = (n + 2)/2 for
i € (n—-2]\{2})u{2n—-2,2n—1} and |E;| = (n+4)/2 for j € [n—1,2n-3].

For the case of odd n and n > 5, we define f by the way: f(vov;) = n+i,
f(vou;) =i for i € [n]. Let f(u;v;) =n+i+j (mod (2n)) for i € [n] and
j € [(n—1)/2]; f(uiv;) = i+j—(n—1)/2fori € [n] and j € [1+(n—1)/2,7];
fluiviy) = i—1for i € [(n+ 3)/2]; and f(uiuit1) = n+i—1 for
i € [14+ (n + 3)/2,n), where up41 = u;.

It is easy to estimate |E;| = (n + 3)/2 for i € [2n — 1]°. Also, f is
a (2n)-VDEEC of C, V S,, as desired. We complete the proof of this
theorem. ]
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3 Conjectures

In (14], the authors obtained the following results.

e Let P, denote a path n vertices, n > 2, we have X bage(PaVPn) =n+3
for2<n<6;and x\, (PoVP)=n+4forn>1.

eForn > 3, we have x ;. (P,VCyp) =6 forn = 3; and x ;. (P.VChp) =
n+4 forn > 4.

eForn>3, x4 (CaVCn)=n+4.

Based on the above results, we pose the following conjectures about

X :Jde (G)
Conjecture 1. For a vdec-graph, then x! ,.(G) < u(G) +1.

Conjecture 2. For a vdec-graph, then x.,.(G) = x.(G)(if x ,4(G) =
w(G) +1).
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