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Abstract. An aperiodic perfect map(APM) is an array with the property
that each possible array of a given size, called a window, arises exactly once
as a contiguous subarray in the array. In this paper, we give a construction
method of an APM being a proper concatenation of some fragments of a given
" de Bruijn sequence. Firstly, we give a criterion to determine whether a designed
sequence T' with entries from the index set of a de Bruijn sequence can generate
an APM. This implies a sufficient condition for being an APM. Secondly, two
infinite families of APMs are given by constructions of corresponding sequences
T, respectively, satisfying the criterion.
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1 Introduction

The perfect window property is defined as follows; for a given c-ary m x n array
and fixed integers « and v with u < m and v < n, every possible c-ary u x v array
occurs exactly once as a contiguous subarray, called a window. A c-ary aperiodic
perfect map(APM) is a c-ary m X n array satisfying the perfect window property.
Analogously, a periodic array is called a c-ary periodic perfect map(PM) if it
satisfies the perfect window property in a single period. A de Bruijn sequence is
the simplest PM, which is a periodic sequence with the perfect window property.

The perfect window property has been studied for 60 years because of useful
and possible applications to information theory. For example, in the theory of
cryptography, it is well-known that a de Bruijn sequence plays an important
role as a key of a stream cipher(see [8]). APMs can be applicable to encoding
schemes for sending a two-dimensional position. The idea is that if such an APM
is written onto a rectangular surface and there is a device which can examine a
certain size of subarray, then examining a subarray can determine its position
in the array. On the other hand, the same idea can be applied to the situation
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that a PM is written onto a torus and a device can examine a certain size of
subarray (see J. Burns and C. Mitchell [2]).

The perfect window property was firstly studied for periodic sequences, in
particular, de Bruijn sequences. Many construction methods for de Bruijn se-
quences have been devised ([4]), and the existence of de Bruijn sequences has
been established ([1], [3], [11]) for each set of admissible parameters.

For the case of arrays, it is shown by K. Paterson ([9], [10]) that a c-ary
PM exists for every possible parameter set when the alphabet size c is a prime
power. A PM can be simply transformed into an APM of a slightly larger size
by simple extension (seen in S. Kanetkar and M. Wage [6]). However, there
are APMs which are not extensions of any PM(See {7]). Furthermore, since
the existence of a c-ary PM is known only when the alphabet size c is a prime
power (see [9], [10]), the general question about the existence for a c-ary APM
for all alphabet size ¢ can not be achieved from the known constructions of c-ary
PMs. Not many results on the existence of APM have been known in general.
For instance, C. Mitchell [8] (1995) shows that the binary(2-ary) APM always
exists, and S.-M. Kim [7] (2002) shows the existence of c-ary APM for 2 by 2
windows for all alphabet sizes c.

In this paper, we deal with a construction of APMs generated from a con-
catenation of fixed size windows of a given de Bruijn sequence. First, we give a
construction method of an array, namely a (T, [B]m)-array for a given de Bruijn
sequence B, a fixed row size of the array m and a sequence T with entries from
the index set of B. Next, we give a criterion which determines whether the
sequence T generates a (T, [B],)-array that is an APM. Finally, two families of
APMs are given, as examples, by constructing such sequences 7" satisfying the
criterion which is a sufficient condition for the generated arrays to be APMs.
Note that the existence of (¢* + 1,¢* + u — 1;2,u)APM for any alphabet size ¢
follows directly from the first construction in the examples.

2 Definitions and basic properties

We now begin with formal definitions together with known results on the subject
of APMs and PMs, respectively. Most terminologies follow C. Mitchell [8] and
S.-M. Kim [7).

We first formalize the definition of arrays and windows. For a positive integer
m, from now on, we denote {0, ... ,m—1} by N,, and {1, ... ,m} by [m] . Now,
we represent a c-ary m X m array as

A=(aij)
where a; ; € N, for each i € N, and j € IN,. For given integers s € N, and
t € N, define the (s,t)-th u X v window of A to be a u x v subarray
As o= (o i )

such that, for each ¢t € N, and j € INy,

Qij = Qits j+i
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where i + 3 is computed modulo m and j +¢ is computed modulo n. For integers
mg € [m] and np € [n), we denote by [Angxnoluxv the set of u x v windows A, ;
for 5 € N, and ¢ € IN;,,. Note that the following bounds

1< I[Amox'lo]uxv' < monyg

are immediate since the lower bound holds only if all windows are identical and
the upper bound holds if they are all distinct.

A1 xnarray A= (ago apy -.- @on—1) May be considered as a sequence of
length n and so it is simply denoted by

A= (aga...an-1) = (ai)

for i € IN,,, in which the set of integers {0,1, ... ,n — 1}(= N,,) is called the
index set of A. For integers ng € [n] and t € N,,, we also simplify a 1 x v
window A; , as a v-window A, and [A,ugxnolixv 85 [Angle-

We now observe the perfect window property applied to the periodic arrays.

Definition 1 A c-ary span v de Bruijn sequence B = (b;) is defined as a peri-
odic sequence of length n = ¢¥ with entries from {0,1,...,c — 1} in which every
distinct c-ary v-tuple occurs exactly once as a v-window B, for some integer ¢
with 0 <t <’ - 1.

Definition 2 Let ¢, m, n, u and v be integers satisfyingc > 2, m > u > 1,
and n > v > 1. A c-ary m x n array A = (a;;) is called a c-ary (m,n;u,v)
Perfect Map (or simply PM) if each possible c-ary u x v array occurs exactly
once as a u X v window A, , of A for some s € N,;, and ¢t € N,,.

As has been observed, a c-ary span v de Bruijn sequence is a c-ary (1, ¢?; 1,v)PM.
The following necessary conditions for the existence of a PM are immediate.

Lemma 3 ([8]) If A is a c-ary (m,n;u,v)PM, then the parameters satisfy the
following.

(i) m>uorm=u=1,
(ii) n>vorn=v=1, and
(iii) mn = cvv.

If the positive integers ¢,m,n,u and v satisfy the necessary conditions for the
existence of a PM in Lemma 3, the set of ordered integers (c;m,n; u, v) is called
an admissible parameter set for PM.

We next define an aperiodic perfect map as follows.

Definition 4 Let ¢, m, n, u and v be integers with ¢ > 2, 1 < u < m, and
1<v<n Acarymxnarray A = (a;;) is called a c-ary (m, n;u, v) aperiodic
perfect map (or simply APM) if each possible c-ary u x v array occurs exactly
once as a window A, of A for some s € Nyy_yut1 and £ € Ny yyy.
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We also call (¢;m,n;u,v) an admissible parameter set for APM if it satisfies
the conditions given in the following lemma.

Lemma 5 ({8]) If A is a c-ary (m, n; u,v)APM, then the parameters satisfy the
following.

BHm2u,
(ii) n > v and
(i) (m—u+1)(n—v+1)=c*.

According to S. Kanetkar and M. Wage [6], a PM can be transformed into an
APM of a slightly larger size by simple extension, as follows. For a given c-ary
(m,n;u,v)PM A = (a;;), define an (m +u—~1) x (n +v—1) array A = (a; ;)
as

dij=as

where 8 = i (mod m) and ¢ = j (mod n) for each i € Nypyu—1 and j € Nypo—y.
Then, from the definition, we can immediately show that A is a c-ary (m +u —
1,n + v — 1;u,v)APM. We call A the closure of a given PM A. Conversely, a
c-ary (m,n,u,v)APM arises, by the construction of Kanetkar and Wage, from a
c-ary (m—u+1,n—v+1,u,v)PM whose parameters must satisfy the conditions
u=m-u+l=lorm—-u+l>uy,andv=n-v+l=lorn—-v+1>v
i.e. the parameters of the APM that arises satisfy m = u = 1 or m > 2u, and
n=v=1orn>2uv.

We finally note the following remark on some possible restrictions of the
parameters of PMs and APMs (see [7]).

Remark 6 For a c-ary m x n array A = (a; ;), the transpose of A is written
as A' = (a} ;) which is the c-ary n x m array with a} ; = a;;. If Ais a PM (or
an APM) then A' is also a PM (or an APM, respectively). Hence, without loss
of generality, we need only consider those c-ary (m,n,u,v)PM (or APM) with
n > m and so we restrict our definition of admissible parameter set for PM (or
APM) to those with n > m.

3 A sufficient condition to be APM derived from
de Bruijn sequence

For a given c-ary span u de Bruijn sequence B, we first suppose an admissible
parameter set (c; m,n; u,v) for APM such that u < m < c*+u—1. We establish
a criterion to determine a sequence T° with entries from index set of B which
gives the shifting process of m-windows of a given de Bruijn sequence so that
the concatenation of the shifted windows becomes an APM.
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Let B = (b;) be a c-ary span u de Bruijn sequence with index set N.« and let
B = (b,-) be the closure of B. Let m be an integer withu < m < c*+u-—1.
Note that the definition of the de Bruijn sequence implies that

[[Bev]ul = |[BewJm| = ¢* (1)

since all u-windows By, 1 = 0,1,...,c% — 1 are distinct and therefore all m-
windows B;, i = 0,1, ...,¢* — 1, are distinct.

Let T = (¢;) be a finite sequence of length n with the entries ¢; € N.u for
0 £ i < n—1. Since there is a natural one to one correspondence ¢ between INou
and [Bcu],m given by ¢(t;) = B, the sequence T = (t;) produces an associated

m X narray A
(6(to)’ d(t1)’ ... d(tn-1)")
(Bi' Bt,'.... B,,_.,")

where By’ is the transpose of B;;. This means that A is the concatenation of
the transposes of the m-windows of B corresponding to the entries ¢; € T. We
say that A is the (T, [Bcu];)-array. If we denote the array A = (a; ;), then we
have

A

G j = biye;-
Let Ax; = (a; ;) be a u x v window of A4 for k € Ny._yy) and [ € N, _yqy.
Then, for each i € N, and j € IN, the entry a; ; of Ai; is expressed as
@i j = itk j+l = bitkarsy,. ()

in terms of (b;).
Lemma 7 Let u, v, m, n be positive integers with u < m < n and v < n.
For a given c-ary span u de Bruijn sequence B and a finite sequence T = (¢;)
for i € N, with entries ¢; from N.u(the index set of B), suppose that A is the
(T, [Beu)im)-array. If Axq and Ag ¢ are u x v windows of A for k, &' € Nyp_ys1
and {, I’ € N,,_,41, then we have

i) u—m<k—K<m-—u,

(i) Ax¢ = Ap ¢ if and only if k = &' = tj4r — iy (mod c*)

for all j € IN,,.
Proof.
(i) Since 0 <k, k' <m-u,wehaveu—-m< —k'<k—-k'<k<m-u.

(ii) Let Akl = (a.-,-) and Akl = (ﬂ,‘j). Then Akl = Akl 14 if and only if
a;; = fij for all i € N, and j € IN, i.e. bivktt;yr = b,'.,.k'.,.tw,. This
holds if and only if Biy,,,, = Bknﬂm for all j € IN,. This holds if and
only if k+tj4; = k' +tj4p (mod c*) for all j € IN,,, since B is a c-ary span
u de Bruijn sequence, i.e. k— k' = tj.r — tj4; (mod c¥) for all j € IN,.
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]

We use the notation [¢;], to denote T; (a v-window (4, tiy1 - . . tigv—1) of T),
and [t; + o], to denote (t; + a tiy) + . .. tigy—1 + @) for a € Neu. Then, (ii)
in Lemma 7 can be written as

Ay = Ap v if and only if [tr]y = [t + ]y
where a = k — k. Now we state a theorem to be a criterion for a type of APMs.

Theorem 8 Let (c;m,n;u,v) be an admissible parameter set for APM. Let
B = (b;) be a c-ary span u de Bruijn sequence and let T = (¢;) be a finite
sequence of length n (0 < i < n — 1) with the entries ¢; € Ncu. Suppose that T
satisfies the following conditions.

(@) [t], # [t], for all i,5 € Nyoyyr with i # j.

(i) [tj}v # [ti + a]v for all £,j € Ny_y4) and all non-zero integer a with
u—m<a<m—uie [t; +a)y & [Tu-vs1)y fori,j € Ny_yqq and all
non-zero integer a withu—m<a<m-u.

Then, the (T, [Bcu]m) — array A is a c-ary (m,n;u,v)APM.

Proof. The result follows immediately by Lemma 7. If T satisfies (i) and
(ii), it follows that all the u x v windows A,, for s € N;,_y41 and ¢t € Ng_y4y
are distinct. Moreover, the parameters m, n, u and v satisfy the necessary
conditions for the existence of a c-ary APM. So every c-ary u x v window appears
exactly once in [A(m—ut1)x(n—m+1)}uxv. 8

Referring to Theorem 8, it can be seen that, for given parameters satisfy-
ing the necessary conditions for existence of an APM (Lemma 5), whether the
(T, [Bcu]m)-array constructed from a c-ary span u de Bruijn sequence and a
finite sequence T with entries ¢; € IN.« is an APM depends on the choice of the
sequence T to satisfy the conditions in Theorem 8. In fact, one possibility for
the sequence T in the theorem is a contiguous subsequence of a c*-ary span v
de Bruijn sequence which satisfies the condition (ii) in Theorem 8.

4 Constructions of APMs

In this section, two types of APMs are given by constructions of corresponding
sequences T satisfying Theorem 8 for given de Bruijn sequences. First, a family
of c-ary (¢* + u—1,c* + 1;u,2)APMs is provided as an example in which ¢
is not a prime power. We remark that these APMs must be referred to as the
APMs with parameters c-ary (c* + 1, c¢* + u — 1;2, u) because of our supposition
in Remark 6 that the low size of our APM is not longer that the column size.
Note that these APMs form square arrays if © = 2. Second, a family of 2%-ary
(m,n;u,2)APMs are given. Note that the sequence T for the construction is
formed by an amalgamation of two periodic sequences.
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4.1 A construction of c-ary (c* +1,¢* + u — 1;2,u)APM

Let ¢ be any given positive integer. For any given c-ary span u de Bruijn
sequence, a class of c-ary (¢ +u—1,c* + 1;u,2)APMs can be given by the
designed sequence T satisfying Theorem 8 as follows.

Construction 9 c-ary (c* +u —1,¢% + 1;u,2)APMs
Let B = (b;) be a c-ary span u de Bruijn sequence of period c*. Define a
sequence T = (t;) of length c* + 1 as follows;

tit1 =t;+i(mod ¢*), t =0

where ¢; € Nu for all i = 1,...,c". Define a (¢* +u— 1) x (c* + 1) array A as
A = (o) o] - - [beu])

which is a (T, [B.u]cu 44—1)-array determined by such T and B.

Theorem 10 Let B be a c-ary span u de Bruijn sequence. Let T = ()
be the sequence defined in Construction 9 and let A be the (T, [Bes]ew 4u—1)-
array of size (¢* + u — 1) x (¢ + 1). Then the transpose of A is a c-ary
(c* +1,c* +u—1;2,u)APM.

Proof. We claim that the sequence T defined in Construction 9 satisfies (i)
and (ii) in Theorem 8.

(i) Suppose that (¢; ti41) = [ti]2 = [t;]2 = (¢ tj41) for some 7,7 € New. Then
Liti=tig = i+l = +j (mod c¥)

Since ¢; = ¢; and i,j € N.u, we have i = j (mod ¢*) and so i = j.

(i) Suppose that (t; £41) € [Tes)2 and (4 + @ s + @) € [Teu]2 for some
integer a with a < |c* —1]. Let (t; + a tiy1 + a) = (¢; ¢j41) for some
J € Nea. Since t; =t; + a and tj1; = ti41 + a we have

tita+jsSti+ji=tin =t +ast+i+a (mod c¥)

which implies that i = j (mod ¢*) Since i,j € Nov and a < |c* - 1|, we
havei=jand a =0.

Hence, the (T,[Bcu]cutu-1)-array A is a c-ary (c* +u—1,¢* + 1;u,2)APM
from Theorem 8. Therefore, the transpose of 4 is a c-ary (c* + 1,¢* + u — 1; 2, u) APM
from Remark 6. ®

We have the following corollary on the existence of the given type of APM
directly from Theorem 10.

Corollary 11 For ¢ and u with ¢ > 2 and u > 1, there always exists c-ary
(c* +1,c* +u—1;2,u)APM.
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0,...,35) is a G-ary

(b:) (¢ =

Example 12 Note that the following sequence B

span 2 de Bruijn sequence of period 62

(005544332211040302015141312524235345).

B =

From Construction 9, a 6-ary (37,37;2,2)APM can be obtained as follows.

t; +1 (mod 62), to = 0 where ¢; € INgz,

1. T = (t;) of length 62 + 1 as #;4,

(0013610152128091930619331228927

T=

103015124121 271810 3 33 28 24 21 19 18).

2. Define a 37 x 37 array A as (T, [Bga)s24.1 )-array, i.e.

- [b1s])

({bo]’ [bo]’ [ba]" - -

. [btsz ],)

A= ((b) b -

which gives a 6-ary (37,37;2, 2)APM (see Figure 1).

Ore T rMrNDANTANOMNOITINOONITOHNNNN-r-rOTOMONO
VOOV ITLTONANNrrrOTONONODFrNrTrErO~NONTNMOD®M T W
TOROONNTTNMNMANNrEr O TOMNMONOrNDerTrOrNONTNONMT
MeErNNNTNODOITNOONLTTNNNNr—OTOMONODrr DT —M
NTNODOTNOONMWIITOONOANN~rrOTOMONO~tN T~ NN
NMITNOONMWUMIITONNMNNr ~OTOMONO-NeErT-MeAONITNOOL®
MNLCTLTONOANN " ~OTOMONO W r TrMNMeerNONTNNMOLMOITIOVOOWNIN
O TOMONO WM r T rOrAlilDNTANOMINMOONNTTOONN~—
OrNrerTrdr N TNONDOITNOOVVITTIMNNONN~-~OTOMOND
MANTNOLNTUOOUNTITONONNTrOTOMNMONO -~ T - NW
OWMWNITITMNMOANN O TOMONOrNDNerTM-NMNINANTANMODMOMITONOO
OTOMONOrer Tr=MrNNTNOUMTVOONITTOMHONN-~O
NDr NN TANOOUOTNOONNITITTOONNN - r—OTOMONO DT —M
OIS TOMONN " O TONMONC N TrMeNNDNTNMNMNDNTNOO
MONOr e TrMOrNNONTNONNTNOONLTTOHONN-~OTOM
NOOOTNOOMUVIITODONNNFr~rOTOMNMONO~UVrEr TrMreNIDN TN
rFrOTOMONO -~ rEr T rOrANNNTNOIOMNMTITVOOWVNITTOMNMNN—
MAUTNOALOATVLOOLWVNTTITNNMANNT—OTOMONO N rErTreMe W
N~ TOMONOD " rr T rdrNNNANTANNOLOITITNOOWVNITTMOHMNNN
NTNONNDTNOONMVITITMNMONANN-rOTOMONOrNDr T rrMeNOLN
OCTOMONODO~UN+rTrMerdNNITNONVLNTNVOOLVITOHOMNMNN-~O
MTNOONMUVITITMNNANN-rOTONONO N e TeErMrerNNDNTNMNOO®
"D E T O CFANNDNTNOODNTNOONVITTNNONNN T O TOMONO
MONNrsr 0 CTOMNMONOD > er T rMrNNDANTAMOLOITVOON T TM™
NOULOTVOOULWVLITTNONNET O TOMNMONOrFrNDrEr T rO NN N
EFOCFT O CFANNANTNOOUMOTNVOONNITIITOONOANTrOTOMOND —
N~ TOMONOr D r T rMeerNINNTNMNMULOTNOONITTOONN
COUVUVITTONANNrr O TONONOFrNr TrMrANMANITNONNTNO
NTNOOUOMTNOOUVWMIITOHONNNrrOTOMNMONOrVDeeTrOrNOWN
T EMNEFAONTANOOMOTNOONNTTONNNN -, r~rOTOMONO v~ ) —
NMONO~Ur TrNerNONTNONMOITNOONNNITITNONN-~OTOM
FrFOTOMONO~WVr TrMrrNNNTNNONNTNOONTITOMNN~
DONNr O TOMONO~UVr TrOCFADANTNOLOITIVOOVNT TN
DT LTONOANN~ =~ O TOMONO N~ T =M rNNDNTNODOTHOOWVW
OMNITTNOANNr-r~rOTOMONOD-rN T rNrOLANTNOLOITNOO
OCONMNITLITMONNr~rr~rOTOMNONOD=WVr TrMrANNTNOOLMITWO
OCOMNMUNITITMMANNr —OTONMONO~UrErTrMrAlLANTNMOLOTNO

2,2)APM

b

Figure 1: 6-ary (62 +1,62 +1

208



4.2 A Construction of 2*-ary (m,n;u,2)APM

The following type of APM is constructed by the devised sequence T satisfying
Theorem 8 which consists of two amalgamated periodic sequences with entries

in the index set of a given de Bruijn sequence.

Construction 13 A class of 2%-ary (m,n;u, 2)APM.

Let ¢ = 2" and v = 2. Then the parameters of a c-ary (m, n;u,v)APM satisfy
(m—u+1)(n—1) =22 g0 that (m —u +1) | 225, Sincem —u+1<n—-1
from Remark 6, we can put m — u + 1 = 2* where 0 < ¢ < hu. Suppose hu > 3

and ¢ = hu — 2. Then for arbitrary u, the parameters m and n are given as

m=24+u—1=2"-244_ 1,
n= 22hu—t +1= 2Im+2 +1.

1. Let B be a 2"-ary span u de Bruijn sequence, say
B = (C()‘ Cly ceenss ,Czhu_l).

2. Consider the following set of m-windows of B,

[Boru]m = {[cilm |0 < i < 27 — 1),

3. Now we define two sequences (a;) and (b;) with entries in Nynu by the

following recurrence relations.

Qg = 0,
—a; (mod 2"¥) if i=0 (mod 4)
S 2hu=1_1_q; (mod 2**) if 4=1 (mod 4)
= ohu=1 _ g, (mod 2%*) if i=2 (mod 4)
-1-aq; (mod 2%*) if i=3(mod 4)
and
bo =0,
2hu=1 _ p, (mod 2"*)  if {=0 (mod 4)
bt = -1-Y (mod 2%*)  if i=1(mod 4)
1= —b; (mod 2%%)  if i=2(mod 4)
2hu=1 _1—b; (mod 2b%) if i=3 (mod 4).
Note that from the recurrence relations, a4i1+4 = —2 + a4; and bgi1q =
—2 + by;, we have agx = —2k and bgr = —2k which imply
—2k (mod 2"¥) if r=0
e = a - 2k (mod 2"¥)  if r=
T Mkdr = 2hu-l _ 12k (mod 2M*) if r=2
1+ 2k (mod 2*%) if r=3
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-2k (mod 2k%) if r=0

b = b _ ) 2tk (mod 2'*)  if r=1
P07 kb =) _ghu-l_1-2k (mod 2%)  if r=2
hu-l 4142 (mod 2%*) if r=3

4

for k=0, 1, 2, .... Here, (a;) and (b;) are 2"“+!-periodic sequences

since (aqx) and (bg;) are of period 2441,

4. We define a sequence T' = (t;) with entries in Nos. of length 2hu+2 41
such that
o= { o if 0<EL 2
k= b if ghu+l <k< ghut2
Note that agnutr = bonusr = 0 50 that tonu+1 is well defined.

5. Define a (2"%~2 4+ u — 1) x (2"%+2 + 1) array A as

A = ([clo]’ fee,) - - [cl-zm.+2 l') )
which is a (T, [By»u]sm)-array determined by such T' and B.

We observe the properties of the sequences (a;), (b;) and (¢;) in Construction
13 before we prove the constructed sequence T satisfies (i) and (ii) in Theorem
8.

Lemma 14 Let (a;), (b;) and (¢;) be the sequences defined in Construction 13.
Then, we have

(i) (a4x) and (bsi) are of period 2hv—1.
(i) (a:) and (b;) are of period 2"+1.
(iii) for r = 0,1,2,3, whenever 0 < k, k' < 2"*~! and k # K, then
Gak+r # Qakr4rand and bapyr # barrsr,

i.e. the 2#u~! entries in each cycle of (asx) and (bsk), respectively, are
distinct.

Proof. Note that 2k = 2k'(mod 2"*) if and only if ¥ = k'(mod 2**~!). So,
for r = 0,1,2,3, Qaksr = aarr4r if and only if k£ = k' (mod 2#*~1) . Thus, (i)
and (i) hold. Now, aqksr — Gakr4r = 2(k — k') and 2(k' — k) # 0 (mod 2h%)
since k # k' (mod 2*#~1), which implies (iii). ®

Proposition 15 Let B = (c;) be a 2"-ary span u de Bruijn sequence and

T = () be the sequence defined in Construction 13. Then, T satisfies the
condition (i) in Theorem 8 for m =22 +u—1,n=2"+*2+land v =2.
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Proof. We show that if [t;]o = [¢j]2 for i,j € Nynusa, then i = j. Note
that T consists of the concatenation of two finite subsequences of (a;) and (b;).
Note that tonus1 = aghust = ag = by = bynu+1. Thus, for 0 < § < ohutl g
[til2 = [ai]2 and for 2k+1 < § < 25442 [t], = [b;];. The following table lists
the elements [a;], and [b;], where i = 4k 4+ r for = 0,1,2,3 and the entries
represent residues modulo 25,

r [ [ai: [bil2

0 | (—2k, 2k) (—2k, 2** T+ 2K)

1] (2, —2k+2%"1 ~1) 2=t ok, —2he-l o1 9g) (5)
2 %-21; +287 o1, 2k 4 1) | (2Rt —1 -2k, 284t 414 2K)

3| (@2k+1, —2k-2) (2™ '+ 1+2k —2k-2)

Suppose that [t;]2 = [¢;], for some 0 < 7,5 < 2"+2 — 1, There are three cases
to be considered.
L 0<i,j <2+ — 1 then (a;, ai41) = [ti)e = [t;]2 = (g, 8j41).
Let i =4k +r and j = 4k' + ' where 0 < r,¢' < 3.
(a) Supposer = r'. Then 2k = 2k'(mod 2°%) and hence k = k'(mod 2#-1)
which implies that & = &’ by Lemma 14 (iii). Thus ¢ = j.

(b) Suppose r # 7'. Without loss of generality, we may assume that
7 < r'. Then, for possible values of r and ', we have the following
six congruences derived from (5) and the hypothesis (a; aiy1) =

(aj aj41)-
r | ' | Congruence derived from (5) reason
0 1 2k = =2k + 211 (mod 2'"') Qi+l = Qj+1
0] 212%=2k+1 (mod 2°%) | aiy1 = aj41
0] 3| ~2k=2k+1 {mod 2*) a; = aj
1(2 | 2k=—2k+2m"1_1 (mod 2**) | @;=a;
1({3|2%=2"+1 (mod 2h¢) a; =a;
2|3 | 2%+1==2%"~-2 (mod 2**) | ai41 = aj41

Since hu > 1, each of these congruencies leads to the contradiction
that 0 =1 (mod 2). Thus the case r # ' does not occur.

Hence, in this case, we have i = j.

2. 2MH <4, 5 < 2R 1 ; then (b, bign) = [ti)e = [t5]2 = (b5, bj1)-

Let ¢ =4k +r and j = 4k’ +1' where 0 < 1,7’ < 3. The same argument as
stated in case 1 can be applied to this case. Referring (5), for each r and
v’ with 0 < 7,7’ < 3, we have a similar congruence to the one in case 1
which implies a contradiction that 0 =1 (mod 2). Hence we have i = j.

3. 0<i <2kt 1 and 2hu+! < j < 242 _ 1 ; then (ai,ai41) = [t =
[ti]2 = (b5, bj41).
Let i =4k +r and j = 4k’ + 1’ where 0 < r,7' < 3.
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(a) Suppose r = r'. Then, we have four cases as follows.
(i) * = 0 = r'; then, we have —2k = —2k'(mod 2"¥) and 2k =
2hu=-1 4 ok'(mod 2"%).
(ii) =1 =+'; then, we have 2k = 2"~ + 2k'(mod 2"*) and -2k +
ghu—1 _ 3 = _ghu-1 _ 1 _ 2k'(mod 2"*).
(iii) r = 2 = r'; then, we have —2k 4+ 2hv-1 -1 = —2hv-1 _ 1 —
2k'(mod 2"*) and 2k + 1 = 2"*~! + 1 4 2k'(mod 2"*).
(iv) * = 3 =r'; then, we have 2k + 1 = 25%~! + 1 + 2k'(mod 2"*) and
~2k — 2 = —2k' — 2(mod 2").
In each case we have k = k'(mod 2"%~1) and k = k'+2"%~%(mod 2**~1).
i.e. 2h4=2 = O(mod 2*4-1). This contradiction implies that this case
does not occur.
(b) Suppose r # r'. From (a; @it1) = (b; bj41), we have 12 cases as
follows.

-
~

congruences derived from (5) reason
2k = —2""_1 -1- 2k'(mod 25“) Qi+l = bj.H

—2k = —2h%~1 — 1 — 2k'(mod 2**) a;=b;

~2k =2""! 41 4 2K'(mod 2*) ai =b;
—2k 4+ 2P#-1 1 = 2541 4 2K (mod 2**) | ai41 =bj+1

2k = —2M-! _1 - 2k'(mod 2"*) a; =b;

2k =2""1 4142k (mod 2**) | @i =b;

—2k 4 2M%-1 _1 = —2k'(mod 2**) a;i=b;

—2k 42871 —1 = 2"~ 4 2K (mod 2™) |  ai=b;
2k +1=—2k" —2(mod 2**) | ait1 =bjs

2k + 1 = —2k'(mod 2**) a; = b;

2k +1 = 2"*~1 4 2k'(mod 2%*) a; =b;
—2k—2=2""1 414 2k'(mod 2"*) | aip1 = bjp

WWWNNNKHHOOO|Y
N = ONMHOWNOOWIN =

Since hu > 1, each of these congruences leads to the contradiction
that 0 =1 (mod 2). Thus the case r # r' does not occur.

Hence, in this case, we have i = j.

In all cases, we have ¢ = j. Hence we conclude that [z # [t} if i#£jand T
satisfies condition (i) in Theorem 8. =

Proposition 16 Let B = (c;) be a 2"-ary span u de Bruijn sequence with
hu > 3 and let T = (&) be the sequence defined in Construction 13 by B. Then,
T satisfies the condition (ii) in Theorem 8 for m = 2#4~2 4 y—1,n = 20vt2 41
and v = 2.

Proof. Suppose that [t;], = [t; + a], for some i,j with 0 < 4,j < 2hut?
and non-zero integer a with u — m < @ < m — u. Then, t; = t; + a (mod 2"*)
and t;y1 = t;41 + o (mod 2"*) so that

tiy1 — £ = tjq — tj(mod 2°*). (6)
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The following table lists the values agk4r4+1 — Gapqr and baxy,p1 — Dagyr for
r=0,1,2,3 and the entries represent residues modulo 2"¢.

T | Gak4ral — Qdk4r b4k+r+1 —bak4r

0| 4k 4k + 2F==T

1| —dk—142"1 | 4k -1 )
2| 4k-2m-tq2 | 4k 42

3| —4k-3 —4k — 3 — 2hu-?

Now let i = 4k + r and j = 4k’ + v’ where 0 < r, r' < 3. In the same manner
as the previous lemma, we divide the problem into three cases.

1.0<, j<2hvt 1 je 0<k, k' <21 _1; then,
Cktr+l = Odktr = bip) — i = tjg1 — b = Qap'prr41 — Garr 4o
(a) Suppose r = r'. From (7), we have 4k = 4k’ (mod 2"*) so that
k = k' (mod 2h#-2),

From the condition that 0 < k, k' < 2"%~! —_ 1, we have k = k' or
k' = k+2"4=2 Ifk = k', then i = j so that a = t;—t; = O(mod 2"*).
But —2"~24]1 = y—m < a < m—u = 2"*~2_1 Hencea = 0.If k' =
k+2hu_2, then @ = t;—~¢; = agpr —O4(kqohu=2)pp = 2’"‘“(mod 2"“)
by (3). But =2M*-2 t1=u-m<a<m-—u=2"2_1, So this
case does not occur.
Thus a = 0 and condition (ii) of Theorem 8 holds.

(b) Suppose r # r’ and, without loss of generality, r < 7. Then we have
six cases as follows.

7

r Congruences derived from (7)
4k = —4k' — 1+ 2""T  (mod2™*)
dk=4k'—2"*"1 42 (mod2"*)
4k = —4k'—3 (mod2"*)
—4k-1420" 1 =4k — 2% 42 (mod2t¥)
—4k—1+2%*"1 = —4k' =3 (mod2™*)
3 4k — 2" 12 = —4k'— 3 (mod2"*)

(i)
(i)
(iii)
(iv)
(v)
(vi)
Since hu > 1, each of congruences from (i), (iii), (iv) and (vi) leads
to the contradiction that 0 = 1 (mod 2). From (ii) and (v), we
have 2k = 2k’ — 2%%~2 4 1(mod 2**~1) and -2k + 2Mv—2 = —2%' —
1 (mod 2*4~1), respectively. Since hu > 3, these congruences lead to
the contradictions that 0 = 1 (mod 2).

N = =-O OO
W N WD

2. 2hutl <, j < 2hu2_1 e 2041 <k < 271 ; then, bakyrs —Dapsr =
biv1 — b =tjp1 — bt = bapr s — bagrgrr.
Almost same argument stated in case 1 can be applied to the subcase
that r = 7' and r # 7', respectively. Thus, if r = r' then a = 0 so that
condition (ii) of Theorem 8 holds, and if r # &/, then six congruences
occur from (7) all of which imply that 0 = 1 (mod 2).
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3.0<1< ohutl gnd4 ohutl <j< ohut? j o <k< ghu—1 _ 1 gpnd 2hu-1 <
k' < 255 then Gaksrs1 —Carer = tix1 —ti = i1 —t; = bawrgrrsr —bapr4r.

(a) Suppose r = r'. Then, from (7), we have 4k — 4k = 2**~! (mod 2"*)
so that

k— k' =203 (mod 2"~?).

(8)

Then the integers k' satisfying (8) may be expressed in terms of k as

follows.
% (%
0<k<2he? k=2 4 Mk

E =2hu—l +2hu—2 +2hu-3+k or

2hu—3 S k< 2hu—2 + 2hu—3

kl = 2nu—l + 2hu—3 + k
k' = ohu-l _ghu=3 L1 or

2hu—2 + 2hu—3 S k< 2hu—!

k' = 2hu—l — 2hu—2 — 2hu—d + k
E = 2bu-1 - 2hu-3 +k

(9)

For each case r = v’ = 0,1,2,3 and for each range of k in (9), it
follows from (3), (4) and (9) that

a=t; —t; = agksr — baprar = {

2hu—2

2hu-l + 2hu-2

(mod 2"*) or

(mod 2%%).

But -2"-241<u-m<a<m-u< 2" 2_1; s, this case
does not occur.

(b) Suppose r # ’. From (7), We have 12 cases as follows.

r|r congruences derived from (7)

01 4k = -4k -1 (mod 2™*)
0] 2 4k = -4k’ —3 - 2h-! {mod 2"*)
0|3 4k = —4k' = 3 — 2hv-! (mod 2"*)
1|0 —4k — 14204t = 4k’ 4 20! (mod 2"*)
1|2 —dk—1+4+2"" =4k 42 (mod 2*)
1|3 —2k 42042 = 2k’ =122 (mod 2"*-!)
2]0 2k —2M42 41 =2k + 2"~  (mod 2"*~!)
2|1 4k —2""l 4 2= —ak' -1 (mod 2*)
2|2 |4k—2M-t42= gk —3 20! (mod 2h%)
3|0 —4k —3 = 4k’ + 2he-! (mod 2%)
3(1 ~2k—-1=-2k' (mod 2""~!)
3|2 —4dk -3 =4k +2 (mod 2**)

Each

of congruences leads to the contradiction that 1 = 0(mod 2)
since hu > 2. So this case does not occur.

214

Therefore, for all integers i and a with 0 < i < 2**+2_1and 0 < |a| < 2"*—1-1,
we conclude that [¢; + a], € [Th—v+1]s and so T satisfies (ii) in Theorem 8 for
n=2ht2 L1 m=2"21y_landv=2.®m
From Proposition 15 and Proposition 16, the following result is immediate.



Theorem 17 Let B be a 2"-ary span u de Bruijn sequence. Put m = 2h¢~2 4
u—1and n=2m+2 11 Let T = () be the sequence defined in Construction
13. Then, A, the (T,[Bgru]m)-array of size m x n is a 2"-ary (2"*~2 + u —
1,25+2 4 1;u, 2) APM.

Proof. Note that the parameters satisfy the necessary condition for exis-
tence of APMs stated in Lemma 5. Proposition 15 and Proposition 16 imply
that the array A satisfies condition (i) and (ii), respectively, in Theorem 8.
Therefore, 4 is a 2"-ary (2"*~2 + u —1,25%+2 1 1;4,2)APM. m

The following example is the simplest case of Construction 13.
Example 18 A construction of a 2-ary (4, 33;3,2)APM.
1. Take a 2-ary span 3 de Bruijn Sequence B = (c;) as
B = (00111010)
and consider [Bys)s.

2. Now we define two cyclic sequences (a;) and (b;) with entries in Ng of
period 2%. Let i be a non-negative integer and suppose i = 4k + r for
non-negative integers k,r with 0 <r < 3.

-2k  (mod 8) if r=0
- - J 2%  (mod8) if r=
G = Gqyr = 3-2k (mod 8) if r=2
1+2 (mod 8) if r=3
and
-2 (mod 8) if r=0
b= b = ] 4+2 (mod 8 if r=1
o= bae = { 3T (medy i ros
-3+2k (mod 8) if r=3.

3. Define a finite sequence T = (¢;) in N of length 25 + 1 as

o= Gk if 0<k<?2d
EZ b if 20<k< 25,

4. Then we have
(t)=(003162134475265704356617407122530).

Now we can obtain the 22 x (2° + 1) (T, [Bs)s)-array A by Construction 13 as
follows.

A ([Cto]' [chI]' [ctz]'[cts]' s [Ct”], [0133]’)

([co]' [eo] [ea] [er]” - - - [es]' [co]')
001011011100110001101100100011010
001101110001101000110010000111110
110101101100100011000010110111001

111100110010000110100011011100011
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where [c;, )4 € [Bs)s for tx € T. Then, the array is a 2-ary (4,33;3,2)APM by
Theorem 17.
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